Approximate Querying on Property Graphs Companion Appendix

Stefania Dumbrava¹, Angela Bonifati², Amaia Nazabal Ruiz Diaz², and Romain Vuillemot 3

¹ ENSIIE Évry $&$ CNRS Samovar stefania.dumbrava@ensiie.fr 2 University of Lyon 1 $\&$ CNRS LIRIS {angela.bonifati,amaia.nazabal-ruiz-diaz}@univ-lyon1.fr 3 École Centrale Lyon $\&$ CNRS LIRIS romain.vuillemot@ec-lyon.fr

We complement the information in the paper, as follows. In Section [1,](#page-0-0) we give the formulas for the precomputed properties used to estimate counting RPQs. In Section [2,](#page-0-1) we establish intermediate results characterizing the computed graph summarization. Finally, in Section [3,](#page-1-0) we detail the NP-completeness proof regarding summarization optimality, under our algorithm's conditions.

1 Precomputed Properties

Formulas for relevant precomputed properties are given in Fig[.1.](#page-0-2) Each supernode, v^* , comprises all subgrouping vertices and edges, $\mathcal{G}_i^* = (V_i^*, E_i^*)$, formed during the grouping phase. Note: l_c indicate cross-edge labels and l_i , inner-edges ones.

Fig. 1: Precomputed Graph Summary Properties

2 Grouping Characterization

We henceforth denote $\Phi = \text{GROUPING}(\mathcal{G})$ and name each $\mathcal{G}' \in \Phi$, a \mathcal{G} -grouping and each $\mathcal{G}'' \in \mathcal{G}'$, a \mathcal{G}' -subgrouping. Note that Φ is not unique, as, for $l_1, l_2 \in$ $\Lambda(G)$, s.t $\#l_1 = \#l_2$, we arbitrarily order l_1 and l_2 in $\Lambda(G)$.

Definition 1 (Non-Trivial (Sub)Groupings). A G-grouping, $\mathcal{G}' = (V', E'),$ is called trivial, if $\mathcal{G}' = \mathcal{G}$ or $E' = \emptyset$, and non-trivial, otherwise. A \mathcal{G}' -subgrouping, $\mathcal{G}'' = (V'', E''),$ is called trivial, if $E'' = \emptyset$, and non-trivial, otherwise.

Lemma 1 (Non-Trivial Grouping Properties). Let \mathcal{G}' be a non-trivial \mathcal{G} grouping. The following hold. P1: For any non-trivial \mathcal{G}' -subgrouping, \mathcal{G}'' , there exists $l'' \in A(G')$, s.t $\lambda(G') = l''$. **P2:** For any non-trivial distinct G'-subgroupings, $\mathcal{G}_1'', \mathcal{G}_2''$: a) $\lambda(\mathcal{G}_1'') = \lambda(\mathcal{G}_2'')$ and b) \mathcal{G}_1'' and \mathcal{G}_2'' are edge-wise disjoint.

Proof. P1 is provable by contradiction. If $\sharp l''$, $l'' \in \Lambda(G')$, s.t $\lambda(G') = l''$, then $E' = \emptyset$, contradicting the non-triviality of \mathcal{G}' . **P2.a**) holds by construction and **P2.b**), by contradiction. Assume $\mathcal{G}_1'' \cap \mathcal{G}_2'' \neq \emptyset$; then, \mathcal{G}_1'' and \mathcal{G}_2'' share at least a node, which is impossible by construction. \Box

We characterize the GROUPING algorithm, based on the following remarks. Lemma 2 (Subgrouping Maximal Label-Connectivity). For each $\mathcal{G}_i \in \Phi$, each of its maximally weakly connected *components*, $G_i^* \in G_i$, is also maximally label-connected on l, where $\#l = \max_{l \in A(\mathcal{G}_i)} (\# l)$.

Proof. By construction, we know that, if $G_i^* \in G_i$, there exists $l' \in \Lambda(G)$, such that $\lambda(\mathcal{G}_i^*) = l'$. Assume that $l' \neq l$. By definition, there exists at least one l-labeled edge in E_i^* . Since \mathcal{G}_i^* is maximally label-connected on l' , then each such edge connects vertices also connected by an edge labeled l' . As $\#l \geq \#l'$, then there exists at least one pair of vertices in V_i^* connected by more edges labeled l than l'. Hence, $\lambda(\mathcal{G}_i^*) = l$, contradicting the hypothesis. \Box

Theorem 1 (*GROUPING* Properties). If $|V| \geq 1$, then: $\boldsymbol{P1:} \ \forall \mathcal{G}_i \in \Phi, V_i \neq \emptyset$ **P2:** $\forall \mathcal{G}_i, \mathcal{G}_j \in \Phi$, where $i \neq j$, $\mathcal{G}_i \cap \mathcal{G}_j = \emptyset$ $P3:$ U $\bigcup_{i \in [1,k]} V_i = V$ and $\bigcup_{i \in [1,k]} E_i \subseteq E$ $\boldsymbol{P4\mathpunct{:}\Phi} = \{\mathcal{G}_i = (V_i, E_i) \subseteq \mathcal{G} \mid i \in [1, |A(\mathcal{G})| + 1]\}$

Proof. **P1, P2, P3** trivially hold. We prove **P4.** If $E = \emptyset$, $\Phi = \{G\}$. Otherwise, there exists $l \in \overline{\Lambda(\mathcal{G})}$ and $\mathcal{G}_i \in \Phi$, such that $\lambda(\mathcal{G}_i) = l$. Assume $\Phi > |A(\mathcal{G})| + 1$. At least two groupings, $\mathcal{G}_i, \mathcal{G}_j$, with the same most frequently occurring label, l, exist. As $|\mathcal{G}_i| \geq 1$, $|\mathcal{G}_j| \geq 1$, each contains a maximally weakly connected component, \mathcal{G}'_i , \mathcal{G}'_j . From Lemma [2,](#page-1-1) $\lambda(\mathcal{G}'_i) = \lambda(\mathcal{G}'_j)$, contradicting $\mathcal{G}_i \cap \mathcal{G}_j \neq \emptyset$.

3 Optimal Summary Intractability

Theorem 2. Let MinSummary be the problem that, for a graph $\mathcal G$ and an integer $k' \geq 2$, decides if there exists a label-driven partitioning Φ of \mathcal{G} , $|\Phi| \leq k'$, s.t χ_A is a valid summarization. MinSummary is NP-complete, even for undirected graphs, $|A(\mathcal{G})| \leq 2$ and $k' = 2$.

Proof. We establish the result in two steps. First, MinSummary is in NP. We construct a valid *summarization function*, χ_A , as a witness. For a graph partitioning in k subgraphs, one can verify in polynomial time if two vertices are reachable by a given labeled-constrained path and decide if their assignation to the same or to different HNs is valid. Second, MinSummary is NP-hard. We reduce the MinSummary problem to IndSet, i.e., the NP-complete problem of establishing whether an undirected graph contains K independent vertices, for an arbitrary K. We prove $\text{IndSet} \leq_p \text{MinSummary}$. Let $\mathcal{G} = (V, E)$ be an **IndSet** instance, where G is undirected, $|V| = n \ge 2$, $|E| = m$, $\Lambda(\mathcal{G}) = \{l_1\}$. We consider a polynomial reduction function, f, s.t $f(\mathcal{G}) = \mathcal{G}'$, $\mathcal{G}' = (V', E')$ (see Fig. [2\)](#page-2-0), $\{v'_1, v'_2, v'_3\} \subset V'$, $\Lambda(\mathcal{G}) = \{l_1, l_2\}$, and $\tilde{\mathcal{G}} \subset \mathcal{G}$, where $\tilde{\mathcal{G}}$ is obtained from \mathcal{G} , by adding, between each pair of vertices connected with an l_1 -labeled edge, n more l_1 -labeled edges. Let \mathcal{G}' contain three paths of length k , between v'_1 and v_2' (one, l_1 -labeled, and two, l_2 -labeled) and two paths of length n, between v_2' and v'_3 , of each color. Let $K \geq 0$ be the number of independent vertices in \mathcal{G} . In $\mathcal{G}', \# \bar{l}_1 \geq (n+1)(n-K-1) + 2k+n$ and $\# \bar{l}_2 = 2n+k$. $l_2 = \max_{l \in \mathcal{G}'} (\# l) \Rightarrow K \geq$

 $\frac{n^2-n-1+k}{n+1}$ ≥ 1. We show: $\mathcal G$ satisfies IndSet $\Leftrightarrow \mathcal G'$ satisfies MinSummary.

Fig. 2: \mathcal{G}' Construction

 \Rightarrow Let G satisfy IndSet. We can thus choose a set of independent vertices $S \subset V$, $|S| = k$. Let \mathcal{G}_2 be the \mathcal{G}' -subgraph induced by $S \cup A \cup B$. It is maximally l_2 connected and contains $2k + n$ edges labeled l_2 and $2k + n$ edges labeled l_1 , i.e., $\lambda(\mathcal{G}_2) = l_2$. Let \mathcal{G}_1 be the \mathcal{G}' -subgraph induced by $V \setminus S$. It is maximally l_1 -connected and contains $(n + 1)m$ edges, all labeled l_1 ; hence, $\lambda(\mathcal{G}_1) = l_1$. $\Phi = \{\mathcal{G}_1, \mathcal{G}_2\}$ is a valid summarization of \mathcal{G}' , as $l_1 = \max_{l \in \mathcal{G}_1} (\# l)$ and $l_2 = \max_{l \in \mathcal{G}_2} (\# l)$.

\mathcal{G}' satisfies MinSummary.

 \leftarrow Let \mathcal{G}' satisfy **MinSummary**. We can thus compute a \mathcal{G} -partitioning, Φ , that is a valid summarization, where $|\Phi| \leq 2$. If $\Phi = 2$, then there exist two distinct \mathcal{G}' -subgraphs, \mathcal{G}_1 , \mathcal{G}_2 , where $\Phi = {\mathcal{G}_1, \mathcal{G}_2}$. As $\#l_1 = (n+1)m+2k+n \geq 2n+k =$ $#l_2$ in \mathcal{G}' , one of the subgraphs \mathcal{G}_1 , \mathcal{G}_2 , should be s.t all of its components are *maximally l*₁-connected. Let that subgraph be \mathcal{G}_1 . Hence, $\mathcal{G}_1 \cap \tilde{\mathcal{G}}$ contains all vertices connected by a l_1 -labeled edge. We denote by \tilde{V}_1 the set of vertices in $\mathcal{G}_1 \cap \tilde{\mathcal{G}}$. The set of vertices in \mathcal{G}_1 is thus $\tilde{V}_1 \cup A \cup B$. As Φ has to be a valid summarization, the set of vertices in \mathcal{G}_2 is V_2 , where $V_2 = V' \setminus (\tilde{V}_1 \cup A \cup B)$. We can thus choose the set of independent vertices of size K in $\mathcal G$ to be $S = V_2$. If $|\Phi| = 1, \Phi = {\mathcal{G}}'$ must be a valid summarization of \mathcal{G}' . As \mathcal{G}' is maximally l_2 connected, it must hold that $l_2 = \max_{l \in \mathcal{G}'} (\# l)$. Hence, $K \geq 1$ and we can choose the set of independent vertices in $\mathcal G$ to be $S = V' \cap V$. Thus, $\mathcal G$ satisfies **IndSet**.