
INTRODUCTION TO
GAME PROGRAMMING & GAME ENGINES

Guillaume Bouyer, Adrien Allard

v3.2

www.ensiie.fr/~bouyer/
guillaume.bouyer@ensiie.fr

JIN 2018 – GAME DEVELOPMENT

Objectives and schedule
•Be aware of the technical problems and existing solutions that underpin the development of a video game
(among others to succeed as well as possible in the team project)
•Understand the theoretical and technical components of game engines
•Operate a high-level but relatively closed game engine (Unity). Being able to create a project that looks like a
game

1. Prerequisites : Unity >= 2017,4 installed, several completed Unity tutorials (ex. introduction from ENSIIE S4 course)
2. Continue project
3. Finish project part 1 & 2
4. Finish project part 3

2

bouyer@ensiie.fr

http://www.ensiie.fr/~bouyer/JIN

Office 111 @ ENSIIE

Monday Tuesday Wednesday Thursday Friday

Am Pm Am Pm Am Pm Am Pm Am Pm

JIN Intro Proj. Course Part. 1
+ Project Part. 1 TC2.b TC2.d TC2.c TC2.a Proj.. Course Part. 2

+ Project Part. 2

Adrien Allard
Amplitude Studios,

Talk + Project Part. 3

1 2 3 4Homeworks

JIN 2018 – GAME DEVELOPMENT

References
•Game Engine Architecture, Jason Gregory, A K Peters/CRC Press, 2009
(http://www.gameenginebook.com/)
•Game Coding Complete, 4th Edition, Mike McShaffry and David Graham, Course Technology, 2013
•Game Programming Algorithms and Techniques, Sanjay Madhav, Addison-Wesley, 2013
•Game Programming Patterns, Robert Nystrom, Paperback, 2014 (gameprogrammingpatterns.com/)

3

http://www.gameenginebook.com/
http://gameprogrammingpatterns.com/

What if we programmed
our own video game?

5

JIN PROJECT

PART 1:

6

THE BASICS

A VIDEO GAME?

JIN 2018 – GAME DEVELOPMENT

What is a video game?
•Player's point of view:
•“An interactive experience that provides the player with an increasingly challenging sequence of patterns
which he learns and eventually masters”

•Raph Koster, A Theory of Fun for Game Design

•Artistic & interactive content designed to entertain
•Gameplay, game mechanics

•Rules of interactions between the entities
•Objectives, criteria for success and failure
•Player character’s abilities
•Number and types of non-player entities in the virtual world
•Overall flow of the gaming experience

•More crucial to define a game than its technology

8

http://www.raphkoster.com/

JIN 2018 – GAME DEVELOPMENT

What is a video game?
•Developer's point of view:
•"A soft real-time interactive agent-based computer simulation"

•Jason Gregory, Game Engine Architecture
•Agents: distinct entities or objects in the game world
•Real-time Simulation

•Dynamic game world based on approximated (=numerical) mathematical model
•Various game systems (AI, game logic, physics…) regularly update their state
•Soft: approximations (rendering, physics, audio…) are allowed

•Interactive
•Must respond to unpredictable human input
•Must provide rendering of the simulation result by displaying graphics, sound…

Various technical components
•3D graphics rendering system, collision detection system, audio system, network…

9

JIN 2018 – GAME DEVELOPMENT

Our game

•Artistic content
•Interactive content
•Gameplay, rules, genre
•Real-time simulation
•Humain input
•Graphics rendering, audio…
•Objects
•…

JIN PROJECT

TEAM

JIN 2018 – GAME DEVELOPMENT

Typical Game Team
•Engineers (= programmers)

•Runtime programmers: engine and game
•Single engine system: rendering, AI, physics…
•Low level: memory, network…
•Gameplay (3C : Character-Controls-Camera)

•Tools programmers: off-line tools for the team
•=> Lead engineers (+ management), technical directors (high level),… chief technical officer (for the
entire studio)

•Artists Produce visual and audio content
•Concept artists, 3D modeler, Animators, Texture & lighting artists, Actors (mocap, voice), Sound
designers & composers…
•=> Lead artists, art directors

12

when an engineer meets artists

JIN 2018 – GAME DEVELOPMENT

Typical Game Team
•Game designers Design the gameplay

•Macro level
•Story arc, overall sequence of levels, high-level objectives of the player

•Individual levels or geographical areas within the game world
•Static background geometry, enemies spawning, items placement, puzzle elements…

•Technical level
•Close with gameplay engineers and/or writing code (high-level scripting language)

•=> Game director
•Producers

•Manage the schedule, the human resources,
link between the dev. and the business units…

•Publishers
•Marketing, manufacture and distribution (usually not handled by the studio)

13

JIN 2018 – GAME DEVELOPMENT

Our team

•Producer : me
•Game designer : contractor
•Artists : internet…
•Engineers : you
•Self-published

14

JIN PROJECT

TECHNOLOGICAL REQUIREMENTS

15

BY GENRES

JIN 2018 – GAME DEVELOPMENT

Technological differences
•First-Person Shooters (FPS)

Third-Person games

16

Rendering high fidelity & large 3D virtual worlds (optimized for a particular type of environment)
3C responsive camera & aiming mechanic, forgiving player character motion and collision model (“floaty”),

Animations high-fidelity player’s virtual arms and weapons, high-fidelity non-player characters…
AI non-player characters

Multiplayer small-scale online capabilities (ex. 64), “death match” gameplay mode…
Gameworld wide range of hand-held weaponry and pickable items, complex level design…

~FPS (Rendering, AI, Multiplayer…)
3C emphasis placed on the main character’s abilities and locomotion modes, 3rd-person “follow camera”

focused on the player character + complex camera collision system
Animations high-fidelity full-body player’s avatar
Gameworld interesting locomotion modes: moving platforms, ladders, ropes…, puzzle-like environmental elements

JIN 2018 – GAME DEVELOPMENT

Technological differences
•Fighting games

•Racing games

17

Rendering high-definition character graphics (realistic skin, sweat effects…), physics-based cloth and hair simulations
3C user input system capable of detecting complex button and joystick combinations, accurate hit detection

Animations rich set of high-fidelity fighting characters animations
AI non-player characters

Multiplayer typically 2 players local or online, ranking…
Gameworld relatively static backgrounds (crowds)

Rendering usually focus all graphic detail on the vehicles, track, and immediate surroundings, various “tricks” to
optimize rendering (distant background elements…)

3C follow camera (3rd-person) or inside the cockpit (FPS)
Physics realistic (tires, materials…)

AI path finding for non-human-controlled vehicles…
Multiplayer small-scale online capabilities, local split-screen, ranking…

Audio realistic (tires, engines…)

JIN 2018 – GAME DEVELOPMENT

Technological differences
•Real-Time Strategy (RTS)

•Massively Multiplayer Online Games (MMOG)
•

18

Rendering units relatively low-res, to support large numbers on-screen, height-field terrain
3C typically oblique top-down camera, restrictions allow to optimize the rendering, grid-layout system to aid

align units and buildings, complex user interaction (single-click and area-based selection of units, menus
or toolbars containing commands, equipment, unit types, building types…)

AI non-player characters
Multiplayer typically 2 players local or online, ranking…

Rendering graphics fidelity almost always lower than non-massively multiplayer counterparts (huge world sizes and
large numbers of users)

Network powerful battery of servers to maintain the authoritative state of the game world, manage users signing
in and out of the game, provide inter-user chat or VoIP services, central server to handle the billing and
micro-transactions

JIN 2018 – GAME DEVELOPMENT

Our game?

•Spaceships !

•Bullets !

•Shoot'em up !

19

Steredenn

Skytte

eXceed

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Our game

20

Rendering 2D, relatively low res, sprites
3C fixed camera, very responsive user input system, accurate hit detection

Animations simple animated sprites
AI no, scripted/randomized levels

Multiplayer no
Gameworld relatively static backgrounds, numerous visible objects (enemies, bullets, particles…)

SCHMUP !

GAME DESIGN

21

Maxence Voleau - Game Designer @ Amplitude

JIN 2018 – GAME DEVELOPMENT

Player avatar

•Simple movement
•Move up / down / left / right using directional arrows and ZSQD (for
any keyboard) *
•Moving at constant speed. No slowdown when changing direction.
Control must be fluid. *
•Shoot using space bar *

•Advanced movement
•Dodging at a distance < d pixels gives invulnerability for x seconds if
double tap in one direction (two inputs of the same input in less than y
seconds)

SCHMUP !

22

JIN 2018 – GAME DEVELOPMENT

Shoot system

•Tab to change the type of shooting among 3
•continuous and straight *
•continuous and in both diagonals, at 45 °
•continuous and spiral

•The projectiles touch only the objects of the opposite camp *
•Shooting begins when the button is pressed, and ends when
released *

23

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Camera

•Fixed*
•Avatar placed in a band representing 10% of the screen to the
left.

24

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Energy

•Each moment spent shooting consumes energy *
•depending on the type of fire: energy and delta variable time

•The energy recharges x per second as long as the ship does
not shoot *
•If energy drops to zero, mandatory reload to 100% and reload
slowed by 25% *
•Using dodge consumes energy

25

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Enemies

•2 types:
•Straight move and regular intervals shots *
•Zigzag move and regular intervals shots

•Speed and shot interval are random between two bounds
•Each enemy has little life: need a hit and an explosion at
minimum, at best a + x score at each death

26

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Game and levels structure

•2 types of victory / defeat conditions
•Life and finite wave to beat
•No life just gaining score by killing and losing score if hit + combo
system if killed without being hit

•Main menu then level selection screen, a level is a series of
waves of enemies

27

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Collectibles

•+ energy (current or max depending on the context)
•+ life or + combo depending on the condition of victory
•Unlock a new shooting type (3x this collectible to unlock the
next if avatar progression constraint)
•Generation of random collectibles, controlled by the evolution
of the game

28

SCHMUP !

DEVELOPMENT

29

Let's Go !

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

•When development environment is not adapted…

30

DEVELOPMENT

31

A bit of organization before…

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Usual Development Tools
•Editors and IDE

•Specific engine editor
•Microsoft Visual Studio
•Hex editor (inspecting and modifying the contents of binary files)…

•Version Control
•Central repository to share files
•Multiple users can modify files collectively
•History of changes for each file (track and revert)
•Tagging of versions, branches
•Source code and game assets
•SVN, Git, Mercurial, Perforce…

•Difference & 3-way merge tools
•Build tools

32

JIN 2018 – GAME DEVELOPMENT

Git
•Register on a git hosting platform

•Github, gitlab, bitbucket, forge ensiie or tsp ...
•Complete the necessary procedure for secure connections (ssh)

•Install the git shell + graphical client
•Github desktop, Sourcetree ...

•Create the dev project
•Initialize the git repository in the project folder with the "create“ function
•Dev
•Commit
•Set the remote repository
•Push
•Goto 5

33

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Coding practices

•Design patterns
•Gang of Four book
•gameprogrammingpatterns.com
•Singleton, Iterator, Abstract Factory…

•Recommended coding standards
•Clean, understandable and commented interfaces
•Good names and prefixes
•Consistency
•Make common errors easier to see

34

http://gameprogrammingpatterns.com/

JIN 2018 – GAME DEVELOPMENT

Mandatory components

1. Humain input
2. Real-time simulation of game objects
3. Graphics rendering

•What else ?

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Other components

•And it might be good to not redo everything for each game

36

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

What about not starting from scratch...

•A little help ?

37

SCHMUP !

GAME ENGINE

38

JIN 2018 – GAME DEVELOPMENT

Game Engine
•Extensible set of software that can be used as the foundation for different games
•Separates:

•Core runtime components
•3D graphics rendering system, collision detection system, audio system…

•Art assets, game worlds, gameplay
•constitute the gaming experience

•=> Create new games with new contents & "minimal" changes to reusable core
software
•=> Mod community
•=> Engine licensing = secondary revenue stream

39

JIN 2018 – GAME DEVELOPMENT

Trade-off’s generality/optimality
•Technological overlap between games/genres, especially within the same hardware
platform
•More and more powerful hardware

•=> differences between genres are decreasing
=> possible to reuse the same engine technology across disparate genres, and even across
disparate hardware platforms

•But
•The more general-purpose a game engine or middleware component => the less optimal for
running a particular game / particular platform

•=> Assumptions about how the software will be used and/or about the target
hardware on which it will run

40

JIN 2018 – GAME DEVELOPMENT

Game Engine Examples
•Doom & Quake Engines, ID tech (Id Software)

•Castle Wolfenstein 3D (92), Doom, Quake 1-4 (96-05), HalfLife (98), Medal of Honor…
•Unreal Engines (Epic Games)

•Unreal (98-08), Deus Ex (00-03), Gears of War (06-13), Bioshock (07)…
•Source Engine (Valve)

•Half-life 2, Team Fortress, Portal…
•CryEngine (Crytek), Amazon Lumberyard

•FarCry (2004), Crysis (2007), Crysis 2 (2011), Crysis 3 (2013), Evolve (2015)…
•Unity 3D
•Gamemaker, Construct 2, RPG Maker…
•Proprietary in-House Engines
•Open Source Engines

•Ogre 3D, Panda3D, Yake, Crystal Space, Torque, Irrlicht…

41

JIN 2018 – GAME DEVELOPMENT

Engine Architecture Game-Specific Subsystems
Game-Specific

Rendering
Player

Mechanics Game Camera AI

Front End

Visual Effects

Scene-graph / Culling
Optimizations

Skeletal
Animation

Online
Multiplayer Audio

Low-Level Renderer Profiling &
Debugging

Collision &
Physics

Human
Interface
Devices

Resources / Assets Manager

Core systems

Platform Independence Layer

3rd Party SDKs

OS

Drivers

Hardware

Resources
/ Assets

Gameplay Foundations
Game

Objects
Events Scripting

Game
Flow

JIN 2018 – GAME DEVELOPMENT

Engine Architecture
•Drivers

•Manage hardware resources, shield the OS and upper engine
layers from the communication details

•Operating System (OS)
•PC

•OS runs all the time
•Orchestrates the execution of multiple programs, including the game
•Pre-emptive multitasking: time-sliced approach to sharing the hardware

•Console
•Previously a thin library layer compiled into the game executable: game "owns" the machine
•Now can interrupt the execution of the game, or take over resources, display online messages or
dashboard, allow to pause the game…

43

JIN 2018 – GAME DEVELOPMENT

Engine Architecture
•Third-Party SDKs and Middleware

•Data Structures and Algorithms
•STL, STLport, Boost…
•Memory allocation performance vs. convenience?

•Graphics
•OpenGL, DirectX, libgcm (PS3), Edge (Naughty Dog)…

•Collision and Physics
•Havok, PhysX, ODE, I-Collide, V-Collide, RAPID…

•Character Animation
•Granny, Havok Animation, Edge…

•Artificial Intelligence
•Platform Independence Layer

•Wrap or replace the most commonly used standard C library functions, OS calls, and other foundational APIs
•Shields the rest of the engine from the majority of knowledge of the underlying platform

44

JIN 2018 – GAME DEVELOPMENT

Engine Architecture
•Core Systems: useful software utilities

•Assertions, unit testing…
•Memory allocation
•Math library, random number generator
•Custom data structures and algorithms

•Resource Manager
•Interfaces for accessing game assets and other engine input data (3D model, texture, material, font, skeleton,
collision, map…)

•Profiling and Debugging Tools
•Profile performance and analyze memory in order to optimize
•In-game debugging facilities
•Record and play-back gameplay
•Config, stats…
•Commercial or custom

45

JIN 2018 – GAME DEVELOPMENT

Engine Architecture
•Rendering Engine

•Low-Level Renderer
•Scene Graph/Culling Optimizations
•Visual Effects

•Particles, decal, light and environment mapping, dynamic shadows, full-screen post effects (HDR, AA, color
correction…)

•Front End
•2D or 3D: Heads-up display (HUD), in-game menus, console, development tools, in-game GUI
•Full-motion video or in-game cinematics system

•Animation
•Collision and Physics

•Collision detection
•"Rigid body kinematics and dynamics" system

46

JIN 2018 – GAME DEVELOPMENT

Engine Architecture
•Human Interface Devices (HID)

•Manages and transforms the low-level raw data from
the hardware
•Provides high-level game controls and detection (chords, sequences, gestures…)

•Audio
•Needs lots of tuning, engines vary greatly in sophistication
•Ex: XACT (Microsoft), SoundR!OT (EA), Scream (Sony)…

•Multiplayer/Networking
•Single-screen, Split-screen, Networked, Massively multiplayer online
•Single-player is often special case of a multiplayer game
•Better to design multiplayer features at the beginning

47

JIN 2018 – GAME DEVELOPMENT

Engine Architecture
Gameplay Systems: at the interface between game
and engine

•Game’s rules, objectives, and dynamic world elements
•Game object model
•Game objects updating
•Level management and streaming
•Messaging and event handling between objects
•Scripting language
•Objectives and game flow management
•Artificial Intelligence

•Game-Specific Subsystems: features of the game
•Mechanics of the player character, in-game camera systems, AI for NPCs, weapon systems,
vehicles…

48

JIN 2018 – GAME DEVELOPMENT

Data-Driven Engines

•Game team must efficiently produce very large amounts of contents
•Data-driven engine permits designers and artists to

•Create content
•Control (some parts of) the behavior of the game
•Directly by data rather than exclusively by programming

•Benefits and risks
•Improved creation and iteration times
•Heavy cost to develop appropriate runtime code and robust and usable tools

49

JIN 2018 – GAME DEVELOPMENT

Choosing an engine

•Questions examples
1. What’s my timeframe?
2. How big is my team?
3. What’s my budget?
4. Am I good at programming?
5. What genre is my game?
6. How big is my scope/what platform am I releasing on?

[blackshellmedia.com/2016/09/29/6-crucial-questions-ask-choosing-game-engine/]

50

https://blackshellmedia.com/2016/09/29/6-crucial-questions-ask-choosing-game-engine/

JIN 2018 – GAME DEVELOPMENT

Choosing an engine for 1 person

1. Pick the game engine for you, not for your game
2. Apply the marketing filter
3. Performance is not a feature
4. Prefer a programming language you already know
5. Documentation
6. Maintenance
7. Support
8. Cost
9. Features
[http://www.learn-cocos2d.com/2012/05/the-game-engine-dating-guide-how-to-find-the-right-engine-for-your-game]

51

http://www.learn-cocos2d.com/2012/05/the-game-engine-dating-guide-how-to-find-the-right-engine-for-your-game

JIN 2018 – GAME DEVELOPMENT

Unity

52

GAME WORLD, GAME OBJECTS &
EDITION TOOLS

JIN 2018 – GAME DEVELOPMENT

Game Objects
•Actors, agents, entities…
•Components of the game world

•Player & non-player characters
•Environment

•Terrain, building, road, bridge, trees…
•Locomotion modes

•Vehicles, platforms, ropes, graspable edges…
•Scenery and ambiance objects

•Background, furniture, particle emitters, lights…
•Items

•Weaponry, armor, collectible objects, floating power-ups and health packs…
•Invisible utilitarian data

•Collision information, volumetric regions to detect events or delineate areas, AI navigation mesh, splines to define the
paths of objects…

•=> 3D objects, data containers, spatial zones, invisible or special objects…

54

JIN 2018 – GAME DEVELOPMENT

Dynamic vs. Static Objects
•"Dynamic" objects

•Evolving state
•Main support of the gameplay
•Usually more CPU expensive

•"Static" objects
•Stable state
•No critical interaction with gameplay
(event if layout can plays a crucial role)
•Possible optimizations (static triangle mesh,
precomputed lighting…)

•Dynamic/Static ratio
•Distinction often blurry

•Ex. waterfalls, destructible elements
•High ratio => perception of a more “alive” and interactive game world
•Most games consist of a limited number of dynamic elements within a relatively large static background area
(hardware dependent)

55

JIN 2018 – GAME DEVELOPMENT

Game World Editor

•GUI tool (or suite of tools) to build
the game world

•Dedicated, with custom rendering
engine
•Integrated into a 3D geometry editor
•Integrated into the engine

•Rapid iteration
•Dynamic tweaking

56

Hammer
(Source engine)

GtkRadiant
(Quake engine)

JIN 2018 – GAME DEVELOPMENT

World Edition
•Insertion and selection of game objects

•Placement and alignment aids (position, orientation, and scale via special handles, assistance tools
for densely populated worlds)
•3D or tree view (hierarchy)
•Special object handling (lights, cameras, particles…)

•Visualization and navigation
•3D perspective view of the world and/or a 2D orthographic projection
•View pane divided into sections
•Camera control

•Level creation, saving, loading and management

57

JIN 2018 – GAME DEVELOPMENT

Game Objects Edition

•Game objects usually have an object-oriented appearance
•Types/Instances
•Attributes/Values

•Current state of the object (locations, orientations, parameters…)
•Behavior

•How the state will change over time and in response to events
•Different types of objects have different attributes and different behaviors
•All instances of a type have the same attributes and behaviors, but different values

•Ex: Pacman ?

58

JIN 2018 – GAME DEVELOPMENT

Game Objects?

59

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Game Objects Edition
•States of game objects (values of their attributes) edited in a property grid

•Atomic data types
•Key-value pairs
•Arrays
•Structures
•Strings…

•Behavior usually controlled with
•Data-driven configuration parameters
•Scripting language

60

JIN 2018 – GAME DEVELOPMENT

Assets
•All the ressources for the game

•3D model/mesh
•Material properties, texture,
shaders…
•Animations, skeletal data
•Collision and physical properties
•Audio clips
•Particles system…

•Usually created with external
specialized content creation tools

•Ex. Maya, 3ds Max (Autodesk), Photoshop
(Adobe), Soundforge…

•Need management tools

61

Unreal Editor browser

JIN 2018 – GAME DEVELOPMENT

Assets Tools

•Data formats of created assets rarely suitable for direct use in-
game

•In-memory model too much complex
•File format too slow to read at runtime, and sometimes proprietary

•=> Asset Conditioning Pipeline (ACP)
•Data exported to a more accessible standardized or custom format,
then further processed (ex. differently for each target platform)

62

JIN 2018 – GAME DEVELOPMENT

Unity

•Editor / Runtime
•Rapid iteration
•3D views
•Scenes
•Game Objects, Object-oriented
•Hierarchy
•Inspector
•Assets,
Management tools
•Layers…

63

JIN 2018 – GAME DEVELOPMENT

Assets?

64

SCHMUP !

CONTROLLING THE ENGINE:

SCRIPTING

JIN 2018 – GAME DEVELOPMENT

Game Scripting Languages
•High-level, relatively easy-to-use programming languages
•Provides convenient access to commonly used features of the engine
•Used by programmers and non-programmers to

•Develop a new game
•Customize (“mod”) an existing game
•Extend or customize the hard-coded functionality of the engine’s game object model and other
subsystems
•Create and populate data structures that are later consumed by the engine (data definition
languages)

•Examples
•QuakeC, UnrealScript, LUA, Python, Pawn / Small / Small-C

66

JIN 2018 – GAME DEVELOPMENT

Scripts Benefits

•Rapid iteration: faster to see in-game effects of changes than native
language source code

•No recompilation/relink
•Sometimes no game shut down and rerun

•Convenience and ease of use, often customized
•Suits the needs of a particular game
•Can make common tasks simple and less error-prone

67

JIN 2018 – GAME DEVELOPMENT

Scripts Execution
•Usually interpreted and executed in an embedded virtual machine at runtime within
the context of the engine
•Flexibility

•Game engine manages scripts’ execution

•Portability
•Platform-independent byte code treated like data by the engine and loaded into memory just like
any asset

•Lightweight
•Simple virtual machines, small memory footprints

•Callbacks
•User-supplied function called by the engine to customize some functionalities

68

JIN 2018 – GAME DEVELOPMENT

In Practice
•New game object types or components

•Inheritance: deriving a scripted class from a native class
•Composition/aggregation: attaching an instance of a scripted class to a native game object

•Communication between objects
•Entirely scripted game object model

•Native engine code called only when requires the services of lower-level engine components

•Entirely scripted game
•Native engine code called to access high-speed features of the engine

69

JIN 2018 – GAME DEVELOPMENT

Unity
•Scripting system

•http://docs.unity3d.com/ScriptReference/
•http://unity3d.com/learn/tutorials/modules/beginner/scripting

70

http://docs.unity3d.com/ScriptReference/
http://unity3d.com/learn/tutorials/modules/beginner/scripting

PART 2

71

INTERACTIVE REAL-TIME SIMULATION

GAME LOOP

JIN 2018 – GAME DEVELOPMENT

The Game Loop
•Game composed of many interacting subsystems

•I/O, rendering, animation, collision detection, rigid body dynamics simulation (optional), multiplayer
networking (optional), audio, game objects model…

•Subsystems require periodic servicing with various rates
•Rendering and Animation: 30 or 60 Hz
•Dynamics simulation: higher rates (e.g., 120 Hz)
•Higher-level systems (e.g. AI): 1 or 2 times/second (not necessarily synch. with rendering)

⇒ Solution: a single “game loop” to update everything

73

while (true) { //(need something to quit…)
processInput(); //but don’t wait for input
updateGameState(); //one step of the game simulation
renderGame(); //generate outputs

}

JIN 2018 – GAME DEVELOPMENT

Theoretical Example: Pong

74

while (true) { // game loop
readHumanInterfaceDevices();
if (quitButtonPressed())

break; // exit the game loop
movePaddles();
moveBall();
collideAndBounceBall();
if (ballImpactedSide(LEFT_PLAYER)){

incrementScore(RIGHT_PLAYER);
resetBall();

}
else if (ballImpactedSide(RIGHT_PLAYER)) {

incrementScore(LEFT_PLAYER);
resetBall();

}
renderGame();

}

JIN 2018 – GAME DEVELOPMENT

Theoretical Example: PacMan

75

while (player.lives > 0){
// Process Inputs
JoystickData j = grabRawDataFromJoystick();
// Update Game World
player.move(j);
for (Ghost g in world){

if (collision(player, g))
killPlayerOrGhost(player, g);

else
g.move(player.position);

}
// Pac-Man eats any pellets
...
// Generate Outputs
renderGame();

}

JIN 2018 – GAME DEVELOPMENT

Our game loop (theory)?

76

SCHMUP !

TIME MANAGEMENT

JIN 2018 – GAME DEVELOPMENT

Frame rate

•Frame rate
•Number of game loop renderings / second (Hz or FramePerSecond)
•Describes how rapidly the sequence of still 3D frames is presented to the viewer

Frame time, Time delta, Delta time, Frame period…
•Amount of time between 2 successive frames (seconds)
•Amount of time to process inputs, update game state and render image !
•Ex: f = 60 FPS -> T = 16,6 ms/frame…

78

while (true) {
processInput();
updateGameState();
renderGame();

}

JIN 2018 – GAME DEVELOPMENT

Frame rate

•Depends on the complexity of calculating each frame and the power of
the underlying platform
•=> Basic game loop will run the game at inconsistent speeds depending
on the hardware

•Ex: move x meters per frame
•=> Need to track time and adapt the loop architecture to control the
rate of the game

79

JIN 2018 – GAME DEVELOPMENT

Real Time
•Amount of time elapsed in the real world
•Insufficient resolution of OS function for querying the system time

•Ex. time() in C

•=>Use high-resolution timer hardware register on CPU
•Origin = CPU last powered on or reset
•Counts the units of elapsed CPU cycles (or some multiple thereof)
•Converted into units of seconds by multiplying by the frequency
•Ex: 3 GHz CPU, incremented 3 billion times / s -> 0.333 ns resolution
•Wrapping problem !

•Caution with multicore CPU: 1 timer / core !

80

JIN 2018 – GAME DEVELOPMENT

Game Logic Time
•Amount of time elapsed in the game world
•What happens during 1 frame (or tick) of the game loop?
•Independent from real time and rendering time

•Pause -> stop updating the game temporarily (!= breakpoint)
•Slow-motion -> updating the game more slowly than the real-time clock
•Rewind…

•Useful for debug
•Ex: freeze the action but not the rendering engine and debug flythrough camera (different clock)
•Single-stepping the game clock by 1 target frame interval (e.g., 1/30 of a second) with a button
while the game is in a paused state

81

JIN 2018 – GAME DEVELOPMENT

Use delta time in update

•Most game engines
•Update takes into account the amount of elapsed game time since last
frame

•Ex: move (x * elapsed time) meters per frame

82

double lastTime = getCurrentTime(); //CPU’s high resolution timer
while (true){

double current = getCurrentTime();
double elapsed = current - lastTime; //last frame duration
processInput();
update(elapsed);
render();
lastTime = current;

}

JIN 2018 – GAME DEVELOPMENT

Use delta time in update

83

+
Consistent rate on different
hardware
Faster machines = smoother
gameplay

-
Measured value Δ𝑡𝑡 for frame 𝑘𝑘 is an
estimation of the duration of the
upcoming frame (𝑘𝑘 + 1)
=> Subject to “frame-rate spike”
(sudden change of time frame)
Undeterminism

Basic physics will have different behavior
based on the frame rate (numeric
integration / rounding error)
Online multiplayer will not function
properly with variable simulation frame
rates

JIN 2018 – GAME DEVELOPMENT

Running average

•Game loops tend to have at least some frame-to-frame
coherency
•=> Use an average of the frame-time on a small number of
frames as an estimate of Δ𝑡𝑡

•Allows the game to adapt to varying frame rate, and softening the
effects of momentary performance spikes
•Long averaging interval => less responsive to varying frame rate + less
spikes impact

84

JIN 2018 – GAME DEVELOPMENT

Breakpoints issue

•Game loop stops running but not CPU nor real-time clock
•=> A measured frame time of several seconds or even minutes

•Simple solution: compare Δ𝑡𝑡 to predefined upper limit and set
Δ𝑡𝑡 to an artificial target frame rate

85

JIN 2018 – GAME DEVELOPMENT

Frame Rate Governing

•Attempt to guarantee frames’ duration rather than guess
•Frame limiting: delay rendering if update is complete before a fixed
target frame rate

•Frame drop: skip a rendering if an update is too long

86

while (true){
double start = getCurrentTime();
processInput();
update();
render();

sleep(start + MS_PER_FRAME - getCurrentTime());
}

JIN 2018 – GAME DEVELOPMENT

Frame Rate Governing

•Works when game’s frame rate is reasonably close to target
frame rate on average

•“Variable frame rate” mode during development
•Switch on frame-rate governing when the game is close to consistent
frame rate

•Consistent frame rate is important for
•Physics
•Graphics
•Record and playback
•Power consumption

87

JIN 2018 – GAME DEVELOPMENT

Callback-Driven Frameworks

•Game loop exists but is largely empty
•=>Write callback functions to complete it

•Ex: Ogre3D

88

while (true){
for (each frameListener)

frameListener.frameStarted();
renderCurrentScene();
for (each frameListener)

frameListener.frameEnded();
finalizeSceneAndSwapBuffers();

}
[cf.Ogre::Root::renderOneFrame() in OgreRoot.cpp]

JIN 2018 – GAME DEVELOPMENT

Callback-Driven Frameworks
•Derive a class from Ogre::FrameListener
•Override frameStarted() and frameEnded()

•called before and after the rendering of the main 3D scene

89

class GameFrameListener : public Ogre::FrameListener {
public:

virtual void frameStarted(const FrameEvent& event) {
// Do things that must happen before the 3D scene is rendered
// (i.e., service all game engine subsystems).
pollJoypad(event);
updatePlayerControls(event);
updateDynamicsSimulation(event);
resolveCollisions(event);
updateCamera(event);
// etc.

}
virtual void frameEnded(const FrameEvent& event) {

// Do things that must happen after the 3D scene has been rendered.
drawHud(event);
// etc.

}
};

JIN 2018 – GAME DEVELOPMENT

Unity

•Callback-driven framework
•Game parts already implemented: game loop, rendering…
•customizable functions called during the game loop (Start(), Update()…)

90

http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

JIN 2018 – GAME DEVELOPMENT

Unity
•https://unity3d.com/learn/tutorials/modules/beginner/scripting/update-
and-fixedupdate
•http://www.codeproject.com/Tips/761922/Unity-and-Csharp-Game-
Loop-Awake-Start-Update
•http://docs.unity3d.com/Manual/ExecutionOrder.html
•http://docs.unity3d.com/Manual/class-ScriptExecution.html

91

https://unity3d.com/learn/tutorials/modules/beginner/scripting/update-and-fixedupdate
http://www.codeproject.com/Tips/761922/Unity-and-Csharp-Game-Loop-Awake-Start-Update
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://docs.unity3d.com/Manual/class-ScriptExecution.html

JIN 2018 – GAME DEVELOPMENT

Unity
•Time

•http://docs.unity3d.com/ScriptReference/Time.html
•“Game time“
•timeScale
•deltaTime
•timeSinceLevelLoad
•captureFramerate
•maximumDeltaTime…

•http://docs.unity3d.com/Manual/class-TimeManager.html

92

http://docs.unity3d.com/ScriptReference/Time.html
http://docs.unity3d.com/Manual/class-TimeManager.html

JIN 2018 – GAME DEVELOPMENT

Further Readings
•http://gameprogrammingpatterns.com/game-loop.html
•http://www.koonsolo.com/news/dewitters-gameloop/
•http://gafferongames.com/game-physics/fix-your-timestep/
•http://obviam.net/index.php/the-android-game-loop/
•http://entropyinteractive.com/2011/02/game-engine-design-the-game-loop/
•http://www.brandonfoltz.com/downloads/tutorials/The_Game_Loop_and_Frame_Rate_Managemen
t.pdf
•http://higherorderfun.com/blog/2010/08/17/understanding-the-game-main-loop/

93

http://gameprogrammingpatterns.com/game-loop.html
http://www.koonsolo.com/news/dewitters-gameloop/
http://gafferongames.com/game-physics/fix-your-timestep/
http://obviam.net/index.php/the-android-game-loop/
http://entropyinteractive.com/2011/02/game-engine-design-the-game-loop/
http://www.brandonfoltz.com/downloads/tutorials/The_Game_Loop_and_Frame_Rate_Management.pdf
http://higherorderfun.com/blog/2010/08/17/understanding-the-game-main-loop/

INPUTS

94

JIN 2018 – GAME DEVELOPMENT

Inputs

•Collect and store all information from the outside world
•Player: mouse, keyboard, touch, controller…
•Network message queues (multiplayer…)
•Saved replay information
•Others: camera, gps…

•Process input but doesn’t wait for it

•NB: Try to keep inputs/events handling separated from the
game logic

95

JIN 2018 – GAME DEVELOPMENT

Unity

•Input
•http://docs.unity3d.com/ScriptReference/Input.html

•Input Manager
•Custom axis and buttons, dead zone, gravity, sensitivity, key binding…

•Time

96

http://docs.unity3d.com/ScriptReference/Input.html

JIN 2018 – GAME DEVELOPMENT 97

SCHMUP !

GAME OBJECTS MODELS

JIN 2018 – GAME DEVELOPMENT

“Runtime Game Object Model”
•Concrete implementation of the collection of tool-side game objects available in the
world editor (type, attributes/values, behaviors)
•Must be flexible enough to easily define new game object types (data-driven or
programmed)
•A single tool-side game object type might be implemented at runtime as

•A single instance of a class
•A collection of interconnected instances of classes
•A collection of loosely coupled objects
•Or even a unique id, with state data stored in tables

•Not necessarily object-oriented language!

99

JIN 2018 – GAME DEVELOPMENT

Class Hierarchies
•Provides a taxonomy of game objects
•Common, generic functionality at the root
•-> increasingly specific functionality toward the leaves
•Tendency to monolithic hierarchy

100

JIN 2018 – GAME DEVELOPMENT 101

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Problems with Deep Hierarchies

•Understanding, maintaining, and modifying classes
•Need to understand all parents (ex: assumptions about virtual functions)

•Inability to describe multidimensional taxonomies
•A single axis/criteria at each level, “hack” the hierarchy to add unanticipated objects

•Multiple inheritance: the deadly diamond
•Most game studios prohibit/limit the use of multiple inheritance in their class hierarchies

•=> Mix-in classes
•Stand-alone classes with no base class
•Multiple inheritance limited to 1
grand-parent: and any number of
mix-in classes.

•The bubble-up effect
•Factorization vs. Duplication of code

102

JIN 2018 – GAME DEVELOPMENT

•Static destructible enemy turret ?
•Special player invicible bullet ?

103

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Components
•Divide object into dedicated and loosely coupled classes
•Each component provides a single well-defined and independent service
•Functionalities easier to understand, test, maintain, reuse, refactor and extend
•Ex: root GameObject class composed of pointers to all possible components

104

http://gameprogrammingpatterns.com/component.html

JIN 2018 – GAME DEVELOPMENT

Generic Components
•Arbitrary number of instances of each type of component

•ex. linked list in the root GameObject
•Can iterate polymorphic operations

•ex. update
•Permits new types of components to be created without modifying the game object class
•No assumptions about what other components exist within a particular game object
•Components can also have a hierarchy

•ex. Input -> PlayerInput & AIInput

105

JIN 2018 – GAME DEVELOPMENT

Unity

•Generic components :
• transform, renderer, collider…

•Behaviours, Monobehaviours

106

http://docs.unity3d.com/ScriptReference/Component.html
http://docs.unity3d.com/ScriptReference/Behaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

JIN 2018 – GAME DEVELOPMENT 107

SCHMUP !

GAME OBJECTS & UPDATE

JIN 2018 – GAME DEVELOPMENT

A Part of the Game Loop

•Game loop updates the states of all game objects dynamically, maybe in
a particular order

•Dependencies between the objects
•Dependencies on various engine subsystems
•Interdependencies between those engine subsystems themselves

•Linkage to low-level engine systems: ensure that every game object has
access to the services it depends on

•Rendering, particles, audio, animation, collisions, physics…

109

JIN 2018 – GAME DEVELOPMENT

Game Objects Updating

•Game object’s notion of time is discrete rather than continuous
•Game object’s state describes its configuration at one specific instant in
time

•Defined as the values of all its attributes
•Game object updating:

•Process of determining the state of each object at the current time 𝑆𝑆𝑆𝑆(𝑡𝑡) given its
state at a previous time 𝑆𝑆𝑆𝑆(𝑡𝑡 – Δ𝑡𝑡)
•Once all object states have been updated, the current time 𝑡𝑡 becomes the new
previous time

110

JIN 2018 – GAME DEVELOPMENT

Simplistic Approach

•Iterate over a collection of active game objects
•Often stored in a singleton manager class (“GameWorld”, “GameObject Manager”…)
•A linked list or array of pointers, smart pointers, or handles

•Call virtual void Update(float deltatime) on each object once per frame of the main loop
•Custom implementations of Update(dt) for each game object type to advance its state

111

while (true){
PollJoypad();
float dt = g_gameClock.CalculateDeltaTime();
for (each gameObject) {

gameObject.Update(dt); // updates all engine subsystems
}
g_renderingEngine.SwapBuffers();

}

JIN 2018 – GAME DEVELOPMENT

Simplistic Approach

•Update() function updates directly all the engine subsystems
concerned by the object (rendering, animation, physics…)

112

virtual void Tank::Update(float dt){
// Update the state of the tank itself.
MoveTank(dt);
DeflectTurret(dt);
FireIfNecessary();
// Now update low-level engine subsystems on behalf
// of this tank. (NOT a good idea)
m_pAnimationComponent->Update(dt);
m_pCollisionComponent->Update(dt);
m_pPhysicsComponent->Update(dt);
m_pAudioComponent->Update(dt);
m_pRenderingComponent->draw();

}

JIN 2018 – GAME DEVELOPMENT

Batched Updates
•Performance constraints of low-level engine systems

•Large quantity of data and large number of calculations every frame as quickly as possible

•=> Benefits from batched updating
•Minimal duplication of computations: global calculations done once and reused for many game
objects rather than being redone for each object

•Ex: collisions depend on multiple objects by nature
•Reduced reallocation of resources: allocated once per frame and reused for all objects
•Maximal cache coherency: per-object data arranged in a single contiguous region of RAM

•=> Each engine subsystem is updated by the main game loop rather than each
object’s Update()

•A game object can require a particular engine subsystem to allocate some state information on its
behalf
•Ex: the game object controls how it is rendered by manipulating the properties of the mesh
instance object, but does not control the rendering of the mesh instance directly

113

JIN 2018 – GAME DEVELOPMENT

Batched Updates

•Game Object’s Update

114

Game Loop

virtual void Tank::Update(float dt){
// Update the state of the tank itself.
MoveTank(dt);
DeflectTurret(dt);
FireIfNecessary();
// Control the properties of the various engine
// subsystem components, but do NOT update
// them here...
if (justExploded) {

m_pAnimationComponent->PlayAnimation("explode");
}
if (isVisible) {

m_pCollisionComponent->Activate();
m_pRenderingComponent->Show();

}
else {

m_pCollisionComponent->Deactivate();
m_pRenderingComponent->Hide();

}
// etc.

}

while (true){
PollJoypad();
float dt = g_gameClock.CalculateDeltaTime();
for (each gameObject) {

gameObject.Update(dt);
}
g_animationEngine.Update(dt);
g_physicsEngine.Simulate(dt);
g_collisionEngine.DetectResolveCollisions(dt);
g_audioEngine.Update(dt);
g_renderingEngine.RenderFrameAndSwapBuffers();

}

JIN 2018 – GAME DEVELOPMENT

Phased updates
•Game objects/engine subsystems can depend on one another: updates order is
crucial
•=> Engine subsystem updates in the proper order within the main game loop
•=> Update the states of the game objects at the right time during the game loop

•May be updated multiple times during the frame if it depends on intermediate results of
calculations
•Not all game objects require all update phases
•To minimize the cost of iteration, can maintain multiple linked lists of game objects (one for each
update phase)

115

JIN 2018 – GAME DEVELOPMENT

Bucketed updates

•Inter-object dependencies can lead to conflicting rules
governing the order of updating
•=> Collect objects into N independent groups

•For each bucket, run complete update of the game objects and the
engine systems, then all update phases
•Repeat for each bucket

116

JIN 2018 – GAME DEVELOPMENT

Object State Inconsistencies and One-Frame-Off Lag
•Objects are not updated from 𝑡𝑡𝑡 to 𝑡𝑡𝑡 instantaneously and in parallel but 1-by-1
•The states are consistent before and after the update loop, but may be inconsistent
during it
•Problem when game objects query one another for state information: previous
state or new state?
•=> Object state caching + Time-stamping

•Caches previous consistent state vector 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡) while calculating new 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡) rather than
overwriting it during update
•Allows any object to query the available 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡) of any other object without regard to update order
•Can linearly interpolate between previous and next states to approximate the state of an object at
any moment

117

JIN 2018 – GAME DEVELOPMENT

Unity
•Update pattern : custom Update() functions associated to game objects
•http://docs.unity3d.com/Manual/class-ScriptExecution.html

118

http://gameprogrammingpatterns.com/update-method.html
http://docs.unity3d.com/Manual/class-ScriptExecution.html

Goto Dev…

119

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Project Setup

•Gather and organize the assets
•Build the game world and set up the objects

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Player (resp. Enemy)

•Prefab composed of
•Sprite renderer
•Collider + RigidBody2D
•PlayerAvatar <- BaseAvatar

- maxSpeed
- health
- energy
- …

•Engines
•InputController
•BulletGun(s)

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Inputs

•Input Manager + Input class Unity
•InputController.cs

•gathers all user inputs
•know the other components of the player

•can get/set their attributs and call their methods

122

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Movements
•InputController component
• change the speed of the engines based on dedicated axis (ex. horizontal/vertical)
•Engines component
• calculate new position based on position, speed, time et maxspeed
•For the enemies : same component with input replaced by a "AI" controlling the speed

SCHMUP !

JIN 2018 – GAME DEVELOPMENT

Shoot

•PlayerBullet object
•Sprite
•Bullet component

•damage and speed
•update position
•collision test

•damages to the avatar

•BulletGun component
•damage and speed
•fire()

124

SCHMUP !

PART 3: MORE ADVANCED CONCEPTS

125

DEBUGGING & PROFILING

JIN 2018 – GAME DEVELOPMENT

Errors
•Error return codes

•bool, impossible value, enum…
•Pb for transmission threw the call stack

•Exceptions
•Avoid on consoles: limited memory and processing bandwidth

•Assertions
•Checks an expression (i.e. assumptions): if false stops the program
•Performance cost
•Only for fatal errors,
never for user errors

127

#if ASSERTIONS_ENABLED
// check the expression and fail if it is false
#define ASSERT(expr) \

if (expr) { } \
else { \
reportAssertionFailure(#expr, __FILE__, __LINE__); \
debugBreak(); }

#else
#define ASSERT(expr) // evaluates to nothing
#endif

JIN 2018 – GAME DEVELOPMENT

Logging and Tracing
•"printf debugging"
•Formatted output

•Ex. custom OutputDebugString()

•Level of verbosity, channels, filters
•Mirroring output to log files

•Cost: flush buffers after every output

•Crash Reports
•Gather useful information: level, player location, animation state, running scripts, stack trace,
memory allocators states…
•Top-level exception handler
•E-mail

128

JIN 2018 – GAME DEVELOPMENT

Debug Facilities

129

Debug cameras

Pause and slow motion
Game’s logical clock != real-time clock

Cheats
Displacement, invincibility, infinite characteristics…

Might be in the final game

Screen shots and movie capture

Debug drawing API
Visualization: math calculations…

Lines, shapes, points, 3D text…

In-game menus
Configure subsystems options at runtime

Call arbitrary functions

In-game console
Command-line interface to the engine’s features

Hard-coded commands, rich interface or scripts

JIN 2018 – GAME DEVELOPMENT

Profiling
•"90/10 rule“

•90% of the time spent running any software is accounted for by only 10% of the code
•=> Optimizing 10% of the code can potentially realize 90% of all the gains in execution speed

•=>Measure the execution time
•How much time is spent in each function, how many times each function is called, call graph,
percentage of the function’s time spent calling each of its descendants, percentage of the overall
running time accounted for by each individual function…

•Ex. 3rd party profilers
•Vtune (Intel), Rational Quantify (IBM)

130

JIN 2018 – GAME DEVELOPMENT

Memory-Tracking
•Stats
•Leak = out-of-memory

•Memory allocated but not freed

•Corruption = data written on wrong
memory location

•Other data overwritten
•Right location not updated

•Main cause = pointers
•Custom or 3rd-party tools

•Rational Purify (IBM),
Bounds Checker (CompuWare)

Uncharted 4

Uncharted 2

JIN 2018 – GAME DEVELOPMENT

Unity
•IDE
•Console

•print(), Debug.Log(), Debug.Draw()
•Debugger
•Profiler
•Unit tests
•Assert system (>=5.1)
•Version control (integrated or external)

132

https://blogs.unity3d.com/2014/07/28/unit-testing-at-the-speed-of-light-with-unity-test-tools/
https://docs.unity3d.com/Manual/VersionControl.html

PHYSICS

133

JIN 2018 – GAME DEVELOPMENT

Physics in a game
•Detect collisions between dynamic objects and
static world geometry

•Rigid body dynamics
•gravity, other forces…

•Ray and shape casts
•line of sight, bullet impacts…

•Trigger volumes
•objects enter, leave, or inside pre-defined regions

•Destructible structures

•Characters picking up rigid objects

•Spring-mass systems

•Complex machines (cranes, moving platform

puzzles…), Traps (such as an avalanche of
boulders)

•Vehicles

•Rag doll character deaths

•Hair, cloth, water surface, dangling props
simulations

•Audio propagation

•…

134

JIN 2018 – GAME DEVELOPMENT

Integrating and Using Physics
•Not necessarily fun

•Chaotic behavior can disturb the experience
•Depends on many factors (interactions, genre…)

•Unpredictability
•Difficult tuning and control
•Emergent behaviors: unexpected features

•Ex: rocket-launcher jump trick in FPS

•Additional work for engineers and artists

135

JIN 2018 – GAME DEVELOPMENT

Collision + Rigid Body Dynamics

•The physics system drives the collision system
•Dynamic rigid body associated with a collidable object

•Collision library
•Geometric (simple) shapes intersection tester
•Casts of ray, shapes, phantoms
•Layers

136

JIN 2018 – GAME DEVELOPMENT

Rigid Body Dynamics
•Basis

•Simulating the motions of game objects over time
•Classical (newtonian) mechanics
•Rigid bodies: solid and undeformable
•Ensure conformity to constraints: ex. non-penetration (collision response), joints…

•Equations of motion for linear dynamics
•𝒗𝒗 𝑡𝑡 = �𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 𝒂𝒂 𝑡𝑡 = �𝑑𝑑𝒗𝒗(𝑡𝑡)
𝑑𝑑𝑡𝑡 𝑭𝑭 𝑡𝑡 = �𝑑𝑑(𝑚𝑚𝒗𝒗 𝑡𝑡)

𝑑𝑑𝑡𝑡 = 𝑚𝑚𝒂𝒂(𝑡𝑡)

•Solving = finding 𝑣𝑣(𝑡𝑡) and 𝑟𝑟(𝑡𝑡) given knowledge of the net force 𝐹𝐹(𝑡𝑡) and the previous position and velocity
•Analytical solutions almost impossible in games

•Numerical integration: not exact but stable
•Time-stepped: finding 𝑟𝑟, 𝑣𝑣 et 𝐹𝐹 for 𝑡𝑡𝑡 = 𝐹𝐹(𝑡𝑡𝑡)
•Explicit euler

•𝑑𝑑(𝑡𝑡𝑡) = 𝑑𝑑(𝑡𝑡𝑡) + 𝒗𝒗(𝑡𝑡𝑡).Δ𝑡𝑡 𝒗𝒗 𝑡𝑡𝑡 = 𝒗𝒗 𝑡𝑡𝑡 + ⁄𝑭𝑭 𝑡𝑡𝑡
𝑚𝑚 .Δ𝑡𝑡 = �𝑑𝑑 𝑡𝑡𝑡 −𝑑𝑑(𝑡𝑡𝑡)

∆𝑡𝑡

137

JIN 2018 – GAME DEVELOPMENT

Unity
•Nvidia PhysX
•2D, 3D
•Components

•Collider: shape, center, scale…
•Rigidbody: gravity, kinematics, static…

•Events/Callbacks
•OnCollisionEnter()…
•OnTriggerEnter()…

•Physics class
•Raycast, spherecast, forces, velocity…

•Physics manager
•Collision layers…

138

GAME WORLD & FLOW MANAGEMENT

JIN 2018 – GAME DEVELOPMENT

World Chunks
•"Levels, scenes, maps, stages, areas"…
•Game decomposed into discrete playable regions

•Linear progression
•Star topology

•Central hub area
•Access other areas at random from the hub (sometimes locked)

•Graph-like topology
•Areas connected to one another in arbitrary ways

•Illusion of a vast, open world
•Benefits

•Memory usage : usually only 1 loaded at a time
•Control the overall flow of the game
•Division-of-labor

140

JIN 2018 – GAME DEVELOPMENT

High-Level Game Flow

•Sequence, tree, or graph of player
objectives (tasks, stages, levels, waves…)

•Definition of success/failure conditions and
consequences
•Can include various in-game movies

•Loose coupling between chunks and objectives
•Flexibility of design
•Objectives grouped into sections of gameplay
("chapters", "acts")

141

JIN 2018 – GAME DEVELOPMENT

Flow & Finite State Machines
•List of states and transitions triggered by conditions
•Each state

•Represents a single player objective or encounter
•Is associated with a particular location within the virtual game world

•When the player completes a task
•The state machine advances to the next state
•The player is presented with a new set of goals

•When the player fails to complete a task
•The state machine advances to the corresponding state
•Ex : send the player back to the beginning of the current state, send back to the main menu

•Rq: FSM can also be used for handling game objects' states

142

JIN 2018 – GAME DEVELOPMENT

Loading and Streaming System

•Manage the loading of game world chunks and other assets
from disk into memory
•Manage the spawning and destruction of game objects during
the game = classes instantiation

•=> File I/O
•=> Allocation and deallocation of memory

143

JIN 2018 – GAME DEVELOPMENT

Chunks Data

•Principle: store all objects in data file
•Type

•String, hashed string id, other unique type id…

•Initial state (values of attributes)
•Different formats

•Sol. 1: Binary image of each object
•Trivial spawning
•Problematic storing
•Problematic for changes

•suitable for stable data structures: mesh data, collision geometry…

144

JIN 2018 – GAME DEVELOPMENT

Chunks Data

•Sol. 2: Serialized Game Object Descriptions
•Writing/reading stream of data that contains enough detail to permit the original
object to be reconstructed later
•Supported natively by some programming languages
•Stored in a more-convenient and more-portable format (ex: XML or proprietary)
•Slow to parse
•Size problem
•serializeIO() customized functions vs reflection and generic serialization
system

145

JIN 2018 – GAME DEVELOPMENT

Level Loading
•Simple level loading: allow one game world chunk loaded at a time

•Static or simply animated 2D loading screen

•Stack-based allocator
•Load-and-stay-resident (LSR) data: required across
all game levels

•Level loaded on top of LSR data

•When complete, memory freed by resetting the
stack pointer

•No way to implement a vast, contiguous, seamless world

•No game world in memory during loading

•Air Locks
•Large block for a full world chunk

•Small block for a tiny one

•Full chunk can be unloaded and replaced when the player is in the air lock and kept busy

146

JIN 2018 – GAME DEVELOPMENT

Streaming
•Main goals

•Load data while the player is engaged in regular gameplay tasks
•Manage the memory without fragmentation while permitting data to be loaded and unloaded as needed as
the player progresses

•Divide memory in n parts
•Restrictions on the size of each chunk

•Divide every game asset into equally-sized blocks of data
•Use a pool-based memory allocation system to load and unload resource data as needed and avoid memory
fragmentation
•Which resources to load?

147

JIN 2018 – GAME DEVELOPMENT

Object Spawning
•Off-line memory allocation

•= Disallowing dynamic memory allocation during gameplay after world chunks loading: no game objects can be created or
destroyed
•Game’s memory usage patterns highly predictable
•Limits game design, have to predict the total needed number of game objects of each type

•Dynamic memory management
•Can be slow
•Can cause memory fragmentation, leading to premature out-of-memory conditions (because game objects have various
sizes)
•No global pool allocator (different types and sizes of objects)
•No stack-based allocator (deallocation order)
•Fragmentation-prone heap allocator examples

•One memory pool per object type
•Small memory allocators
•Memory relocation

148

JIN 2018 – GAME DEVELOPMENT

Spawners
•Lightweight, data-only representation of a object to create it at runtime

•Id of type => instantiate appropriate class or classes
•Table of key-value pairs => initialize attributes

•Benefits
•Simple data management
•Flexible approach
•Loosely coupled to the engine’s implementation
•Can be used for other objects, ex: important points (poi for AI characters, coordinate axes for animations
synchronization, location for particle or audio effect)
•Configurable time of spawning

149

JIN 2018 – GAME DEVELOPMENT

Saved Games
•Similar to the world level loading system: saved file store the current state of the game objects
•No duplicate copy of any information that can be determined by reading the world level data (static geometry,
object without impact on gameplay)
•Emphasis on compression
•Check points = specific save points

•Some data are always exactly the same and needn’t be stored
•Store only the name of the last check point reached, some information about the current state of the player character
(health, number of lives remaining, inventory, weapons, ammo…)
•Or start the player off in a known state at each check point

•Save anywhere
•Current locations and internal states of every game object whose state is relevant to gameplay
•Omit irrelevant details (ex. Animations)

150

JIN 2018 – GAME DEVELOPMENT

Unity
•Level Flow

•Application (<5.3)
•UnityEngine.SceneManagement (>=5.3)
•SceneManager

•LoadScene()
•GetActiveScene()

•Object.DontDestroyOnLoad

•Object Spawning
•Prefab + Instantiate()
•Destroy()
•Serialization C#
•Resources.Load/Unload

151

https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
https://docs.unity3d.com/ScriptReference/Object.html

JIN 2018 – GAME DEVELOPMENT 152

SCHMUP !

GAME OBJECTS COMMUNICATION:

153

EVENTS SYSTEM

JIN 2018 – GAME DEVELOPMENT

Components Communication
•Direct references between some components

•Simple and fast
•Coupling

•Shared state in the container object
•Keeps decoupled
•More complex container
•Possible unused information
•Communication implicit and order-dependent

•Messages/Events
•Components can send and receive to/from container
•Container can broadcast
•Keeps decoupled

154

JIN 2018 – GAME DEVELOPMENT

Events and Communication

•Games are inherently event-driven
•Event = any interesting change in the state of the game or its
environment

•Ex: player pressing a button, explosion, player sighted by an enemy, item
picked up…

155

JIN 2018 – GAME DEVELOPMENT

Explicit Function Calls vs. Event System

•Coupled vs loosely coupled components
•Examples

•Player hits monster
•-> monster's health component

•-> Monster death event -> …

•-> monster's animation
•-> UI (damages)
•-> sound
•…

•Achievement system triggered by different aspects of gameplay
•Game objects creation and destruction

156

JIN 2018 – GAME DEVELOPMENT

Explicit Function Calls

•Call a (virtual) method on the object to notify that an event
has occurred
•Inflexibility:

•Requires to know all the game objects / components involved
•May require that all game objects inherit from a common base class
which declare the virtual functions for all possible events

•for (each object o in explosion) o.OnExplosion()

•Incompatible with data-driven additions
•Every object know about every possible event

157

JIN 2018 – GAME DEVELOPMENT

Explicit Function Calls

•In practice
•Lots of includes to know the public methods of every other systems
implied
•Whole recompilation
•Hard to find bugs
•Hard to modify

158

JIN 2018 – GAME DEVELOPMENT

Event System

•Global to the game: manages all communications
•Engine subsystems or game objects register their interest in
particular kinds of events
•Notified when the event occurs
•Handle and respond to the event

•Different types of game objects will respond in different ways =
crucial aspect of their behavior

159

JIN 2018 – GAME DEVELOPMENT

Cf. Observer pattern

•Sender knows a list of receivers (but is not coupled to them)
and the event to notify, and calls their notification virtual
handler
•Receivers register to the sender and handle the notification
•Synchronous communication: direct call of the notification =>
wait for the return (avoid for UI)

160

http://gameprogrammingpatterns.com/observer.html

JIN 2018 – GAME DEVELOPMENT

Events as Objects
•Informing objects about an event is
equivalent to sending a message or
command (command pattern)
•Event type

•Hierarchy possible
•Ex: explosion, friend injured, player spotted, item picked up…

•Event arguments = data about the event
•Timestamp
•Linked list, dynamically allocated array, various data types…
•Ex: how much damages, which friend, where spotted, how much bonus…

161

struct Event {
const U32 MAX_ARGS = 8;
EventType m_type;
U32 m_numArgs;
EventArg m_aArgs[MAX_ARGS];

};

JIN 2018 – GAME DEVELOPMENT

Benefits

•Single event handler function
•Any number of different event types can be represented by an instance of a
single class
•Need one virtual function to handle all types of events

•ex. virtual void onEvent(event& event)

•Persistence
•Can be stored in a queue for handling at a later time, copied and broadcast to
multiple receivers…

•Blind event forwarding
•Don’t have to “know” anything about the event to send it

162

JIN 2018 – GAME DEVELOPMENT

Event Types

•Global enum: 1 integer by event
•Simple and efficient (integers)
•Knowledge of all events is centralized
•Hard-coded and Order-dependent
•#include in every system => global recompilation
•OK for small demos and prototypes

•GUIDs (globally unique identifiers) for each event + name
•Strings

•Extreme flexibility and data-driven nature
•Name conflicts and typos -> user tools (database, user interface, documentation…)
•High memory requirements and comparing costs -> hashed string ids

163

enum EventType {
Event_Object_Moved,
Event_Object_Created,
Event_Object Destroyed,
Event_Guard_Picked_Nose,
// ...

};

JIN 2018 – GAME DEVELOPMENT

Common Types of Events

164

JIN 2018 – GAME DEVELOPMENT

struct Variant {
enum Type {

TYPE_INTEGER,
TYPE_FLOAT,
TYPE_BOOL,
TYPE_STRING_ID,
TYPE_COUNT // nb of unique types

};
Type m_type;
union {

I32 m_asInteger;
F32 m_asFloat;
bool m_asBool;
U32 m_asStringId;

};
};

Event Arguments

•Data members of a class hierarchy of events

•Collection of variants
•Static, dynamically sized array or
linked list of tagged unions

•Collection of key-value pairs
•Avoid indexed collection order dependency

•Unique id

•Closed or open hash table, array,
linked list, or binary search tree

165

JIN 2018 – GAME DEVELOPMENT

Events Sending
•Each event is linked to a dynamic list of listeners

•List of delegates = basically function pointers that can be coupled with an object pointer and used
as a callback

•Two ways to send events
•By queue: event in line with others to be processed by the event manager in a global
EventUpdate()

•Match and call each subscribed listener delegate function with events
•2 queues to handle new resulting events

•By trigger: the event will be sent immediately
•Almost like calling each delegate function directly

166

JIN 2018 – GAME DEVELOPMENT

Event Handlers

•Single native virtual function or script function capable of
handling all types of events

•Usually switch statement or cascaded if/else

•Suite of handler functions for each type of event

167

virtual void SomeObject::OnEvent(Event& event){
switch (event.GetType()) {

case EVENT_ATTACK: RespondToAttack(event.GetAttackInfo()); break;
case EVENT_HEALTH_PACK: AddHealth(event.GetHealthPack().GetHealth()); break;

//...
default: break; // Unrecognized event

}
}

JIN 2018 – GAME DEVELOPMENT

Event Forwarding

•Relationship graphs between game objects:
•Transformation hierarchy (weapon, vehicles…)
•Composition
•Game logic (team…)

•Forwarding events within a graph of objects = Chains of
Responsibility pattern

•Can be applied to results of queries
•Can lead to deep call stacks

•Handler functions have to be fully re-entrant: called recursively without side-
effects

168

JIN 2018 – GAME DEVELOPMENT

Event Queuing
•Control over when events are handled (cf. game loop)
•Ability to post events into the future: later in the same frame, next frame, or some
number of seconds after it was sent (clock + timestamp)
•Assign priorities when identical time
•Increase event system complexity
•Events and arguments deep copied and dynamically allocated
•Hard to debug
•Can be used for periodic updating

169

JIN 2018 – GAME DEVELOPMENT

Data-Driven Event Systems: Scripts
•Define how a particular kind of game object will respond to a particular kind of
event, define new types of events, send events, and receive and handle events in
arbitrary ways

•Risks/Benefits
•Less powerful
•Easier-to-use and less error-prone
•Ability to easily search and replace within the source code
•Freedom of choice for editing tools

170

JIN 2018 – GAME DEVELOPMENT

Data-Driven Event Systems: GUI
•Possibility to configure how individual objects or classes of objects respond to certain events
•More or less sophisticated

•List of all possible events that an object might receive ; control if, and how, the object responds
•Streams of data (bool, float, vector…) between
objects with i/o ports, nodes, operators

•Risks/Benefits
•Ease of use, gradual learning curve with the
potential for in-tool help and tool tips to guide
the user
•Error-checking
•High cost to develop, debug, and maintain
•Additional complexity, which can lead to bugs
•Designers are sometimes limited in what they can do with the tool

171

Kismet (Unreal Engine)

JIN 2018 – GAME DEVELOPMENT

Unity
•Scripted Events/Messages

•http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
•http://docs.unity3d.com/Manual/ExecutionOrder.html
•http://wiki.unity3d.com/index.php?title=Event_Execution_Order
•http://www.richardfine.co.uk/2012/10/unity3d-monobehaviour-lifecycle/

172

http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://wiki.unity3d.com/index.php?title=Event_Execution_Order
http://www.richardfine.co.uk/2012/10/unity3d-monobehaviour-lifecycle/

JIN 2018 – GAME DEVELOPMENT

Unity / C# events
•Event declaration

•Delegate = basically a function pointer
•Custom delegate and event

•public delegate void NewEvent(int eventId);
•public event NewEvent OnMyEvent;

•Basic EventHandler delegate and event (no data)
•public delegate void EventHandler(object sender, EventArgs e)
•public event EventHandler OnCleanup;

•Generic EventHandler delegate, EventArgs and event
•public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e) where TEventArgs :
EventArgs
•public class MessageReceivedEventArgs : EventArgs {. . .}
•public event EventHandler<MessageReceivedEventArgs> OnMessageReceived;

173

JIN 2018 – GAME DEVELOPMENT

Unity / C# events

•Event Receivers
•Subscription/Unsubscription

•OnMyEvent += MyCustomEventHandler;
•OnCleanup -= MyCleanupEventHandler;

•Handler:
•void MyCustomEventHandler(int eventID){ … }
void MyCleanupEventHandler(object sender, EventArgs e)
{ … }

174

JIN 2018 – GAME DEVELOPMENT

Unity / C# events

•Event Raising
•if (OnMyEvent != null){

OnMyEvent(i);
}
•

if (OnCleanup != null){
OnCleanup(this);

}
•

if (OnMessageReceived != null){
OnMessageReceived(this, new
MessageReceivedEventArgs(aMessage));

}

175

JIN 2018 – GAME DEVELOPMENT

Shoot events

176

SCHMUP !

LOW-LEVEL ENGINE FEATURES

182

JIN 2018 – GAME DEVELOPMENT

Engine Configuration

•Load and save configuration options
•Text files: INI, XML
•Compressed binary files: for memory cards
•Windows registry
•Command line
•Environment variables
•Online user profiles

•Per-user options
•Slots, folders, registry…

183

JIN 2018 – GAME DEVELOPMENT

Subsystem Start-Up and Shut-Down

•Each subsystem must be configured and initialized in a specific
order (implicitly defined by interdependencies between
subsystems)
•Shut-down typically in the reverse order
•Lack of C++ static initialization order

•Major subsystems usually implemented as singleton (“managers”)
•Simple approach: explicit start-up and shut-down functions for each
singleton manager class

184

JIN 2018 – GAME DEVELOPMENT

Memory Management

•Dynamic allocation is slow
•Fragmentation can occur

•Allocations may fail even when there are enough free bytes
•Allocated memory blocks must always be contiguous

•=> Avoid heap allocations
•=> Favor Pool/stack allocators

185

JIN 2018 – GAME DEVELOPMENT

Cache coherency

•Processors have a high-speed memory cache
•If the requested data already exists in the cache => loaded directly in
registers => much faster than reading from RAM

•Solutions to avoid cache misses
•Organize data in contiguous blocks as small as possible and access
them sequentially
•Keep high-performance code as small as possible
•Avoid calling functions from within a performance-critical section of
code or place it as close as possible

186

JIN 2018 – GAME DEVELOPMENT

Containers
•Types

•Array, dynamic array, linked list, stack (lifo), queue (fifo), double-ended queue, priority queue…
•Tree, binary search tree, binary heap
•Dictionary, hash table, set
•Graph, directed acyclic graph

•Operations
•Insert, remove, sequential access, random access, find, sort

•Iterators
•Custom classes vs. 3rd party SDK

•Control, optimization, customization, no external dependies vs.
•Rich set of features, robustness, generic algorithms

187

JIN 2018 – GAME DEVELOPMENT

Strings

•Natural for objects and assets unique identifiers
•Expensive at runtime: comparison, copy…

=> profiling
•Storing

•Array of chars
•String class
•Hashed string ids (without collision): hashing at runtime or preprocessed

•Localization concerns

188

JIN 2018 – GAME DEVELOPMENT

File System
•File names and paths manipulation

•More complex than strings:
•Optional volume specifier - sequence of path components - reserved separator character

•Differences across OS

•Directory scanning + File I/O
•Synchronous or asynchronous

•Often engine-specific API
•Independent from platform
•Simplified & Extended

189

JIN 2018 – GAME DEVELOPMENT

Off-Line Resource Manager

•Resource database
•Multiple types of resources

•Embedded, binary files, text, XML, relational db, GUI…

•Metadata on how resources should be processed
•Create, delete, inspect, modify, move
•Cross-references, referential integrity
•Revision control

•Problem: copy of large assets size

•Search and query

190

JIN 2018 – GAME DEVELOPMENT

Off-Line Resource Manager

•Asset Conditioning Pipeline
•Exporters to raw data

•Custom plug-in for each DCC tool/format

•Resource compilers
•Process the data to make it game-ready

•Resource linkers
•Combine multiple resource files to a single package

•Build dependencies
•Optimization for specific platforms

191

CONCLUSION

192

JIN 2018 – GAME DEVELOPMENT

Takeaways

•Design, architecture, data structures...
•Deepen in search of solutions

•Theory and Practice
•Google: "Game programming/dev" rather than "unity"
•Focus on a problem and solve it completely

•Test and compare other engines

193

JIN 2018 – GAME DEVELOPMENT

Further readings
•http://www.gameenginebook.com/
•gameprogrammingpatterns.com/
•Game Programming Gems 1 (2002) to 8 (2010), Charles River Media
•Game Engine Gems 1 and 2, 2010-2011
•www.gamasutra.com
•Game Developer Conference

•http://www.gdconf.com/
•https://www.youtube.com/channel/UC0JB7TSe49lg56u6qH8y_MQ
•www.gamasutra.com/features/gdcarchive/

•gamedevs.org/
•gamemechanicexplorer.com/#
•www.redblobgames.com/
•pixelnest.io/tutorials/gamedev-resources/
•…

194

http://www.gameenginebook.com/
http://gameprogrammingpatterns.com/
http://www.gamasutra.com/features/gdcarchive/
http://www.gdconf.com/
http://www.gamasutra.com/features/gdcarchive/
http://www.gamasutra.com/features/gdcarchive/
http://gamedevs.org/
http://gamemechanicexplorer.com/
http://www.redblobgames.com/
http://pixelnest.io/tutorials/gamedev-resources/

	INTRODUCTION TO �GAME PROGRAMMING & GAME ENGINES
	Objectives and schedule
	References
	What if we programmed �our own video game?
	PART 1:
	A VIDEO GAME?
	What is a video game?
	What is a video game?
	Our game
	TEAM
	Typical Game Team
	Typical Game Team
	Our team
	TECHNOLOGICAL REQUIREMENTS
	Technological differences
	Technological differences
	Technological differences
	Our game?
	Our game
	GAME DESIGN
	Player avatar
	Shoot system
	Camera
	Energy
	Enemies
	Game and levels structure
	Collectibles
	DEVELOPMENT
	Diapositive numéro 30
	DEVELOPMENT
	Usual Development Tools
	Git
	Coding practices
	Mandatory components
	Other components
	What about not starting from scratch...
	GAME ENGINE
	Game Engine
	Trade-off’s generality/optimality
	Game Engine Examples
	Engine Architecture
	Engine Architecture
	Engine Architecture
	Engine Architecture
	Engine Architecture
	Engine Architecture
	Engine Architecture
	Data-Driven Engines
	Choosing an engine
	Choosing an engine for 1 person
	Unity
	GAME WORLD, GAME OBJECTS & EDITION TOOLS
	Game Objects
	Dynamic vs. Static Objects
	Game World Editor
	World Edition
	Game Objects Edition
	Game Objects?
	Game Objects Edition
	Assets
	Assets Tools
	Unity
	Assets?
	CONTROLLING THE ENGINE:
	Game Scripting Languages
	Scripts Benefits
	Scripts Execution
	In Practice
	Unity
	PART 2
	GAME LOOP
	The Game Loop
	Theoretical Example: Pong
	Theoretical Example: PacMan
	Our game loop (theory)?
	TIME MANAGEMENT
	Frame rate
	Frame rate
	Real Time
	Game Logic Time
	Use delta time in update
	Use delta time in update
	Running average
	Breakpoints issue
	Frame Rate Governing
	Frame Rate Governing
	Callback-Driven Frameworks
	Callback-Driven Frameworks
	Unity
	Unity
	Unity
	Further Readings
	INPUTS
	Inputs
	Unity
	Diapositive numéro 97
	GAME OBJECTS MODELS
	“Runtime Game Object Model”
	Class Hierarchies
	Diapositive numéro 101
	Problems with Deep Hierarchies
	Diapositive numéro 103
	Components
	Generic Components
	Unity
	Diapositive numéro 107
	GAME OBJECTS & UPDATE
	A Part of the Game Loop
	Game Objects Updating
	Simplistic Approach
	Simplistic Approach
	Batched Updates
	Batched Updates
	Phased updates
	Bucketed updates
	Object State Inconsistencies and One-Frame-Off Lag
	Unity
	Goto Dev…
	Project Setup
	Player (resp. Enemy)
	Inputs
	Movements
	Shoot
	PART 3: MORE ADVANCED CONCEPTS
	DEBUGGING & PROFILING
	Errors
	Logging and Tracing
	Debug Facilities
	Profiling
	Memory-Tracking
	Unity
	PHYSICS
	Physics in a game
	Integrating and Using Physics
	Collision + Rigid Body Dynamics
	Rigid Body Dynamics
	Unity
	GAME WORLD & FLOW MANAGEMENT
	World Chunks
	High-Level Game Flow
	Flow & Finite State Machines
	Loading and Streaming System
	Chunks Data
	Chunks Data
	Level Loading
	Streaming
	Object Spawning
	Spawners
	Saved Games
	Unity
	Diapositive numéro 152
	GAME OBJECTS COMMUNICATION:
	Components Communication
	Events and Communication
	Explicit Function Calls vs. Event System
	Explicit Function Calls
	Explicit Function Calls
	Event System
	Cf. Observer pattern
	Events as Objects
	Benefits
	Event Types
	Common Types of Events
	Event Arguments
	Events Sending
	Event Handlers
	Event Forwarding
	Event Queuing
	Data-Driven Event Systems: Scripts
	Data-Driven Event Systems: GUI
	Unity
	Unity / C# events
	Unity / C# events
	Unity / C# events
	Shoot events
	LOW-LEVEL ENGINE FEATURES
	Engine Configuration
	Subsystem Start-Up and Shut-Down
	Memory Management
	Cache coherency
	Containers
	Strings
	File System
	Off-Line Resource Manager
	Off-Line Resource Manager
	CONCLUSION
	Takeaways
	Further readings

