
Introduction to the Coq proof assistant
First part

A user point of view

Catherine Dubois1

1ENSIIE - CEDRIC, Évry, France

TOOLS 2011

Most examples used in the slides can be downloaded from the
TOOLS web site:
http://tools.ethz.ch/tools2011/download_area.htm

Files tuto part1.v, sort.v, simple compiler.v (2nd part).

http://tools.ethz.ch/tools2011/download_area.htm

Coq in 2 slides

I Coq (means Calculus Of Constructions) is a proof assistant,
developed since 1984, by INRIA (France)
T.Coquand, G. Huet, C. Paulin, ..., B. Barras, H. Herbelin

I Coq allows the user to write specifications, (functional)
programs and do proofs.

I Coq is based on a typed lambda-calculus with dependent types
and inductive types (the richest in the Barendregt’s cube).

I Coq can produce ML programs (extraction mechanism).

I Coq is also used as a back-end of other tools to verify proofs
e.g. Focalize (http://focalize.inria.fr/) and CiME 3
(http://a3pat.ensiie.fr)

I Confidence ! Coq in Coq (B. Barras 1999)

http://focalize.inria.fr/
http://a3pat.ensiie.fr

Various applications (with some examples):

I Formalization of Mathematics
I Constructive Mathematics (Nijmegen)
I Four Color theorem (G. Gonthier, B. Werner)
I Geometry (Strasbourg, INRIA Sophia-Antipolis)

I Program Verification
I see the users’contributions: data structures and algorithms

I Security
I Electronic banking protocols (Trusted Logic, Gemalto)
I Mobile devices (Project Moebius)

I Programming languages semantics and tools
I ML type inference (C. Dubois, 1999) - POPLmark challenge

(mainly metatheory about functional calculi)
I Formalisation of FJ, Java (subsets), JVM, Jakarta
I CompCert C verified compiler (X. Leroy and al.)
I Formal verification of the seL4 secure micro-kernel (G. Klein

and al, NICTA)

Pragmatics

I Installation: Binaries available for several operating systems
(ms-windows, linux, macosx), downloadable from the web
page http://coq.inria.fr/ (just coq in google: 1st entry)

I Several choices for user interaction:
I coqtop - basic textual shell;
I coqide - graphical interface;
I emacs with proof-general mode - powerful emacs mode

offering the functionality available in coqide.

I Through the Web: ProofWeb http://prover.cs.ru.nl/.
Chose coq in the provers menu. OK with Firefox as a browser
(better than safari e.g.)

Hands on if you want and have fun ... ,

http://coq.inria.fr/
http://prover.cs.ru.nl/

Coq often used for classical program verification:

I write (functional) programs,

I write their specifications,

I and then prove that the programs meet their specifications.

−→ This view is taken as a roadmap for this tutorial

We can also mix programming and proving : more tricky to deal
with dependent types
(see A. Chlipala’s tutorial: An Introduction to Programming and
Proving with Dependent Types in Coq. Journal of Formalized
Reasoning, 2010)

Coq: A typed functional language

We can define functions (anonymous or named ones), apply them
(partially or not), compose them.

Functions must be total, always terminate.

Functions are first class citizens.

No side effect, no exceptions

Some syntax:

fun x : A⇒ t with one argument
fun (x : A)(y : B)⇒ t with 2 arguments

Definition f (x : A)(y : B) := t a named function

f a or f (a) application

I Assuming the type of natural numbers and the + function:

Definition add3 (x: nat):= x + 3.

I Assuming the type of lists and the concatenation ++ function:

Definition at_end (l: list nat)(x: nat):= l++(x::nil).

I Higher order

Definition twice_nat (f: nat -> nat)(x: nat):= f (f x).

I (implicit) Polymorphism

Definition twice (A: Set)(f: A -> A)(x: A):= f (f x).

Everything is typed

Coq < Check add3. nat -> nat

Coq < Check 1 :: 2 :: 3 :: nil . list nat

Coq < Check at_end. list nat -> nat -> list nat

Coq < Check twice. forall A : Set, (A -> A) -> A -> A

Coq < Check nat. Set

Coq < Check Set. Type

Coq < Check forall A : Set, (A -> A) -> A -> A Type

Coq < Check Type. Type

No paradox ! Type denotes universes: Type i : Type i + 1

Inductive Data Types

I Data types defined by constructors

Inductive nat : Set := O : nat | S : nat -> nat

Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A

I Pattern matching

Fixpoint plus (n m :nat) {struct n}: nat :=

match n with

| O => m

| S p => S (plus p m)

end.

plus is a recursive function (structural recursion: call on a
strict subterm of the structural argument, here n)
The struct n can be omitted (inferred).

Fixpoint foo (n :nat) struct n: nat :=

match n with Coq Error : recursive call to foo has

| O => n principal argument equal to

| S p => foo (foo p) "foo p" instead of "p"

end.

General recursion: not so easy: prove termination while defining

Some facilities with Program or Function.

Function f (x1:t1) ... (xn:tn) wf R xi : t =

body of the function

Proof .

Prove R is a well-founded relation

Prove each decreasing argument in a recursive call is

decreasing according to R

Qed.

Computation

We can compute within Coq (forget efficiency but it is not the
subject!) with the command Eval compute in ...

Eval compute in (plus 2 3).

= 5 : nat

Eval compute in (twice nat pred 4).

= 2 : nat

Eval compute in (fun n => plus O n).

= fun n : nat => n : nat -> nat

You have in hands a typed pure functional language (core ML)
with some more constraints: functions must terminate, pattern
matching must be complete, more verbuous on types (in particular
for polymorphic types - it can be relaxed in some places).
No mutable values.

Dependent types
Types depending on types

Parametric/generic types as in forall A: Set, A -> A -> A,
forall (A: Type), (list A)

> Print list.

Inductive (A : Type) list : Type :=

nil : list A | cons : A -> list A -> list A

For nil : Argument A is implicit and maximally inserted

For cons : Argument A is implicit

...

⇒ Definition of a family of inductive types: list nat, list

bool, list (list nat), list (nat -> nat) ...

⇒ Implicit arguments: inferred in some places: a syntax close to
ML (complete inference is impossible)

Definition add0 := fun l => cons O l.

> Check add0.

: list nat -> list nat

Same as :

Definition add0 := fun l : list nat => cons (A:=nat) 0 l.

Definition add := fun x => fun l => cons x l.

Error : Cannot infer the type of x

Definition add :=

fun A : Set => fun x : A => fun l => cons x l.

⇒ Notations

I natural numbers: 0 is O, 1 is S O, 2 is S (S O), etc.

I a::tl is cons a tl

I user-defined notations: to abbreviate and beautify
specifications

Record rat : Set := {
top : nat ;

bot : nat

}.

Check (Build_rat 1 2).

Build_rat 1 2

: rat

−→ An inductive type with a unique constructor binary
Build rat and 2 accessors top and bot

Notation "p // q " := (Build_rat p q) (at level 0).

Check (Build_rat 1 2).

(1) // (2)

: rat

Eval compute in (1 + 2) // 2.

= (3) // (2)

: rat

Definition mult_rat (r1 r2: rat) :=

let ’p1//q1:=r1 in

let ’p2//q2:= r2 in (p1*p2)//(q1*q2).

Notation "r1 ’*r’ r2":= (mult_rat r1 r2) (at level 0).

Eval compute in (4//5) *r (3//2).

= (12) // (10)

: rat

Dependent types
Types depending on values

A typical example: the type of vectors/arrays with a fixed length.

Inductive vect (A:Type) : nat -> Type :=

Vnil : vect A 0

| Vcons : forall n, A -> vect A n -> vect A (S n).

Concatenation of vectors will have the type
forall A: Set, forall n m: nat, vect A n -> vect

A m -> vect A (n+m).

Tricky to write functions on vectors.

Dependent types
Types depending on proofs

Let us redefine the type of rational numbers.

Record rat : Set := {

top : nat ;

bot : nat ;

wf : bot<>0 a proof that bot is not null

}

−→ It is a dependent record (the 3rd field depends on the value of
the snd field)

Check not_zero_4.

not_zero_4 : 4 <> 0

Check (Build_rat 1 4 with not_zero_4).

: rat

−→ mult rat will now mix computations and proofs:

Check mult_non_0

mult_non_0

: forall n m : nat, n <> 0 -> m <> 0 -> n * m <> 0

Notation "p / q ’with’ H" := (Build_rat p q H) (at level 0).

Definition mult_rat (r1 r2: rat) :=

let ’p1/q1 with H1 :=r1 in

let ’p2/q2 with H2 := r2 in

(p1*p2)/(q1*q2) with (mult_non_0 q1 q2 H1 H2).

Coq: a language to specify
”Basics”

I Prop: type of properties

Coq < Check 0<1. : Prop

Coq < Check Prop. : Type

I T -> Prop: type of unary predicates

Coq < Check fun x => x > 0. : nat -> Prop

I T -> T’ -> Prop: type of binary predicates

Coq < Check fun x y => x-y >0. : nat -> nat -> Prop

I Higher order logics (quantification on functions and
predicates)

Definition Rel_refl (A: Set)(R : A -> A -> Prop) :=

forall x: A, R x x .

forall A : Set, (A -> A -> Prop) -> Prop

Coq: a language to specify
Inductive Predicates

And also predicates defined inductively (rule-based definition)

Inductive even : nat -> Prop :=

even0 : even 0

| evenS : forall x:nat, even x -> even (S (S x)).

I Each case of the definition is a theorem that lets you conclude
even(n) appropriately.

I It is the smallest predicate that verifies both properties even0

and evenS.

I The proposition even(n) holds only if it was derived by
applying these theorems a finite number of times (smallest
fixpoint).

I This is close to a Prolog definition.

Now Prove ...

I Prove that a function meets its specification e.g (or prove
mathematical results)

forall l, l’, l’=sort(l) -> sorted(l’) /\ permut l l’

I How ?

- automatically: generally not :-(

- interactivly: drive the proof in a backward way with tactics

Tactics

Sequent presentation :
hypotheses

goal
Backwards proofs directed by tactics (proof commands)

Basic tactics (natural deduction rules, derived rules, iota rules)

I intro, intros, assumption

I split, decompose [and]

I left, right, decompose [or]

I exists, decompose [ex]

I assert

I simpl

I etc.

More high level tactics

I firstorder

I induction, cases, discriminate, inversion
(all trigged by reasoning principles associated to inductives
types)

I omega, ring

I etc.

B Intuitionistic logic (no excluded middle, no ¬¬ elimination)

Basic Tactics
intro: introduction rule for -> and forall

H

forall(x : t),A

intro x
(x free in H)

H
x : t

A

or intros x1 x2 ... xk to introduce several with the goal
forall(x1 : t1)(x2 : t2)...(xn : tn),A

H

A -> B
intro H1

H
H1 : t1

B

or intros H1 H2 ... Hk to introduce several

Basic Tactics
assumption, exact, apply ...

H
x : A

A

assumption
exact x
apply x

proof (or subgoal)

completed

H
x : B->A

A

apply x

H
x : B->A

B

Basic Tactics
left/right, decompose: introduction, elimination ∨

H

A ∨ B
left

H

A

H

A ∨ B
right

H

B

H
x : B ∨ C

A

decompose [or] x

H
y : B

A

H
y : C

A

Basic Tactics
In action (with coqtop)

Lemma prf1 : forall p q : Prop, p /\ q -> q /\ p.

1 subgoal

============================

forall p q : Prop, p /\ q -> q /\ p

prf1 < intros p q H.

1 subgoal

p : Prop

q : Prop

H : p /\ q

============================

q /\ p

prf1 < decompose [and] H.

1 subgoal

p : Prop q : Prop H : p /\ q

H0 : p H1 : q

============================

q /\ p

prf1 < split.

2 subgoals

p : Prop q : Prop H : p /\ q

H0 : p H1 : q

============================

q

subgoal 2 is:

p (same hypothesis context than subgoal 1)

prf1 < assumption. proof of subgoal 1

1 subgoal

p : Prop q : Prop H : p /\ q

H0 : p H1 : q

============================

p

prf1 < assumption. proof of subgoal 2

Proof completed.

prf1 < Qed.

prf1 is defined

Proof script:

intros p q H.

decompose [and] H.

split.

assumption.

assumption.

or shorter

intros p q H.

decompose [and] H.

split; assumption.

; is a tactical
tac1;tac2: apply tac2 on each subgoal generated by tac1

there are some more: || (applies tactic t1 if it fails then applies
t2) , repeat, etc.

On such a proof it can be fully automatic

Lemma prf1 : forall a b: Prop, a /\ b -> b /\ a.

prf1 < firstorder.

proof completed.

A look at lambdas ...

prf1 is defined

I What’s its type ? (Check)

forall p q : Prop, p /\ q -> q /\ p

I What’s its value ? (Print)

fun (p q : Prop) (H : p /\ q) =>

and_ind (fun (H1 : p) (H2 : q) => conj H2 H1)

−→ the proof is a lambda-term
The term can be rewritten as (with abusive notations):

fun (p q : Prop) (H : p /\ q) =>

match H with (H1, H2) => (H2, H1) end

Curry-Howard isomorphism

Proofs as programs, types as specifications

I Read t a type T as t is a proof of T

I Read implications as functions and vice-versa: a function of
type A -> B is a function that takes a proof of A as argument
and computes a proof of B

I Read dependent types as quantifications

I etc.

I An interesting consequence of this analogy:

proof checking = type checking

Proof assistants: History, ideas and future 9

mathematics can be expressed accurately, in the sense that linguistic correctness implies
mathematical correctness. This language should be computer checkable and it should be help-
ful in improving the reliability of mathematical results. Several Automath system have been
implemented and used to formalize mathematics. We will discuss some crucial aspects of the
systems that had an influence on other systems.

2.1a Proofs as objects, formulas as types: In the Automath systems the idea of treating
proofs as first class objects in a formal language, at the same footing as other terms, occurs
for the first time. In logic, this idea is known as the Curry–Howard formulas-as-types iso-
morphism, for the first time written up in 1968 by Howard (Howard 1980), going back to
ideas of Curry who had noticed that the types of the combinators are exactly the axioms
of Hilbert style deduction. De Bruijn reinvented the idea, emphasizing the proofs-as-objects
aspect, which comes down to the following: There is an isomorphism T between formulas
and the types of their proofs giving rise to

! !logic ϕ if and only if ! !type theory M : T (ϕ),

where M is a direct encoding (as a λ-term) of the deduction of ϕ from !. In logic, ! just
contains the assumptions, but in type theory, ! also contains the declarations x : A of the
free variables occurring in the formulas. The formulas-as-types correspondence goes even
further: assumptions in ! are of the form y : T (ψ) (we assume a hypothetical ‘proof’ y of
ψ) and proven lemmas are definitions recorded in ! as y := p : T (ψ) (y is a name for the
proof p of ψ).

An interesting consequence of this analogy is that ‘proof checking = type checking’. So,
a type checking algorithm suffices to satisfy the De Bruin criterion of the previous section.
Depending on the type theory, this can be more or less difficult. The original Automath
systems had a small kernel, so for those it is rather simple. Later developments based on
the same idea are the systems LF (Harper et al 1993, Twelf (Twelf), Lego (Luo & Pollack
1992), Alf (Magnusson & Nordström 1994), Agda (Agda), NuPrl (Constable et al 1986) and
Coq (Coq), which have increasingly complicated underlying formal systems and therefore
increasingly complicated kernels and type checking algorithms. (NuPrl is based on a type
theory with undecidable type checking, so a λ-term is stored with additional information to
guide the type checking algorithm.)

It should be noted that the original Automath systems were just proof checkers: the user
would type the proof term and the system would type check it. The other systems mentioned
are proof assistants: the user types tactics that guide the proof engine to interactively construct
a proof-term. This proof-term is often not explicitly made visible to the user, but it is the
underlying ‘proof’ that is type-checked. This is made precise in figure 1.

Goals

OK

Tactics

User

Proof object

Proof Checker

Engine
Proof

Figure 1. Proof development in a type theory based proof assistant.

Proofs by induction
double produces even numbers

Inductive even : nat -> Prop :=

even0 : even 0

| evenS : forall x:nat, even x -> even (S (S x)).

Fixpoint double (n:nat) :=

match n with

0 => 0

| S p => S (S (double p))

end.

double produces even numbers.

Lemma double_even: forall n, even (double n).

Proofs by induction
The reasoning principles

Let us go back to the definition of an inductive type.

Inductive nat : Set :=

O : nat

| S : nat -> nat.

nat is defined

nat_rect is defined

nat_ind is defined

nat_rec is defined

Check nat_ind. structural induction

: forall P : nat -> Prop,

P 0 -> (forall n, P n -> P (S n)) -> forall n, P n

Same for nat_rec (P: nat -> Set, recursor) and

nat_rect (P: nat -> Type).

The user can define and prove his own induction principles, if
necessary.

Available for all inductive types, also for inductively defined
predicates

=⇒ Reasoning principles: by case analysis on the last rule used; by
induction on a derivation.

Proofs by induction
The example is back!

Coq < Lemma double_even: forall n, even(double n).

1 subgoal

============================

forall n : nat, even (double n)

double_even < induction n. -- nat_ind is used

2 subgoals

============================

even (double 0)

subgoal 2 is:

even (double (S n))

double_even < simpl.

2 subgoals

============================

even 0

double_even < apply even0.

1 subgoal

n : nat IHn : even (double n)

============================

even (double (S n))

double_even < simpl.

1 subgoal

n : nat IHn : even (double n)

============================

even (S (S (double n)))

double_even < apply evenS.

1 subgoal

n : nat

IHn : even (double n)

============================

even (double n)

double_even < assumption.

Proof completed.

The next slides have not been presented during the conference.
The final case study (sorting by insertion) has been presented.

Another way
Mixing programs and specifications

Let us define double as a function from N to 2N.

I Type of even numbers defined as a subset (predicate subtype
à la PVS) of nat: {n: nat | even n}
(i.e. a nat and a proof this nat is even)

Another to define vectors of length n:
{l: list nat | length l = n}.

I Program : a way to manipulate more easily dependent types

Program Fixpoint double (n:nat):{p: nat | even(p)}:=

match n with

0 => 0

| S p => S (S (double p))

end.

Coq < Solving obligations automatically...

2 obligations remaining

Obligation 1.

============================

even 0

apply even0.

Defined.

Obligation 2.

double2 : nat -> {p : nat | even p} p : nat

============================

even (S (S (‘(double2 p))))

destruct (double2 p) as [y Hy].

double2 : nat -> {p : nat | even p} p : nat

y : nat Hy : even y

============================

even (S (S (‘(exist (fun p0 : nat => even p0) y Hy))))

simpl.

double2 : nat -> {p : nat | even p} p : nat

y : nat Hy : even y

============================

even (S (S y))

apply evenS; assumption.

Defined.

More proof automation
auto - hints

I auto – tries a combination of tactics intro, apply and
assumption using the theorems stored in a database as hints
for this tactic. (Defined databases: core, arith, zarith, bool,
etc.)

I Hint Resolve/Rewrite – add theorems to the database of
hints to be used by auto using apply/rewrite.

Goal even(4).

auto. no progress

repeat (apply evenS); apply even0. Proof completed.

Hint Resolve even0.

Hint Resolve evenS.

Now the proof is done with auto.

−→ Not too many auto and hints (proof scripts become
uninformative)

More proof automation
Ltac

I Ltac: a programming language to define new tactics with
matching operators for Coq terms but also proof contexts and
backtracking

Ltac replace_le :=

match goal with

H : (?X1 <= ?X2) |- _ => change (X2 >= X1) in H

| |- (?X1 <= ?X2) => change (X2 >= X1)

end.

Ltac replace_leR := repeat replace_le.

The tactic replace leR replaces any t1 <= t2 by t2 >= t1

in the hypothesis context and in the conclusion.

The tactic in action:

a: nat q: nat

H0: 2 * q <= a

H1: a <= 2 * q + 1

==================

S a <= 2 * S q + 1

.. > replace_leR.

a: nat q: nat

H0: a >= 2 * q

H1: 2 * q + 1 >= a

==================

2 * S q + 1 >= S a

Program extraction

I Program extraction turns the informative contents of a Coq
term into an ML program while removing the logical contents.

I Based on Set and Prop dinstinction.

I Different target languages: Ocaml, Haskell, Scheme.

I Confidence in the extraction mechanism ? a work in progress
by P. Letouzey and S. Glondu, Paris 7

I Syntactic translation: nat and double

I Proofs are erased

Coq < Print rat.

Record rat : Set :=

Build_rat { top : nat; bot : nat; wf : bot <> 0 }

Coq < Extraction rat.

type rat = { top : nat; bot : nat }

Coq < Extraction mult_rat.

(** val mult_rat : rat -> rat -> rat **)

let mult_rat r1 r2 =

let { top = p1; bot = q1 } = r1 in

let { top = p2; bot = q2 } = r2 in

{ top = (mult p1 p2); bot = (mult q1 q2) }

or Recursive Extraction mult rat. (extraction of nat,
rat, mult)

I A function can be extracted from a (constructive) proof

Coq < Lemma ex3 : forall n, m | n + n = m.

induction n.

exists 0. m=0

reflexivity. prove 0+0=0

elim IHn.

intros t Ht. if t is the witness for n, propose

exists (S (S t)). S (S t) as a witness for S(n)

simpl. prove (S n) + (S n) = S (S t)

rewrite <- plus_n_Sm.

rewrite Ht; reflexivity.

Qed.

Coq < Extraction ex3.

(** val ex3 : nat -> nat **)

let rec ex3 = function

| O -> O

| S n0 -> S (S (ex3 n0))

Extraction from inductive predicates
Advertising !

I How to extract code from an inductive specification ?

I Out of the regular extraction mechanism that erases any Prop

I But some inductive specifications do have a computational
content if we precise inputs/outputs.

I The user provides a mode = the list of the input positions.
The extraction command extracts an ML function (without
backtracking), may fail if the computation is considered as
non deterministic.

I Not yet integrated in Coq, but expected to be a plugin in a
next release

I Work done by D. Delahaye, P.N. Tollitte and myself, CEDRIC,
ENSIIE, CNAM

Inductive add : nat -> nat -> nat -> Prop :=

| add0 : forall n, add n 0 n

| addS : forall n m p, add n m p -> add n (S m) (S p).

Mode {1,2} let rec add p0 p1 = match p0, p1 with

| n, O -> n

| n, S m -> let p = add n m in S p

Mode {3,2} let rec add p0 p1 = match p0, p1 with

| n, O -> n

| S p, S m -> add p m

| _ -> assert false

Mode {1,2,3} let rec add p0 p1 p2 = match p0, p1, p2 with

| n, O, m -> if n=m then true

else false

| n, S m, S p -> add n m p

| _ -> false

Mode {1,3} Failure (non deterministic mode)

Typical usages for functional correctness:

I Define your ML function in Coq and prove it correct (and
then extract back).

I Give the Coq function a richer type (a strong specification)
and get the ML function via program extraction.

I Extract functions from inductive specifications, to prototype
functions, to test specifications.

Insertion sort

A complete example: sorting a list of natural numbers in increasing
order

=⇒ sorting by insertion - classical method (weak specification)

Insertion sort
The program

Check leb. leb : nat -> nat -> bool

Fixpoint insert (x : nat) (l : list nat) :=

match l with

nil => x::nil

| a::t => if leb x a then x::a::t else a::(insert x t)

end.

Fixpoint sort l :=

match l with

nil => nil

| a::t => insert a (sort t)

end.

Eval compute in sort (1::4::3::0::(nil)).

= 0 :: 1 :: 3 :: 4 :: nil : list nat

Insertion sort
The specification

sort produces a sorted list containing the same elements than the
initial list.

Inductive lelist : nat -> list nat -> Prop :=

lenil: forall x, lelist x nil

|leS: forall x y l, x<=y -> lelist x l -> lelist x (y::l).

Inductive sorted : list nat -> Prop :=

stnil : sorted nil

|stS : forall l x, lelist x l -> sorted l -> sorted (x::l).

Definition permut (l1 l2 : list nat) :=

forall x:nat, count l1 x = count l2 x.

with a function count that counts the number of occurrrences of
an element in a list.

Insertion sort
The correctness proof

−→ It relies on 2 theorems

1. Lemma sort sorted: forall l, sorted(sort l)

I By induction on l

I ins corr: forall l x, sorted l -> sorted (insert x l)

I le lelist: forall l a x, le a x -> lelist x l ->

lelist a l

I lelist ins: forall l a x , le a x -> lelist a l

-> lelist a (insert x l)

2. Lemma sort permut : forall l, permut l (sort l)

I permut trans: forall l1 l2 l3, permut l1 l2 ->

permut l2 l3 -> permut l1 l3

I permut cons: forall a l1 l2, permut l1 l2 ->

permut (a::l1) (a::l2)

I ins permut: forall x l, permut (x::l) (insert x l)

' 100 lines for spec & proof (+ 2 lemmas from the library) wrt 10
lines for the program

