A step towards the mechanization of partial
functions : domains as inductive predicates

Catherine Dubois' and Véronique Viguié Donzeau-Gouge?

1 LaMI, CNRS EP738, Univ. d’Evry, Bd des Coquibus, 91025 Evry Cedex, France.
email: Catherine.Dubois@lami.univ-evry.fr
2 Cedric, CNAM, Rue Saint-Martin, 75141 Paris Cedex, France.
email: donzeau@cnam.fr

Abstract. This work is centred on the specification of partial operations
in a system based on a classical logic with total functions. We present a
style with pre-conditions: our method enables calculation of the domain
of a partial function f independently of calculation of £. We also study
the influence of this style upon the proof facility and the later use of the
specification.

1 Introduction

In this paper we are in the context of a logic which does not incorporate the
notion of partiality and where any function is total. This choice is justified by
the power of the underlying logic and by the expressive power of the associated
languages.

In this context, various tricks are used to encode the partiality. In a typed
world, a total function of type 7 — 7' is defined for every value of type 7. Thus we
have to encode a partial function whose arguments and result are respectively
of type 71 and = into a total function of type 7 — 7'. Usually 7y and 7 are
identical but 75 and 7' are not: 7’ is intended to encapsulate the fact that for
some elements of type 77, the function has no effective result. The nature of 7/
depends on the style chosen to encode the partiality.

A function can be simply described by the equations that define the function
itself: it is the case when the defining equations may be directly translated into
a predicate, in a Prolog style. But the functional aspect is lost. A functional
encoding, close to an ML implementation can also be used and simulates the
exception mechanism. This style may be easily translated into a program, how-
ever it is often clumsy, essentially because we have to explicitly propagate the
exceptions. Thus it influences the surrounding specifications and proofs.

In [8] Miiller and Slind discuss and exemplify some techniques usable in the
proof system Isabelle/HOL.

1.1 Ouwur Objectives

We start from the defining equations of the partial function, we call this first
specification the informal specification of the function. The word informal em-
phasizes here that it is not yet a specification that the proof system can process.



The style we put forward maintains the functional flavour and incorporates
the notion of pre-condition. More precisely, to any partial function, a supple-
mentary parameter is added : the proof of the membership of the parameters
(the original ones) to the domain of the function. Then, whenever the function
is applied, a proof that the arguments are well formed has to be provided. The
contribution of our work enables to generate automatically the type of the ex-
pected proof from the defining equations of the function. The computation of
the type of the pre-condition is based on the work done by Finn, Fourman and
Longley [6] that we have adapted and extended to take into account any kind of
recursion. Our method enables calculation of the domain of the function f inde-
pendently of calculation of £. To achieve this, we assume given a post-condition
in addition to the defining equations for f. Clearly this approach is more liberal
than approaches that require precise knowledge of the values of the function in
question.

1.2 Specification language and proof system

Our approach demands the manipulation of proofs as objects and requires de-
pendent types. In short, the specification language must be a typed language
with inductive definitions, dependent types and functions. Lastly a tactic-driven
system is recommended for an easier writing of the proofs and introducing some
automation. To illustrate this work, we have chosen to use the proof assistant
Coq [1].

1.3 Overview of the paper

After a brief presentation of the Coq system that emphasizes the tools used in
this paper e.g. inductive definitions, dependent types, we describe formally the
informal specifications we start from. We develop an algorithm to compute the
type of the pre-condition and establish a soundness property.

2 The Coq proof assistant

We give here a brief presentation of the Coq interactive proof assistant. A more
detailed description can be found in [1]. However, here we provide in detail some
fundamental notions used in this article.

The Coq system allows the development of verified formal proofs. The ax-
iomatizations and specifications are written in the logical language Gallina, the
foundation of which is the Calculus of Inductive Constructions [10], a version
of higher order typed A-calculus whose types are themselves typed terms of the
language. The system provides the user with inductive types, very close to ML
datatypes and inductive relations which can be compared to Prolog predicates.
For example, the type of lists whose elements are of type A is described in Coq
by:

Inductive list: Set:= nil: list | cons: A -> list -> list.



The relation that expresses that an element belongs to a list may be introduced
through the following inductive definition:

Inductive In: A -> list -> Prop:=
In_head: (x: A)(1l: 1list) (In x (comns x 1))
| In_tail: (x, y: A)(1: 1list) (In x 1) -> (In x (comns y 1)).

This declaration must be read as the definition of the smallest relation verify-
ing the two inference rules named In head and In_tail. From the definition of
an inductive construction, the Coq system automatically generates the associ-
ated induction principle and provides proof tools to manipulate them (e.g. the
Induction and Inversion tactics). The user can define functions and also recur-
sive functions: facilities are provided to write functions defined with structural
recursion, for instance the Fixpoint construct.

Intuitively, we can summarize the notion of dependent type as a type indexed
by a value. The typical example in this field concerns the type of the arrays of
elements of a set A. In fact we define a family array 4 indexed on naturals and
denoted in Coq by (n : nat) (array4 n).

3 Defining Equations

A function is defined by a bunch of equations as in [6]:
fun f patyy ... paty, when cond; = exp

f patmy ... paty,, when cond,, = erpm,
The pat;; are linear ML-style patterns built from variables and constructors Ctr.
The optional guards cond; are boolean expressions assumed well-formed, and
they contain variables appearing in the related patterns pat;; ... pat;,. There
is no notion of sequential execution so the order of the equations does not mat-
ter. Consequently two distinct clauses cannot contain overlapping patterns. Of
course, the patterns covered by such a definition are not necessarily exhaustive.
The expressions exp; are ML-expressions and follow the usual syntax:
exp == x| Ctr exp | let =€y ines | fler ... €,) | gler ...em)

The formal semantics of this language is not given here and is quite usual.

Any function is a priori partial. However in the following, for a greater read-
ability, g denotes a symbol of total function whereas f and h will be always
associated to partial functions. The defining equations are implicitly recursive.
Furthermore there is no restriction on the ways in which f can appear in the
right hand-side expressions. We allow all partial general recursive definitions.
The manipulated values are defined inductively and therefore, correspond to the
closed terms of a free algebra.

Thus a function may be partial either because the patterns involved in the
definition are not exhaustive or because some ezxp; is not well-formed and con-
sequently contains forbidden applications of other partial functions.



We give below the defining equations of some illustrating examples:
e the function head returns the first element of a list:

fun head e::1 = e

e the function nth computes the nth element of a list. This function only makes
sense when n is a natural number strictly less than the length of a non empty
list. The function nth implements a structural recursion.

fun nth O x::1 = x
| nth (S n) x::1 = nthnl

e lastly, the function mgu computes the principal unifier of two terms built from
the constant Cst, the function symbol Op and variables. It is only defined for
terms that can be unified. The possible result is a substitution pretty-printed
as a list of pairs. In the following definition, (s t) denotes the application of
the substitution s on the term t and o the composition of substitutions. The
function mgu illustrates the case of a nested recursion (see the last clause).

fun mgu Cst Cst = empty_subst
Imgu Cst (Var x) = [(x,Cst)]
Imgu (Var x) (Var y) when x=y = empty_subst
Imgu (Var x) t when (motin x t) = [(x,t)]
Imgu (Op t1 t2) (Var x) when (notin x (Op t1 t2)) = [(x, (Op t1 t2))]
Imgu (Op t1 t2) (Op x1 x2) = let ul = mgu tl1 x1 in
(mgu (ul t2) (ul x2)) o ul

4 Introduction of Pre-conditions

In this section, the idea is to provide the specification with the proof that the
arguments belong to the domain of the function. For this purpose, we introduce
a predicate which characterizes the membership to the domain. We can consider
that predicate as a pre-condition of the function.

The definition of the predicate influences the expression of the function
and consequently, its uses to come. Then we propose to compute this predi-
cate automatically from the defining equations of the function and a possible
post-condition. Let us illustrate this process with the simple head function.
Intuitively, the membership predicate to the domain of this function specifies
the non empty lists. Its natural notation is ( not 1= nil) which leads to a
dependent function type (1:1ist) ( not 1=nil) -> A. Its definition realises a
pattern matching of 1: the case 1=nil is fixed via a proof by contradiction. Al-
ternatively, we can define the membership predicate as an inductive type with a
unique constructor dom_head1. It is written in Coq as:

Inductive dom_head : list -> Set:=
dom_headl: (1: list)(x: A) (dom_head (cons x 1))

Then the type of the function becomes: (1:1ist) (dom_head 1) -> A;it is writ-
ten as follows:

Definition head_proof:= [1: list] [p: (dom_head 1)]
Cases p of (dom_headl 10 x) => x end.



It is obtained by a simple pattern matching of the predicate. Now, we are going
to present a way to compute the ad hoc appropriate predicate in order to obtain
the function definition.

4.1 Ad hoc inductive types for the pre-conditions

Our goal is to extract from the defining equations of an operation f, the predicate
dom_f which characterizes the membership to the domain definition. The con-
struction of the function in this last style is based on the structure of the deduced
inductive type. The computation of dom_f is drawn from [6].

However, in a general case, to define a partial function, we need to provide
not only its defining equations but also a post-condition which characterizes
its results. For instance, a post-condition for mgu may be that the mgu of two
terms unifies the two terms. In this style, the function definition encapsulates
the correctness proof of the function with respect to its post-condition.

Post-conditions are necessary as soon as the computation generates nested
recursive calls, in particular, when non-structural recursion is used. Then the
result of the nested recursive call is characterized by the post-condition of the
called function. If the inductive predicate can be synthesized systematically, the
building of the function is semi-automatic. Some verifications with respect to
the post-condition are left to the programmer.

We can always compute the definition domain of a function, even if it does
not terminate. But we do not know what is the meaning of a post-condition in
this case.

4.2 Definition of dom_f

To each equation of the informal specification corresponds a constructor of the
inductive predicate.

More formally, the equation f pat;; ... pat;, when cond; = exp;

leads to the rule dom_f; : Va1, zo . . . xp . Alexp;) Acond; — dom_f(pat;y, ..., pati,)
where 1,z ...z are the pattern variables and A(exp;) denotes the predicate
of well-formedness of exp;.

For instance, if exp; is the application (h e), A(h e) states that e is well

formed and belongs to the domain of h.
Consequently, if e is the application (f e'), A(h e) expresses that (f e') is well-
formed and belongs to dom_h. As it is, we obtain dom_h(f €') and, hence, in
the definition of dom_f the symbol f appears. This situation would oblige us to
define simultaneously f and dom_f but we want to avoid that. From here, our
strategy diverges from the approach of Finn, Fourman and Longley exposed in
[6].

In order to cope with this situation and also to associate some semantics
to f, we replace a call (f €') by a fresh variable, let us say y, which satis-
fies the post-condition associated to f, namely Py, thus dom_h(f e') becomes
Vy.Pr(e',y) = dom_h(y).



Let us illustrate this with two simple examples :
e f (Sn)= f(n) generates the following predicate: dom_f(n). (We do not need
here any post-condition)
e for f (S n) = f(f(n)), the predicate will be
dom_f(n) = (Vm.P;(n,m) = dom_f(m)).

4.3 Definition of A

In order to define A syntactically without increasing too much the complexity
of its definition and the proof of soundness, we work on a canonical form of
the expressions exp; which emphasizes syntactically the call by value semantics
and the structure of the computation. In particular, all the nested calls are
named with fresh identifiers and introduced by let constructs. It is easy to
convince ourself that this canonical form is semantically equivalent to the initial
one (assuming a call by value semantics). For instance, the canonical form of

fet z= (g (fa) (fy)in zx2)is

let y1 = f x in
let y2 = f y in
let z = (g y1 y2) in
let y3 =z * z in
let y4 = f y3 in y4

Thus the canonical form of an expression contains a succession of nested let
statements where each defining expression is a call to a function with argu-
ments which are constants or identifiers i.e. always defined expressions. From
this canonical form, we produce another syntactical expression denoted by e: it
will be used to compute the A predicate, and it is obtained by replacing each
defining expression y=f x by the condition y|Pf(z,y) where Py is the post con-
dition associated to f. Everywhere € and e are identical we note e instead of e.
From the previous example we obtain:

let y1 | P_f(x, y1) in
let y2 | P_f(y, y2) in
let z = (g y1 y2) in

let y3 | P_f(z * z, y3) in
let y4 = f y3 in y4

Definition of the well-formedness of an expression .

A(e) returns a formula which expresses the well-formedness of e computed from
e with the following rules:

e A(z) = true

e A(Ctr e) = A(e)

eA(let y|Py(er,y) in é3) = dom_h(e1) A (Vy.Pp(er,y) = A(é3))

? If a lazy semantics had been chosen we would work with the canonical expression

(f (g (f x) (f w) (g (f 2) (f y)



eA(let z=e; in &) = (Vo.x =1 = A(é))
°A(g e1) = Alen)

Let us come back to the examples .
We compute the pre-conditions for nth and mgu from the informal definition.
For nth, the canonical form is

fun nth O x::1 =x
| nth (S n) x::1 =1lety=nthnl iny

which becomes the expression nth

fun nth O x::1 =x
| nth (S n) x::1 = let y | P_nth(n, 1, y) iny

A(let y| Pyn(n,l,y) in y) = dom_nth(n,l) A (Vy.Pn(n,l,y) = true) which
can be simplified as dom_nth(n,1).

This computation suggests the Coq declaration given below. The conjunctions
generated by A are replaced in the inductive Coq definition by implications.
This choice will provide us with a best comfort in the proofs to come involving
the dom_f predicate.

Inductive dom_nth: nat -> list -> Set :=
dom_nthl: (a: A)(1: list) (dom_nth 0 (cons a 1))
| dom_nth2: (p: nat)(a: A)(1: list)
(dom_nth p 1) -> (dom_nth (S p) (cons a 1)).

For mgu, the canonical form of the last equation is:

lmgu (Op t1 t2) (Op x1 x2) = let ul = mgu t1 x1 in
let yl1 = ul t2 in
let y2 = ul x2 in
let y3 = mgu yl y2 in
let y4 = y3 o ul in y4

and the corresponding mgu is:

Imgu (Op t1 t2) (Op x1 x2) -> let ul |P_mgu(tl,x1,ul) in
let y1 = ul t2 in
let y2 = ul x2 in
let y3 [P_mgu(yl, y2,y3) in
let y4 = y3 o ul in y4

By applying the previous computation rules, A applied to the last equation
returns after simplification:
dom_mgu(t1,x1)A

(Vur.Ppgu(ti, z1,u1) = Yy = (w1 t2) = (Vyo.y2 = (w1 22) = dom-mgu(y1,y2))))
We deduce the following Coq declaration:

Inductive dom_mgu : term -> term -> Set :=
dom_mgul : (x: nat)(dom_mgu (Var x) (Var x))
| dom_mgu2 : (x: nat) (t: term) (notin x t) -> (dom_mgu (Var x) t)



| dom_mgu3 : (x: nat) (dom_mgu Cst (Var x))
| dom_mgu4 : (dom_mgu Cst Cst)
| dom_mgub : (t1, t2: term)(x : nat)

(notin x (Op t1 t2)) -> (dom_mgu (Op t1l t2) (Var x))
| dom_mgu6 : (t1, t2, x1, x2: term)

(dom_mgu t1 x1) ->

((s : substitution) (s t1) = (s x1)) ->

(dom_mgu (s t2) (s x2)) ->

(dom_mgu (Op t1 t2) (Op x1 x2)).

4.4 Soundness of A

Soundness property establishes that under the hypothesis that f terminates, if
dom_f(e1,...,e,) holds, then (fe; ...ey) is defined. To prove this property, we
consider an environment I" which contains the definition of the free variables
appearing in f and e;...e,, as well as the post-conditions for all the used partial
functions, and satisfying dom_f(e; .. .e,). This property can be formally defined
and proved.

4.5 Encoding the functions

The type of a partial function f of arity n becomes in Coq the dependent type :
(z1 :t1)(xo i ta) ... (zy : ty)(dom_f 122 ... 2,) — T where T is

(r:t)Ps(x1,22...2,, 7). For instance the mgu function receives the type (u, v:
term) (dommgu u v) -> (unifier u v) when unifier is defined as follows:

Inductive unifier [u, v : term] : Set :=
C: (s: substitution)(s u) = (s v) -> (unifier u v).

When initialy, a function is recursive, it remains recursive in this style, but its
recursive argument is the proof pi of the pre-condition. In most of the cases, it
can be defined in Coq with a Fixpoint: indeed, the recursive calls are done on
strict sub-terms of the proof pi. For instance, in the case of nth, when the proof
is built up using the constructor dom_nth2, its pattern matching gives the proof
that the arguments of the recursive call belong to the domain of definition. The
function nth is written :

Fixpoint nth_proof [n: nat; 1: list; pi: (dom_nth n 1)]: A:=
Cases pi of
(dom_nthl a 10) => a
| (dom_nth2 m a 10 h) => (nth_proof m 10 h)
end.

4.6 Proof schemes

The tools used in the proof development relate here in the inductive calculus
and the associated tactics but in a context of dependent types.

In the expression of the surrounding lemmas, we can take advantage of the
real functional aspect of the specification. We illustrate below some lemmas
related to our examples :



1. the first element of a list belongs to that list

2. the nth element of a list belongs to that list

3. the free variables of the principal unifier of two terms belong to the union of
the free variables of the terms.

Lemma head_proof: (1: list)(p: (dom_head 1))
(In (head_proof 1 p) 1).

Lemma nth_proof: (1: list)(n: nat) (p: (dom_nth n 1))
(In (nth_proof n 1 p) 1).

Lemma mgu_proof: (t1,t2: term)(p: (dom_mgu t1 t2))
(is_included (FV (subst_of (mgu t1 t2))) ((FV t1) U (FV t2))).

In these three lemmas, the last quantified variable p denotes a proof, its type is
the computed inductive predicate dom.

Generally speaking, the proofs of such lemmas are developed by induction (in-
version may suffice when non recursive function) on the pre-condition p.

5 Conclusion

In this paper, we extend the approach of Finn, Fourney and Longley to generate
definedness conditions and we present a way to deal with nested recursion by
using post-conditions. More precisely, we underline a systematic way to compute
dom_f as an inductive relation, that allows us to use the power of the inductive
calculus. The computation of dom_f can be automated. A perspective to our
work is to study the development of a tactic related to this automation.

The required post-condition must be given by the user, it is not synthezised
automatically. It corresponds to older approaches for termination proofs, where
termination of a nested recursive function could only be verified if its correctness
was proved simultaneously. However, our post-condition is not necessarily a cor-
rectness property, it could be a weaker property (for instance for mgu, we could
assert that the domain of the most general unifier of t1 and t2 is a subset of the
free variables of t1 and t2). Furthermore, we feel that simple typing conditions
used as post-conditions may be sufficient.

Computing the domain of a function and proving its termination may be
related. In particular, if the post-condition is an induction lemma as defined by
Giesl [7], we obtain simustaneously a definition of the function and a proof that
this induction lemma is partially correct in the sense of [7]. Furthermore, in this
case, the generated proof obligations are arithmetic properties (about measures)
which may be automated. To prove the termination of the function, it remains
at least to establish that the recursive calls decrease according to the chosen
measure.

We have to study more precisely the impact of the chosen post-condition
upon the defined function.



This style may be drawn nearer to the notion of subtypes and the associated
proof obligations available in the system PVS. But the PVS subtypes have to
be given by the user.

All the proofs mentioned in this paper have been verified with Coq and their
script, should be asked from the authors.

Finally, we want to emphasize the fact that the examples are specified and
proved in Coq but the results can be easily transposed in any proof system that
provides total functions, inductive definitions and dependent types.
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