
A step towards the mechanization of partialfunctions : domains as inductive predicatesCatherine Dubois1 and V�eronique Vigui�e Donzeau-Gouge21 LaMI, CNRS EP738, Univ. d'�Evry, Bd des Coquibus, 91025 �Evry Cedex, France.email: Catherine.Dubois@lami.univ-evry.fr2 Cedric, CNAM, Rue Saint-Martin, 75141 Paris Cedex, France.email: donzeau@cnam.frAbstract. This work is centred on the speci�cation of partial operationsin a system based on a classical logic with total functions. We present astyle with pre-conditions: our method enables calculation of the domainof a partial function f independently of calculation of f. We also studythe inuence of this style upon the proof facility and the later use of thespeci�cation.1 IntroductionIn this paper we are in the context of a logic which does not incorporate thenotion of partiality and where any function is total. This choice is justi�ed bythe power of the underlying logic and by the expressive power of the associatedlanguages.In this context, various tricks are used to encode the partiality. In a typedworld, a total function of type � ! � 0 is de�ned for every value of type � . Thus wehave to encode a partial function whose arguments and result are respectivelyof type �1 and �2 into a total function of type � ! � 0. Usually �1 and � areidentical but �2 and � 0 are not: � 0 is intended to encapsulate the fact that forsome elements of type �1, the function has no e�ective result. The nature of � 0depends on the style chosen to encode the partiality.A function can be simply described by the equations that de�ne the functionitself: it is the case when the de�ning equations may be directly translated intoa predicate, in a Prolog style. But the functional aspect is lost. A functionalencoding, close to an ML implementation can also be used and simulates theexception mechanism. This style may be easily translated into a program, how-ever it is often clumsy, essentially because we have to explicitly propagate theexceptions. Thus it inuences the surrounding speci�cations and proofs.In [8] M�uller and Slind discuss and exemplify some techniques usable in theproof system Isabelle/HOL.1.1 Our ObjectivesWe start from the de�ning equations of the partial function, we call this �rstspeci�cation the informal speci�cation of the function. The word informal em-phasizes here that it is not yet a speci�cation that the proof system can process.



The style we put forward maintains the functional avour and incorporatesthe notion of pre-condition. More precisely, to any partial function, a supple-mentary parameter is added : the proof of the membership of the parameters(the original ones) to the domain of the function. Then, whenever the functionis applied, a proof that the arguments are well formed has to be provided. Thecontribution of our work enables to generate automatically the type of the ex-pected proof from the de�ning equations of the function. The computation ofthe type of the pre-condition is based on the work done by Finn, Fourman andLongley [6] that we have adapted and extended to take into account any kind ofrecursion. Our method enables calculation of the domain of the function f inde-pendently of calculation of f. To achieve this, we assume given a post-conditionin addition to the de�ning equations for f. Clearly this approach is more liberalthan approaches that require precise knowledge of the values of the function inquestion.1.2 Speci�cation language and proof systemOur approach demands the manipulation of proofs as objects and requires de-pendent types. In short, the speci�cation language must be a typed languagewith inductive de�nitions, dependent types and functions. Lastly a tactic-drivensystem is recommended for an easier writing of the proofs and introducing someautomation. To illustrate this work, we have chosen to use the proof assistantCoq [1].1.3 Overview of the paperAfter a brief presentation of the Coq system that emphasizes the tools used inthis paper e.g. inductive de�nitions, dependent types, we describe formally theinformal speci�cations we start from. We develop an algorithm to compute thetype of the pre-condition and establish a soundness property.2 The Coq proof assistantWe give here a brief presentation of the Coq interactive proof assistant. A moredetailed description can be found in [1]. However, here we provide in detail somefundamental notions used in this article.The Coq system allows the development of veri�ed formal proofs. The ax-iomatizations and speci�cations are written in the logical language Gallina, thefoundation of which is the Calculus of Inductive Constructions [10], a versionof higher order typed �-calculus whose types are themselves typed terms of thelanguage. The system provides the user with inductive types, very close to MLdatatypes and inductive relations which can be compared to Prolog predicates.For example, the type of lists whose elements are of type A is described in Coqby:Inductive list: Set:= nil: list | cons: A -> list -> list.



The relation that expresses that an element belongs to a list may be introducedthrough the following inductive de�nition:Inductive In: A -> list -> Prop:=In_head: (x: A)(l: list) (In x (cons x l))| In_tail: (x, y: A)(l: list) (In x l) -> (In x (cons y l)).This declaration must be read as the de�nition of the smallest relation verify-ing the two inference rules named In head and In tail. From the de�nition ofan inductive construction, the Coq system automatically generates the associ-ated induction principle and provides proof tools to manipulate them (e.g. theInduction and Inversion tactics). The user can de�ne functions and also recur-sive functions: facilities are provided to write functions de�ned with structuralrecursion, for instance the Fixpoint construct.Intuitively, we can summarize the notion of dependent type as a type indexedby a value. The typical example in this �eld concerns the type of the arrays ofelements of a set A. In fact we de�ne a family arrayA indexed on naturals anddenoted in Coq by (n : nat)(arrayA n).3 De�ning EquationsA function is de�ned by a bunch of equations as in [6]:fun f pat11 : : : pat1n when cond1 = exp1...f patm1 : : : patmn when condm = expmThe patij are linear ML-style patterns built from variables and constructors Ctr.The optional guards condi are boolean expressions assumed well-formed, andthey contain variables appearing in the related patterns pati1 : : : patin. Thereis no notion of sequential execution so the order of the equations does not mat-ter. Consequently two distinct clauses cannot contain overlapping patterns. Ofcourse, the patterns covered by such a de�nition are not necessarily exhaustive.The expressions expi are ML-expressions and follow the usual syntax:exp ::= x j Ctr exp j let x= e1 in e2 j f(e1 : : : en) j g(e1 : : : em)The formal semantics of this language is not given here and is quite usual.Any function is a priori partial. However in the following, for a greater read-ability, g denotes a symbol of total function whereas f and h will be alwaysassociated to partial functions. The de�ning equations are implicitly recursive.Furthermore there is no restriction on the ways in which f can appear in theright hand-side expressions. We allow all partial general recursive de�nitions.The manipulated values are de�ned inductively and therefore, correspond to theclosed terms of a free algebra.Thus a function may be partial either because the patterns involved in thede�nition are not exhaustive or because some expi is not well-formed and con-sequently contains forbidden applications of other partial functions.



We give below the de�ning equations of some illustrating examples:� the function head returns the �rst element of a list:fun head e::l = e� the function nth computes the nth element of a list. This function only makessense when n is a natural number strictly less than the length of a non emptylist. The function nth implements a structural recursion.fun nth 0 x::l = x| nth (S n) x::l = nth n l� lastly, the function mgu computes the principal uni�er of two terms built fromthe constant Cst, the function symbol Op and variables. It is only de�ned forterms that can be uni�ed. The possible result is a substitution pretty-printedas a list of pairs. In the following de�nition, (s t) denotes the application ofthe substitution s on the term t and o the composition of substitutions. Thefunction mgu illustrates the case of a nested recursion (see the last clause).fun mgu Cst Cst = empty_subst|mgu Cst (Var x) = [(x,Cst)]|mgu (Var x) (Var y) when x=y = empty_subst|mgu (Var x) t when (notin x t) = [(x,t)]|mgu (Op t1 t2) (Var x) when (notin x (Op t1 t2)) = [(x, (Op t1 t2))]|mgu (Op t1 t2) (Op x1 x2) = let u1 = mgu t1 x1 in(mgu (u1 t2) (u1 x2)) o u14 Introduction of Pre-conditionsIn this section, the idea is to provide the speci�cation with the proof that thearguments belong to the domain of the function. For this purpose, we introducea predicate which characterizes the membership to the domain. We can considerthat predicate as a pre-condition of the function.The de�nition of the predicate inuences the expression of the functionand consequently, its uses to come. Then we propose to compute this predi-cate automatically from the de�ning equations of the function and a possiblepost-condition. Let us illustrate this process with the simple head function.Intuitively, the membership predicate to the domain of this function speci�esthe non empty lists. Its natural notation is ( not l= nil) which leads to adependent function type (l:list)( not l=nil) -> A. Its de�nition realises apattern matching of l: the case l=nil is �xed via a proof by contradiction. Al-ternatively, we can de�ne the membership predicate as an inductive type with aunique constructor dom head1. It is written in Coq as:Inductive dom_head : list -> Set:=dom_head1: (l: list)(x: A)(dom_head (cons x l)) .Then the type of the function becomes: (l:list)(dom_head l) -> A; it is writ-ten as follows:Definition head_proof:= [l: list] [p: (dom_head l)]Cases p of (dom_head1 l0 x) => x end.



It is obtained by a simple pattern matching of the predicate. Now, we are goingto present a way to compute the ad hoc appropriate predicate in order to obtainthe function de�nition.4.1 Ad hoc inductive types for the pre-conditionsOur goal is to extract from the de�ning equations of an operation f , the predicatedom f which characterizes the membership to the domain de�nition. The con-struction of the function in this last style is based on the structure of the deducedinductive type. The computation of dom f is drawn from [6].However, in a general case, to de�ne a partial function, we need to providenot only its de�ning equations but also a post-condition which characterizesits results. For instance, a post-condition for mgu may be that the mgu of twoterms uni�es the two terms. In this style, the function de�nition encapsulatesthe correctness proof of the function with respect to its post-condition.Post-conditions are necessary as soon as the computation generates nestedrecursive calls, in particular, when non-structural recursion is used. Then theresult of the nested recursive call is characterized by the post-condition of thecalled function. If the inductive predicate can be synthesized systematically, thebuilding of the function is semi-automatic. Some veri�cations with respect tothe post-condition are left to the programmer.We can always compute the de�nition domain of a function, even if it doesnot terminate. But we do not know what is the meaning of a post-condition inthis case.4.2 De�nition of dom fTo each equation of the informal speci�cation corresponds a constructor of theinductive predicate.More formally, the equation f pati1 : : : patin when condi = expileads to the rule dom fi : 8x1; x2 : : : xk:�(expi)^condi ! dom f(pati1; : : : ; patin)where x1; x2 : : : xk are the pattern variables and �(expi) denotes the predicateof well-formedness of expi.For instance, if expi is the application (h e), �(h e) states that e is wellformed and belongs to the domain of h.Consequently, if e is the application (f e0), �(h e) expresses that (f e0) is well-formed and belongs to dom h. As it is, we obtain dom h(f e0) and, hence, inthe de�nition of dom f the symbol f appears. This situation would oblige us tode�ne simultaneously f and dom f but we want to avoid that. From here, ourstrategy diverges from the approach of Finn, Fourman and Longley exposed in[6]. In order to cope with this situation and also to associate some semanticsto f , we replace a call (f e0) by a fresh variable, let us say y, which satis-�es the post-condition associated to f , namely Pf , thus dom h(f e0) becomes8y:Pf (e0; y)) dom h(y).



Let us illustrate this with two simple examples :� f (S n) = f(n) generates the following predicate: dom f(n). (We do not needhere any post-condition)� for f (S n) = f(f(n)), the predicate will bedom f(n)) (8m:Pf (n;m)) dom f(m)).4.3 De�nition of �In order to de�ne � syntactically without increasing too much the complexityof its de�nition and the proof of soundness, we work on a canonical form ofthe expressions expi which emphasizes syntactically the call by value semanticsand the structure of the computation. In particular, all the nested calls arenamed with fresh identi�ers and introduced by let constructs. It is easy toconvince ourself that this canonical form is semantically equivalent to the initialone (assuming a call by value semantics). For instance, the canonical form off (let z = (g (f x) (f y)) in z � z) is3:let y1 = f x inlet y2 = f y inlet z = (g y1 y2) inlet y3 = z * z inlet y4 = f y3 in y4Thus the canonical form of an expression contains a succession of nested letstatements where each de�ning expression is a call to a function with argu-ments which are constants or identi�ers i.e. always de�ned expressions. Fromthis canonical form, we produce another syntactical expression denoted by be: itwill be used to compute the � predicate, and it is obtained by replacing eachde�ning expression y=f x by the condition yjPf (x; y) where Pf is the post con-dition associated to f . Everywhere be and e are identical we note e instead of be.From the previous example we obtain:let y1 | P_f(x, y1) inlet y2 | P_f(y, y2) inlet z = (g y1 y2) inlet y3 | P_f(z * z, y3) inlet y4 = f y3 in y4De�nition of the well-formedness of an expression .�(e) returns a formula which expresses the well-formedness of e computed frombe with the following rules:��(x) = true��(Ctr e) = �(e)��(let yjPh(e1; y) in be2) = dom h(e1) ^ (8y:Ph(e1; y)) �( be2))3 If a lazy semantics had been chosen we would work with the canonical expression(f (g (f x) (f y)) (g (f x) (f y)))



��(let x= e1 in be2) = (8x:x = e1 ) �( be2))��(g e1) = �(e1)Let us come back to the examples .We compute the pre-conditions for nth and mgu from the informal de�nition.For nth, the canonical form isfun nth 0 x::l = x| nth (S n) x::l = let y = nth n l in ywhich becomes the expressiondnthfun nth 0 x::l = x| nth (S n) x::l = let y | P_nth(n, l, y) in y�(let yj Pnth(n; l; y) in y) = dom nth(n; l) ^ (8y:Pnth(n; l; y) ) true) whichcan be simpli�ed as dom nth(n; l).This computation suggests the Coq declaration given below. The conjunctionsgenerated by � are replaced in the inductive Coq de�nition by implications.This choice will provide us with a best comfort in the proofs to come involvingthe dom f predicate.Inductive dom_nth: nat -> list -> Set :=dom_nth1: (a: A)(l: list) (dom_nth O (cons a l))| dom_nth2: (p: nat)(a: A)(l: list)(dom_nth p l) -> (dom_nth (S p) (cons a l)).For mgu, the canonical form of the last equation is:|mgu (Op t1 t2) (Op x1 x2) = let u1 = mgu t1 x1 inlet y1 = u1 t2 inlet y2 = u1 x2 inlet y3 = mgu y1 y2 inlet y4 = y3 o u1 in y4and the corresponding dmgu is:|mgu (Op t1 t2) (Op x1 x2) -> let u1 |P_mgu(t1,x1,u1) inlet y1 = u1 t2 inlet y2 = u1 x2 inlet y3 |P_mgu(y1, y2,y3) inlet y4 = y3 o u1 in y4By applying the previous computation rules, � applied to the last equationreturns after simpli�cation:dom mgu(t1; x1)^(8u1:Pmgu(t1; x1; u1)) (8y1:y1 = (u1 t2)) (8y2:y2 = (u1 x2)) dom mgu(y1; y2))))We deduce the following Coq declaration:Inductive dom_mgu : term -> term -> Set :=dom_mgu1 : (x: nat)(dom_mgu (Var x) (Var x))| dom_mgu2 : (x: nat)(t: term)(notin x t) -> (dom_mgu (Var x) t)



| dom_mgu3 : (x: nat)(dom_mgu Cst (Var x))| dom_mgu4 : (dom_mgu Cst Cst)| dom_mgu5 : (t1, t2: term)(x : nat)(notin x (Op t1 t2)) -> (dom_mgu (Op t1 t2) (Var x))| dom_mgu6 : (t1, t2, x1, x2: term)(dom_mgu t1 x1) ->((s : substitution) (s t1) = (s x1)) ->(dom_mgu (s t2) (s x2)) ->(dom_mgu (Op t1 t2) (Op x1 x2)).4.4 Soundness of �Soundness property establishes that under the hypothesis that f terminates, ifdom f(e1; : : : ; en) holds, then (fe1 : : : en) is de�ned. To prove this property, weconsider an environment � which contains the de�nition of the free variablesappearing in f and e1:::en as well as the post-conditions for all the used partialfunctions, and satisfying dom f(e1 : : : en). This property can be formally de�nedand proved.4.5 Encoding the functionsThe type of a partial function f of arity n becomes in Coq the dependent type :(x1 : t1)(x2 : t2) : : : (xn : tn)(dom f x1x2 : : : xn)! T where T is(r : t)Pf (x1; x2 : : : xn; r). For instance the mgu function receives the type (u, v:term) (dom mgu u v) -> (unifier u v) when unifier is de�ned as follows:Inductive unifier [u, v : term] : Set :=C: (s: substitution)(s u) = (s v) -> (unifier u v).When initialy, a function is recursive, it remains recursive in this style, but itsrecursive argument is the proof pi of the pre-condition. In most of the cases, itcan be de�ned in Coq with a Fixpoint: indeed, the recursive calls are done onstrict sub-terms of the proof pi. For instance, in the case of nth, when the proofis built up using the constructor dom nth2, its pattern matching gives the proofthat the arguments of the recursive call belong to the domain of de�nition. Thefunction nth is written :Fixpoint nth_proof [n: nat; l: list; pi: (dom_nth n l)]: A:=Cases pi of(dom_nth1 a l0) => a| (dom_nth2 m a l0 h) => (nth_proof m l0 h)end.4.6 Proof schemesThe tools used in the proof development relate here in the inductive calculusand the associated tactics but in a context of dependent types.In the expression of the surrounding lemmas, we can take advantage of thereal functional aspect of the speci�cation. We illustrate below some lemmasrelated to our examples :



1. the �rst element of a list belongs to that list2. the nth element of a list belongs to that list3. the free variables of the principal uni�er of two terms belong to the union ofthe free variables of the terms.Lemma head_proof: (l: list)(p: (dom_head l))(In (head_proof l p) l).Lemma nth_proof: (l: list)(n: nat)(p: (dom_nth n l))(In (nth_proof n l p) l).Lemma mgu_proof: (t1,t2: term)(p: (dom_mgu t1 t2))(is_included (FV (subst_of (mgu t1 t2))) ((FV t1) U (FV t2))).In these three lemmas, the last quanti�ed variable p denotes a proof, its type isthe computed inductive predicate dom.Generally speaking, the proofs of such lemmas are developed by induction (in-version may su�ce when non recursive function) on the pre-condition p.5 ConclusionIn this paper, we extend the approach of Finn, Fourney and Longley to generatede�nedness conditions and we present a way to deal with nested recursion byusing post-conditions. More precisely, we underline a systematic way to computedom f as an inductive relation, that allows us to use the power of the inductivecalculus. The computation of dom f can be automated. A perspective to ourwork is to study the development of a tactic related to this automation.The required post-condition must be given by the user, it is not synthezisedautomatically. It corresponds to older approaches for termination proofs, wheretermination of a nested recursive function could only be veri�ed if its correctnesswas proved simultaneously. However, our post-condition is not necessarily a cor-rectness property, it could be a weaker property (for instance for mgu, we couldassert that the domain of the most general uni�er of t1 and t2 is a subset of thefree variables of t1 and t2). Furthermore, we feel that simple typing conditionsused as post-conditions may be su�cient.Computing the domain of a function and proving its termination may berelated. In particular, if the post-condition is an induction lemma as de�ned byGiesl [7], we obtain simustaneously a de�nition of the function and a proof thatthis induction lemma is partially correct in the sense of [7]. Furthermore, in thiscase, the generated proof obligations are arithmetic properties (about measures)which may be automated. To prove the termination of the function, it remainsat least to establish that the recursive calls decrease according to the chosenmeasure.We have to study more precisely the impact of the chosen post-conditionupon the de�ned function.
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