Circuits combinatoires

Christophe Mouilleron

Information

Un bit = deux états possibles

- haut = 1
- bas = 0

→ représentation binaire

différence de 1 V entre les deux états

Information

Un bit = deux états possibles

- haut = 1
- bas = 0
- → représentation binaire

différence de 1 V entre les deux états

Algèbre de Boole B

- *true* = ⊤ = 1
- $false = \bot = 0$

Portes logiques

À partir de transistors, on sait faire (entre autres) :

Not

а	b	a ⊕ b
0	0	0
0	1	1
1	0	1
1	1	0

And

а	b	a · b
0	0	0
0	1	0
1	0	0
1	1	1

Or

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

Fonctions booléennes

Donnée:

$$f: \mathbb{B}^m \to \mathbb{B}$$

→ table de vérité

Objectif : créer un circuit calculant f

- fils + portes logiques
- m entrées
- 1 sortie

Fonctions booléennes

Donnée :

$$f: \mathbb{B}^m \to \mathbb{B}^n$$

→ table de vérité

Objectif: créer un circuit calculant f

- fils + portes logiques
- m entrées
- n sorties

Applications:

- opérations élémentaires
- tables

Newton

Plan

- Circuits combinatoires
 - Approches directes
 - Méthode de Karnaugh

2 Circuits combinatoires classiques

C. Mouilleron

Plan

- Circuits combinatoires
 - Approches directes
 - Méthode de Karnaugh

2 Circuits combinatoires classiques

C. Mouilleron

Table de vérité → Circuit

Idée:

- dresser la table de vérité de f
- tester chaque ligne où $f(b_1, \ldots, b_n) = 1$ \leadsto portes Not et And sortie = 1 ssi ligne concernée
- faire un Ou de toutes ces lignes

Table de vérité → Circuit

Idée:

- dresser la table de vérité de f
- tester chaque ligne où $f(b_1, \ldots, b_n) = 1$ \leadsto portes Not et And sortie = 1 ssi ligne concernée
- faire un Ou de toutes ces lignes

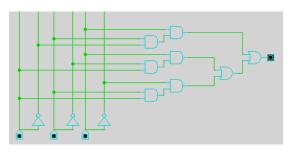
Exemple : $f(b_1, b_2, b_3) = 1$ ssi 2 entrées à 1.

Table de vérité → Circuit

Idée:

- dresser la table de vérité de f
- tester chaque ligne où $f(b_1, \ldots, b_n) = 1$ \leadsto portes Not et And sortie = 1 ssi ligne concernée
- faire un Ou de toutes ces lignes

Exemple: $f(b_1, b_2, b_3) = 1$ ssi 2 entrées à 1. \rightsquigarrow cf 2among3.lgf



Formes normales

Autres approches =

- simplifier via loi usuelles sur B
- utiliser une forme normale
 - conjonctive
 - disjonctive

Formes normales

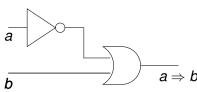
Autres approches =

- simplifier via loi usuelles sur B
- utiliser une forme normale
 - conjonctive
 - disjonctive

∧ ∨ littéraux∨ ∧ littéraux

Exemple: $a \Rightarrow b$

Forme normale disjonctive = $b \lor \bar{a}$



Plan

- Circuits combinatoires
 - Approches directes
 - Méthode de Karnaugh

2 Circuits combinatoires classiques

C. Mouilleron

Code de Gray

Idée:

lister les entiers de 0 à 2ⁿ − 1

- écriture binaire
- passage au suivant en changeant exactement un bit

Exemple: n = 3

décimal	binaire	gray
0	000	000
1	001	001
2	010	011
3	011	010
4	100	1 10
5	101	11 <mark>1</mark>
6	110	101
7	111	100

Code de Gray, calcul

Méthode math. : récurrence

$$n=1$$
 $n=2$
 0 miroir + 0 0
 1 extension 0 1
 1 1 0

Code de Gray, calcul

Méthode math.: récurrence

$$n=1$$
 $n=2$
 0 miroir + 0 0
 1 extension 0 1
 1 1 1

$$\begin{array}{cccc} & n = 3 \\ \hline \text{miroir} + & 0 & 00 \\ \text{extension} & 0 & 01 \\ \hline \rightarrow & 0 & 11 \\ \hline 0 & 10 \\ \hline 1 & 10 \\ 1 & 11 \\ 1 & 01 \\ 1 & 00 \\ \end{array}$$

Code de Gray, calcul

Méthode math.: récurrence

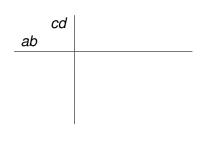
$$\begin{array}{cccc} n=1 & & n=2 \\ 0 & \text{miroir} + & 0 & 0 \\ 1 & \text{extension} & & 0 & 1 \\ & & & & 1 & 1 \\ & & & & 1 & 0 \\ \end{array}$$

$$\begin{array}{cccc} & n = 3 \\ \text{miroir} + & 0 & 00 \\ \text{extension} & 0 & 01 \\ \longrightarrow & 0 & 11 \\ \hline 0 & 10 \\ \hline 1 & 10 \\ 1 & 11 \\ 1 & 01 \\ 1 & 00 \\ \end{array}$$

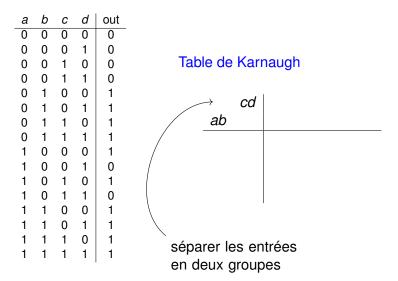
Idée : réorganiser la table de vérité en utilisant le code de Gray

а	b	С	d	out
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

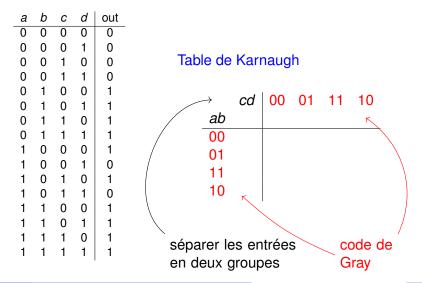
Table de Karnaugh



Idée : réorganiser la table de vérité en utilisant le code de Gray



Idée : réorganiser la table de vérité en utilisant le code de Gray



Idée : réorganiser la table de vérité en utilisant le code de Gray

а	b	С	d	out								
0	0	0	0	0								
0	0	0	1	0	_							
0	0	1	0	0	Ta	able de	Karr	าลนg	h			
0	0	1	1	0								
0	1	0	0	1			- d	00	04	4.4	10	
0	1	0	1	1		<i></i>	cd	00	01	11	10	
0	1	1	0	1		ab					K	
0	1	1	1	1		00		0	0	0	0	
1	0	0	0	1	/	01		1	1	1	1	
1	0	0	1	0	/	11		4	4	4	4	\
1	0	1	0	1		11		!	- 1	- 1	!	\
1	0	1	1	0		10	K	1	0	0	1	
1	1	0	0	1	\							
1	1	0	1	1								/
1	1	1	0	1	ဝင်း	noror la		trác		0	odo.	da /
1	1	1	1	1		séparer les entrées code de					ue	
				'	en	en deux groupes Gray						

Table de Karnaugh \rightarrow Circuit

cd	00	01	11	10
	0	0	0	0
	1	1	1	1
	1	1	1	1
	1	0	0	1
	cd	cd 00 0 1 1 1 1	0 0 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1

• 1 ligne = a et b fixés

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
11		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
11		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé
- 1 colonne = c et d fixés

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
1 1		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé
- 1 colonne = c et d fixés
- carré 2 × 2 = 2 entrées fixées

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
11		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé
- 1 colonne = c et d fixés
- carré 2 × 2 = 2 entrées fixées
- ...

Méthode: paver les 1 par des rectangles $2^i \times 2^j$ les + gros possible

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
11		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé
- 1 colonne = c et d fixés
- carré 2 × 2 = 2 entrées fixées
- ...

Méthode : paver les 1 par des rectangles $2^i \times 2^j$ les + gros possible Sur l'exemple :

h

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
11		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé
- 1 colonne = c et d fixés
- carré 2 × 2 = 2 entrées fixées
- ...

Méthode: paver les 1 par des rectangles $2^i \times 2^j$ les + gros possible Sur l'exemple:

•
$$a = 1$$
 et $d = 0$

	cd	00	01	11	10
ab					
00		0	0	0	0
01		1	1	1	1
11		1	1	1	1
10		1	0	0	1

- 1 ligne = a et b fixés
- 2 lignes adjacentes = a ou b fixé
- 1 colonne = c et d fixés
- carré 2 × 2 = 2 entrées fixées
- ...

Méthode: paver les 1 par des rectangles $2^i \times 2^j$ les + gros possible Sur l'exemple:

•
$$b = 1$$

$$\rightsquigarrow a \cdot \bar{d} + b$$

1 Not, 1 And, 1 Or

Plan

- Circuits combinatoires
 - Approches directes
 - Méthode de Karnaugh

Circuits combinatoires classiques

C. Mouilleron

Décodeurs (ou démultiplexeurs)

n entrées :

→ entier i codé en binaire

$$i_0, i_1, ..., i_{n-1}$$

$$i = \sum_{k=0}^{n-1} i_k 2^k$$

2^n sorties:

- $s_i = 1$ quand i = j
- $s_i = 0$ sinon

cf. exemple dans Diglog

 $i = \sum_{k=0}^{n-1} i_k \, 2^k$

 S_0, \ldots, S_{2^n-1}

Multiplexeurs

$k + n2^k$ entrées :

- 2^k données de n bits
- k bits de contrôle

n sorties:

• donnée numéro i, où i = valeur indiquée dans les bits de contrôle

Multiplexeurs

$k + n2^k$ entrées :

- 2^k données de *n* bits
- k bits de contrôle

n sorties:

• donnée numéro i, où i = valeur indiquée dans les bits de contrôle

Exemple: Multiplexeur $8 \rightarrow 4$

$$2^k = 8/4 = 2, k = 1$$

Multiplexeurs

$k + n2^k$ entrées :

- 2^k données de n bits
- k bits de contrôle

n sorties:

• donnée numéro i, où i = valeur indiquée dans les bits de contrôle

Exemple: Multiplexeur $8 \rightarrow 4$

- $2^k = 8/4 = 2, k = 1$
- 4 sorties, 8 + 1 entrées
- choix de 4 fils selon le bit de contrôle

test

Complément à 1

n entrées :

$$i_0, i_1, \ldots, i_{n-1}$$

$$s_0, ..., s_{n-1}$$

•
$$s_j = \overline{i}_j$$
 pour tout $j \in \llbracket 0, \ n-1 \rrbracket$

n portes Not en parallèle