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Abstract. We develop a formal proof of the ML type inference algorithm, within
the Coq proof assistant. We are much concerned with methodology and reusability
of such a mechanization. This proof is an essential step towards the certification of
a complete ML compiler.

In this paper we present the Coq formalization of the typing system and its
inference algorithm. We establish formally the correctness and the completeness of
the type inference algorithm with respect to the typing rules of the language. We
describe and comment the mechanized proofs.
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1. Introduction

Our goal is to realize a verified formal proof of the ML type inference
algorithm, within the Coq proof assistant. Though this algorithm was
proved a long time ago, this proof had never been mechanized entirely
up to now. Simultaneously and independently of our work, Nazareth
and Nipkow have carried out such a formal verification in the theo-
rem prover Isabelle/HOL for simply-typed A-terms [13] and then W.
Naraschewski and T. Nipkow have done it for a polymorphic type dis-
cipline [12].
The certification of an ML compiler done in [2] does not deal with
the type inference problem. However it is a major step during the
compilation process and it should be incorporated into any compiler
certification.

The certification is done within the Coq system. This proof assistant
suits well to prove properties on programming languages because any
abstract syntax can easily be encoded as an inductive type and Coq
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provides specialized tactics to handle inductive definitions. We present
the Coq system more precisely in the next section.

In this paper, we first briefly describe the term algebra and the type
system within the logical language of the Coq system: our language is
close to the ML core language and provides parametric polymorphism
d la ML. Then, we present the modelisation of the type inference algo-
rithm named W as usual in the literature. Our guideline is to stick as
close as possible to an implementation of the typing process written
in a functional language: we want to verify the true implementation of
a compiler. It means for example that the type inference algorithm is
given in a functional style, avoiding Prolog style definitions as much as
possible.

The certification of the type inference algorithm W is done in two
steps: we prove the correctness and the completeness of W with respect
to the typing rules of the language. We have completely developed the
correctness and completeness proofs within the Coq system (version
6.1). The paper describes in detail the mechanized proofs and shows
the choices and the difficulties. The last section briefly compares our
certification with the one proposed by Naraschewski and Nipkow [12].

Beyond the challenge of mechanizing this classical proof, we are
motivated by developing a methodology and a framework to handle
this kind of proofs and we are concerned with the reusability of such
a mechanization. For example the Damas-Milner framework and the
type system for extensional polymorphism [7] have the same typing
rules and the same type inference algorithm. These two type systems
only differ by the substitution notion and the unification mechanism
which both handle two different kinds of type variables in the case
of extensional polymorphism. Consequently we want to evaluate how
much of the proof of Damas-Milner’s algorithm can be reused. However
this is a long term motivation that we enter upon in the section 10 by
considering a slightly different typing framework, i.e. the restriction to
value polymorphism [18] in order to type imperative features.

2. The Coq proof assistant

We give here a brief presentation of the Coq interactive proof assis-
tant. A more detailed description can be found in [1]. The Coq sys-
tem allows the development of verified formal proofs. The axiomati-
zations and specifications are written in the logical language Gallina
whose foundation is the Calculus of Inductive Constructions [15], a ver-
sion of higher order typed A-calculus whose types are themselves typed
terms of the language, extended with inductive types, very close to ML
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datatypes and inductive relations related to Prolog predicates. From
the definition of an inductive construction, the Coq system automat-
ically generates the associated induction principle and provides proof
tools to manipulate them (e.g. the Induction and Inversion tactics).

The user can write functions and also recursive functions: facilities
are provided to define functions with structural recursion (Fixpoint
and Recursive constructs). Coq allows also the definition of functions
by using pattern-matching (Cases) with a syntax very close to ML.

Coq permits the extraction of ML programs from proofs of specifi-
cation. However in our work, this functionality is not used because our
purpose does not require it. The reverse approach is also possible: a
specialized tactic, named Program, applied to a real program written
in ML-style, generates the lemmas to be proved in order to ensure the
correctness of the program with respect to its specification [14]. This
methodology could be tried in our case and we plan to investigate it in
the future.

We shall give information about Coq syntax all along the paper
when it will be necessary to understand the formalization. However in
some places, we have adopted a mathematical syntax rather than Coq
syntax. These transformations are systematic and essentially limited to
quantifiers. When general polymorphic functions (e.g. length, if) or
constructors (e.g. cons) are applied, we have omitted the type argu-
ment. We intentionally write no complete script of proofs for sake of
readability.

3. The language

In this section we present the definition of the abstract syntax of the
language we consider, i.e. a model of the core ML-language. An elegant
presentation of a similar language with the associated typing proofs
can be read in the first chapter of Leroy’s thesis [11].

The expressions we consider are integer constants, identifiers (z),
A-abstraction (Az.e), application (e €'), 1let binding (let z = e in ¢')
and recursive functions (Rec f z.e).

The recursion is presented in our formalism as an extension of
the A-abstraction in order to show explicitly that the recursive con-
struction is concerned only with functions: the expression Rec f z.e
defines the recursive function named f, its parameter is z, its body
is e. The approach of the recursion as extension of the let construct
(as in most of the implementations of ML) would require supplemen-
tary tests to unable recursive non-functional values and would obscure
our proofs. The expression Rec f x.e is equivalent to the classical
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ML sentence let rec f x =e in f. On the contrary, the expression
let rec f z = e in €' is translated in our formalism in the expression
let f =Rec f z.e in€'.

In Coq, the language is described via the definition of the inductive
type expr, that is an object of type Set according to the Coq type
system:

Inductive expr: Set :=
Const_int: nat -> expr
| Variable: identifier -> expr
| Lambda: identifier -> expr -> expr
| Rec: identifier -> identifier -> expr -> expr
| Apply: expr -> expr -> expr
| Let_in: identifier -> expr -> expr -> expr

In our context, an identifier is encoded as a natural number. However
the type identifier could be let abstract with the assumption that it
is equipped with a decidable equality.

Note: it would be easy to add to the language the standard supple-
mentary language constructs (conditional expressions, pairs, lists ...).
It would raise no special difficulty in the certification.

4. The type language

Intuitively, a type is associated to each expression. The type infor-
mation relative to the variables is saved in an environment. A poly-
morphic function is introduced only via a let definition, polymorphic
means that it can be applied to objects of different types. So its type
contains quantified variables. The information about these quantified
variables is necessary in the environment in order to verify the differ-
ent applications of the function. Below we develop the notion of type
scheme corresponding approximatively to a quantified type. Afterwards
we specify the relation of type instance between two types and also the
relation of generic type instance between a type and a type scheme.

4.1. TYPES AND TYPE SCHEMES

The considered types are the basic type int, type variables denoted as
usual with Greek letters «, g ...and functional types 7 — 7/ (where 7
and 7’ are types t00). It is encoded in Coq as:

Inductive type: Set :=
Int: type
| Var: stamp -> type
| Arrow: type -> type -> type
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A type variable (also named a stamp) is encoded by a term like (Stamp
n) where n is a natural number. For sake of readability, we sometimes
liken it to a natural number.

A type scheme o is defined as a type universally quantified over
a finite set (possibly empty) of type variables: Va; ... a,.7 (where 7
is a type expression). The quantified variables are called the generic
variables of the type scheme. A type scheme may also contain some
free variables, for example in the type scheme Ya.a — (3, « is a generic
type variable and [ a free variable. A type scheme without generic
variables is said a trivial type scheme and written as V.7.

The previous (and usual) definition accentuates the generic variables
but complicates the application of a substitution on a type scheme a
bit. Our encoding in Coq does not follow this line, we prefer to dis-
tinguish syntactically free and bound variables, consequently we define
inductively the type type_scheme with two different constructors for
variables, Gen_var for bound ones and Var_ts for the free ones.

Inductive type_scheme: Set :=
Int_ts: type_scheme
| Var_ts: stamp -> type_scheme
| Gen_var: stamp -> type_scheme
| Arrow_ts: type_scheme -> type_scheme -> type_scheme

According to this definition, the type scheme Va.a — [ is represented
by the Coq term (Arrow_ts (Gen_var alpha) (Var_ts beta)) where
alpha and beta are the stamps associated to « and [ respectively.

4.2. TYPE INSTANCE AND SUBSTITUTION

A type instance is defined relatively to the notion of substitution: a
type 7' is a type instance of the type 7 if there exists a substitution s
such that s7 = 7'

We specify a substitution as a list of pairs (stamp, type
expression to substitute). The operations defined on substitutions
are the usual ones: to get the type related to a given stamp
(assoc_stamp_in_subst), to apply a substitution on a type variable,
a type or a type scheme (apply_substitution, apply_subst_type,
apply_subst_tscheme), to compose substitutions (compose_subst), to
compute the domain, the range of a substitution etc. These operations
are specified in Coq in a functional style and are very close to their ML
implementation. Let us detail two of them below: the application of a
substitution on a type scheme apply_subst_tscheme and the compo-
sition of substitutions compose_subst.
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Recursive Definition apply_subst_tscheme [s: substitution]:
type_scheme -> type_scheme:=
Int_ts => Int_ts
| (Var_ts v) => (type_to_type_scheme (apply_substitution s v))
| (Gen_var v) => (Gen_var v)
| (Arrow_ts tsl ts2) => (Arrow_ts (apply_subst_tscheme s tsl)
(apply_subst_tscheme s ts2))

Coq notation: Definition id [x: t]: t’:= e defines a function
named id whose parameter is x of type t, whose body is the expression
e declared with the type t’. Here the body of apply_subst_tscheme is
a function that matches its anonymous parameter against the different
patterns Int_ts, (Var_ts v), (Gen_var v) and (Arrow_ts tsl ts2).

Applying a substitution s on a type scheme ts consists in replacing
only the free variables (labeled with Var_ts) appearing in ts by the
associated type expression in s: a conversion from type to type scheme
is necessary and done by the type_to_type_scheme function.

Definition compose_subst:= [sl, s2: substitution]
(append (subst_diff s2 s1) (apply_subst_list sl s2))

Intuitively, the substitution (compose_subst s1 s2) (sl and then s2)
is computed by applying s2 to each type expression in si1 (done by
(apply-subst_list s1 s2)). We add to the resulting list those pairs
whose first component is in the domain of §2 but not in the domain of
s1 (append and subst_diff).

Many lemmas are required about these definitions. We detail some of
them, particularly those dealing with the composition of substitutions.

Lemma composition_of_substitutions_stamp:

V s1, s2: substitution, V st: stamp
(apply_substitution (compose_subst sl s2) st)

= (apply_subst_type s2 (apply_substitution sl st))

The lemma composition_of _substitutions_stamp shows that the
compose_subst operation performs on stamps what its name means:
to apply the substitution denoted by (compose_subst si1 s2) on
the stamp st produces the same term as to apply s2 to the
result of the application of s1 on st. The proof of this lemma
requires some supplementary technical lemmas. This part counts
approximatively 600 lines detailed. We need to establish the rela-
tions between assoc_stamp_in subst and the operations append,
subst_diff, apply_subst_list and compose_subst. Unfortunately,
these operations have very few good algebraic properties. Elimination
on inductive structures, one of the most common way to start a proof
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in Coq, performs almost no simplification of the problem and the proof
deals with a complete combinatoric exploration of all conditions in these
definitions.

As last example of properties required for substitutions, here is a propo-
sition which concerns relations between the variables appearing in a
type term 7 (also called its free variables and computed by FV_type)
and those of the type (s 7) where s is a substitution:

a € FV_type(7) = FV_type(s a) C FV_type(s T)

Remark: Let us notice that a substitution could also be encod-
ed as a Coq abstraction of type stamp -> type. This encoding is
interesting for the operations consisting in applying a substitution
or composing substitutions, for example, we have for free the lemma
composition of_substitutions. We have investigated simultaneously
this second encoding for a monomorphic restriction. It is pretty conve-
nient until we have to exhibit the greatest stamp of the range of the
substitution for example (and we need to compute it, as we shall see
later). The other reason concerns our guideline i.e. to stay as near as
possible to a real implementation of the typing tool.

4.3. GENERIC INSTANCE AND GENERIC SUBSTITUTION

A type 7' is a generic instance of a type scheme Va; ...a,.7 if and
only if there is a substitution s4 for a ... ay such that sq(7) = 7'. The
substitution s, is called a generic substitution. For example, the type
int — [ is a generic instance of the type scheme Va.a — .

Consequently, the Coq specification has to provide the operation
apply-subst_gen that applies a generic substitution on a type scheme
in order to produce a generic instance: it only modifies the bound vari-
ables of the type scheme but keeps unchanged the free ones.

In our framework, a generic substitution is implemented as a list of
type expressions without any reference to the names of the variables
it applies on. In the following, a generic substitution is given the type
gen_subst.

The type to be associated to the n-th generic variable can be found
at the n-th list position. It means that the length of a generic sub-
stitution s, applied to a type scheme o must be at least! the great-
est stamp p denoting a generic variable found in o. Consequently
(apply_subst_gen s, o) is partially defined. Then our specification sim-
ulates the exception mechanism. For that purpose, we use an inductive

! The generic substitutions built in our framework contain usually exactly p types,
however the at least p condition is sufficient for us and also required in some lemmas.
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type gen_check defined with two constructors, Error_gen applies when
sg cannot be considered as a valid generic substitution for o, else Some
introduces the resulting type expression?.

The function apply_subst_gen is written in Coq as follows:

Fixpoint apply_subst_gen [s: gen_subst; ts: type_scheme]:
gen_check:=
Cases ts of
Int_ts => (Some_gen Int)
| (Var_ts v) => (Some_gen (Var v))
| (Gen_var (Stamp x)) => Cases (nth x s) of
Error_nth => Error_gen
| (Some_nth t) => (Some_gen t)
end
| (Arrow_ts tsl ts2) =>
Cases (apply_subst_gen s tsl) of
Error_gen => Error_gen
| (Some_gen t1) =>
Cases (apply_subst_gen s ts2) of
Error_gen => Error_gen
| (Some_gen t2) => (Some_gen (Arrow t1 t2))
end
end
end.

According to the previous informal definitions, the predicate
is_gen_instance that specifies when a type is a generic instance of
a type scheme, is defined as:

Definition is_gen_instance:= [t: type] [ts: type_scheme]
3 sg: gen_subst | (apply_subst_gen sg ts)=(Some_gen t)

5. The typing rules

This section presents the typing rules for our language. They all refer
to a type environment, consequently we first specify this notion.

5.1. ENVIRONMENT

We have mentioned before the notion of environment as a list of pairs
(identifier, type scheme). We have retained this view in Coq and defined
the type environment as list (identifier * type_scheme).

2 Another solution to encode the partial function apply_subst_gen would consist

in introducing the definedness condition as a supplementary argument whose type
can be derived as in [8]
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The notation “I' @y : ¢” denotes the environment I' extended with
the new information y : o, that is the environment where the type
informations found in I are kept unchanged, except for the identifier y
which is bound to o. The list representation of the environments allows
a very simple implementation of the & function (add_env in Coq), it
is simply the “cons” operator. Combined with an implementation of
the operation I'(z) (assoc_ident_in_env in Coq) that returns the type
associated to the first occurence of x in I', this naive representation
ensures that the visibility rules of the language are respected.

Other operations like the application of a substitution to an envi-
ronment are required in
the following. This last operation apply_subst_env is easily defined
as extension of apply_subst_tscheme.

The certification of the type inference algorithm needs several propo-
sitions about environments, for example the following one that we men-
tion here for sake of clarity:

Lemma Ident_in_apply_subst_env:
V env: environment, V i: identifier, V ts: type_scheme,
(assoc_ident_in_env i env)=(Some_in_env ts) ->
V s: substitution,
(assoc_ident_in_env i (apply_subst_env env s))
=(Some_in_env (apply_subst_tscheme s ts))

This lemma states that (sI')(7) = s(I'()), if ¢ is one of the identifiers
of the environment I'. The Coq formulation looks clumsy because the
function assoc_ident_in env may fail. The proof is done by induction
on I'. If I is a non-empty list, we distinguish two cases: the first identifier
of the environment is exactly ¢ or different from 4. This discrimination
is performed via the elimination of the identifier _dec decision lemma
for the identifiers.

Lemma identifier_dec:
V v1, v2: identifier, {vi=v2} V {- (vi=v2)}

5.2. TYPE GENERALIZATION

The let construct is the only one that introduces in the environment
identifiers with polymorphic types, i.e. non trivial type schemes. This
is done by the operation of generalization gen_type which builds a
type scheme from a type 7 and an environment I': it turns into generic
variables those variables appearing free in 7 but not in I'.
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gentype T ' =Vay...04.7

with «; € (FV_type 7) — (FV_env I') (as indicated by its name, FV_env
computes the list of free variables of an environment).

This definition suggests the very simple and natural following imple-
mentation in Coq for the gen_type function:

Recursive Definition gen_type:
type -> environment -> type_scheme:=
Int env => Int_ts

| (Var v) env => (if_ (in_list_stamp v (FV_env env))
(Var_ts v)
(Gen_var v))

| (Arrow taul tau2) env => (Arrow_ts (gen_type taul env)

(gen_type tau2 env))

However problems arise when two different types are turned into equiva-
lent type schemes, in the sense that they denote the same set of types.
For example, if o and § denote two distinct stamps not free in the
considered environment, the types @ — « and § — [ produce the
respective type schemes Va.a — «a and V3.6 — (. These two type
schemes are encoded with two syntactically different terms in Cog.
The type system and the inference algorithm do not require to decide
whether two type schemes are equivalent or not, but unfortunately the
proof of the correctness does! In fact, the only type schemes we need
to test for equivalence are those produced by generalization. Conse-
quently, in order to avoid to deal with alpha-conversion in the entire
certification, our Coq implementation introduces a particular encoding
for type schemes produced by the generalization process. We handle a
type scheme linearly: any occurrence of the generic variable « in a type
scheme o is written as (Gen_var n) if o is the n-th generic variable
discovered when o is read from left to right. For example, the general-
ization of the type (o« — ) — (8 — «) when « and [ are not free in the
environment produces the type scheme Vaf.(a — ) — (8 — «) repre-
sented by the Coq term (Arrow_ts (Arrow_ts (Gen_var 0) (Gen_var
1)) (Arrow_ts (Gen.var 1) (Gen.var 0))).

The proposed encoding ensures that two type schemes produced by
generalization that are equivalent with respect to alpha-conversion are
syntactically equal. For example, (gen_type a I') = (Gen_var 0) =
(gen_type B T) if @ and G are not free in T

To define gen_type in Coq, we use an auxiliary recursive function
gen_type_aux: (gen_type_aux t env 1) computes the pair (ts, 17)
where ts is the generalization of t with respect to the environment env
when 1 indicates the variables already discovered as generic and 1° is
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the list 1 at the end of which have been added the new generic vari-
ables produced by the computation. The index attributed to a generic
variable relates to its position in 1. It is implemented in Coq via the
function index that may fail when used to search a missing variable.

Fixpoint gen_type_aux [t: typel:
environment -> (list stamp) -> type_scheme*(list stamp):=
[env:environment] [1: (list stamp)]
Cases t of
Int => (Int_ts,1)
| (Var v) =>
(if_ (in_list_stamp v (FV_env env))
((Var_ts v), 1)
(Cases (index 1 v) of
Stamp_not_in => ((Gen_var (Stamp (length 1))),
(append 1 (comns v nil )))
| (Index_in k) => ((Gen_var (Stamp k)), 1)
end))
| (Arrow t1 t2) =>
Cases (gen_type_aux t1 env 1) of
(ts1, 11) =>
Cases (gen_type_aux t2 env 11) of
(ts2, 12) => ((Arrow_ts tsl ts2), 12)
end
end
end

Definition gen_type :=
[t: type] [env: enviromnment] (Fst (gen_type_aux t env nil))

Remark: the gen_type operation turns a type into a type scheme in
which each bound variable is mapped to an index computed by a bijec-
tive function with results in an integer interval starting from 0. How-
ever we do not impose to follow this condition upon the numbering of
the generic variables in every type scheme handled in the specification
or the proof. For example, we can accept the type scheme (Arrow_ts
(Gen_var 2) (Gen_var 0)) in the initial typing environment, it has
no incidence on the type inference problem. In fact the initial environ-
ment is usually empty and all the type schemes added to it during the
type inference phase are produced by gen_type.

5.3. THE INFERENCE RULES

The typing rules are described in the Natural Semantics style [10] (see
figure 1). The sequent I' I e : 7 means that the expression e has type
7 under the environment I'.

We have chosen to use the syntax-directed presentation of the rules in
the style of [3]. The most important reason for that choice is that it
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(csT) T'F n:int

I'(z) =0, 7 is a generic instance of o

(D)
'txz:7

T'ez:Vrlke:7

(ABS)
'FXze:7 =71

Foz:Vraof:Vr—71Fe:7

(REQ)
I'Rec fze:T — 7

FkFe:T— 71, Ike:T

(APP)
F'kee:7

!

F'te:r, I@®z:(gentyper)Fe:7

(LET)
F'Fletz=eine : 7'

Figure 1. The typing rules

makes our proof easier: the shape of the A-expression determines the
unique applicable rule and the premises of the rules are only concerned
with subexpressions of their subject. Structural induction is thus a
powerful proof tool well suited for the manipulation of the typing rules.
However, Dubois has proved formally in Coq the equivalence with the
non-deterministic type system given by Damas and Milner (see [5] for
details).

The typing rules are encoded in Coq as clauses of the inductive rela-
tion type_of, the tramslation is quite obvious here. A more general
framework to automatically translate Natural Semantics of program-
ming languages to Coq is proposed in [17].

Here is a fragment of the Coq encoding:
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Inductive type_of: environment -> expr -> type -> Prop :=
type_of_int_const: V env: environment, V n: nat,
(type_of env (Const_int n) Int)
| type_of_var: V env: environment,
Y x: identifier, V t: type, V ts: type_scheme,
(assoc_Some_in_env x env)=(Some_in_env ts) ->
(is_gen_instance t ts) —->
(type_of env (Variable x) t)
| type_of_lambda: V env: environment,
V x: identifier, V e: expr, V t, t’: type,
(type_of (add_env env x (type_to_type_scheme t)) e t’) ->
(type_of env (Lambda x e) (Arrow t t’))

Let us remark that this predicate is the only one defined a la Prolog in
the Coq modelisation of the type system.

5.4. PRINCIPAL TYPE

This type system allows for example to derive that the sequent
I' - Az.z : int — int holds and also the two following ones: I' - Az.x :
(int — int) — (int — int) and ' F Az.z : @« — «a (with « not free in
I'). The last type is the principal type of the expression Ax.x: it corre-
sponds to the most general type that can be attached to the expression.
The other types e.g. int — int, (int — int) — (int — int) are instances
of the principal type.

We inductively define the predicate is_principal_type below:
(is_principal_type e I' 7) holds when 7 is the principal type of the
expression e with respect to I'.

Definition is_principal_type:=
[e: expr] [tau: type] [env: environment]
(¥ t: type, V s: substitution,
(type_of (apply_subst_env env s) e t) —->
3 s1, s2: substitution | t = (apply_substitution sl tau)
A s = (compose_subst sl s2))

6. The type inference algorithm

We consider an adaptation to our formalism of the well-known Damas-
Milner type inference algorithm for ML (algorithm W of [4]) that com-
putes the principal type of an expression, described below in a func-
tional style: it uses the classical mechanism of unification: unify(r, 75)
computes the most general unifier of two types 71 and 79 if they are
unifiable, fails otherwise.
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6.1. UNIFICATION

The function unify has only been assumed in our modelisation. We
have borrowed this methodology from Nazareth and Nipkow [13].

Inductive unify_check: Set :=
Error_unify: unify_check
| Some_unify: substitution -> unify_check

Parameter unify : type*type -> unify_check

In fact the unification algorithm has no incidence on the certification of
the inference tool since the type inference algorithm does not depend
on its implementation. Thus, we have just introduced the properties
relative to the correctness and the completeness of the unify function
as axioms. Lastly, a third more technical axiom ensures that the unifi-
cation algorithm computes a unifier whose free variables are only those
contained in the initial problem.

Another study orthogonal to ours could be to encode a unification
algorithm, for example the Robinson’s algorithm and then prove the
three previous axioms. Furthermore, in the Coq community, some work
has already been done around unification [16] [9].

6.2. THE TYPE INFERENCE ALGORITHM

Let e be a term and I" a typing environment. We define W(T', e) as the
pair (7, s), where 7 is a type expression, s a substitution: 7 is the most
general type of e and s contains the instantiations performed during
the computation (on free variables of I'). The algorithm W is described
in figure 2.

The encoding in Coq is very close to that definition and uses the
Fixpoint construction. However, we have to introduce two supplemen-
tary features in the previous algorithm: the failure of the algorithm in
the case of non-typable expressions and the management of the fresh
variables. To solve the last point, the function takes as a supplemen-
tary argument the stamp of the last new type variable created. So,
when the algorithm succeeds, it computes a triplet (7,s, st) where 7
and s are defined as previously and st is the stamp of the last new vari-
able created. To take into account the possible failure of the algorithm,
we have to simulate the exception mechanism with the inductive type
infer_check very similar to unify_check.

Inductive infer_check: Set :=

Error_infer: infer_check
| Some_infer: type -> substitution -> stamp -> infer_check
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W(T,n) = (int, ) W(T,e1 e) =
W(T,z) = let 71,81 = W(T,e1)
let (Y a1 ...0n.7) = D(z) let 75,85 = W(s1T, ea)
let By, ..., B, be fresh variables let & be a fresh variable
let s = {a; = Bi} let p = unify(sa7y, o—a)
in (s7,0) in (pa, ppo sz 051)
W (T, \z.e) = W(T,let x = erin ep) =
let « be a fresh variable let 71,51 = W(T', e1)
let ,s=W{T®z:V.a,e) let 0 = gen_type 71 51’
in (sa—T,s) let 72,80 = W(s:T ®x:0,e)
W (T, Rec [ a.¢) = in (72,8 0 81)
let «, B be two fresh variables
let 7,5 =
WTref:Va—pdz:V.ae)
let p = unify(r,s B)
in (p o s(a— f),pos)

Figure 2. The W algorithm

We give here only the beginning of the Coq specification:

Fixpoint W [st: stamp; env: environment; e: expr]:
infer_check :=
Cases e of
(Const_int n) => (Some_infer Int () st)
| (Variable x) =>
Cases (assoc_Some_in_env x env) of
Error_in_env => Error_infer
| (Some_in_env ts) =>
Cases (compute_gen_subst st (max_gen_vars ts)) of
(1, st’) =>
Cases (apply_subst_gen 1 ts) of
Error_gen => Error_infer
| (Some_gen t) => (Some_infer t @ st’)
end
end
end ...

In this fragment of code, (compute_gen_subst st n) computes the list

of type variables [st; st+1; ...; st+n-1] and returns the current
value of the stamp (here st+n).
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7. Certification of the type inference algorithm

After having modeled the type system and the type inference tool, we
are ready now to certify this tool, that is it computes the principal
type of each typable expression or fails otherwise. This certification is
done in two steps. First we prove that W is correct with respect to the
typing rules. Then we show that W is complete, more precisely, if an
expression admits a type, then W succeeds and computes the principal
type of the expression.

Another way to realize this certification in Coq consists in using the
tactic Program: then W is proposed as a realizer for the proof of the
following lemma:

Lemma specification_W: V e: expr, V env: environment,
{3 tau: type | (is_principal_type e env tau)}
V {V s: substitution, V t: type, — (type_of (s env) e t)}

We expect that one of the lemmas generated by the tactic Program will
be for example the correctness lemma, or instantiated forms of it. In the
future, we plan to investigate also this possibility.

8. Correctness of the type inference algorithm

The correctness statement establishes that if W (T, e) succeeds and com-
putes the type 7 and the substitution s then the sequent sI' e : 7
holds. This is encoded in Coq as:

Lemma correctness:
V e: expr, V st, st’: stamp, V env, env’: environment,
V t: type, V s: substitution,
(W st env e) = (Some_infer t s st’) ->
(type_of (apply_subst_env env s) e t)

The correctness proof requires some fundamental lemmas used several
times for example the main lemma
typing_is_stable_under_substitution that we explain in the next
subsection. Then we’ll come back to the correctness proof.

8.1. TYPING IS STABLE UNDER SUBSTITUTION

Lemma typing_is_stable_under_substitution:
V e: expr, V t: type, V env: environment, V s: substitution,
(type_of env e t) ->

(type_of (apply_subst_env env s) e (apply_subst_type s t))
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This lemma, corresponds to a classical property of the typing rules that
states that if I' F e : 7 holds then for any substitution s, the typing
sequent sI" - e : s7 holds too. It means that if 7 is a possible type
for e with respect to I', we can obtain another type for e by applying
a substitution on I' and 7.

The proof of the lemma typing_is_stable_under_substitution
arises no problem in the monomorphic case but becomes tedious in
the polymorphic case, especially because of the generalization process.
It requires large developments on substitutions that perform stamps
renaming for example. This proof is done by induction on the expres-
sion e, most cases do not require much effort and follow from the induc-
tion hypothesis. The identifier and let cases require much more!
In the remainder of this subsection, we point to the difficulties relative
to both cases and we enumerate the different necessary lemmas.

8.1.1. Let e be the identifier

By hypothesis, 7 is a generic instance of the type scheme associated to 4
in T, that is 0 = I'(). Consequently, there exists a generic substitution
sg that maps o to 7. We have to show that s is a generic instance of
so. For that purpose, we show that the generic substitution obtained
by applying the substitution s to each type appearing in s, (this is
done via the Coq function map_apply_subst_type) allows to transform
the type scheme so into the type s7.

This computation requires the next property which indicates how
apply_subst_type distributes over apply_subst_gen : applying the
substitution s to the type computed from the generic substitution
sg and the type scheme o and applying the generic substitution
(map_apply_subst_type s4 s) to the type scheme so give the same
result.

Lemma subst_gen_subst_type:
V ts: type_scheme, V t: type, V sg: gen_subst,
(apply_subst_gen sg ts) = (Some_gen t) ->
V s: substitution,
(apply_subst_gen (map_apply_subst_type sg s)
(apply_subst_tscheme s ts))
=(Some_gen (apply_subst_type s t))

8.1.2. Let e be the expression let T = e; in e
According to the (LET) typing rule, the hypothesis on e allows to deduce
that the two following sequents hold:

F'rFeir:mand T @z:(gentyper I') Feg: 7

We have to find a type 7{ such that the sequents below are satisfied:
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s'Fep: 7 and sST @z : (gen_type 71 s') ey : s7.

At a first glance, we are tempted to say that it is a trivial case following
from the induction assumptions on e; and ey with 71 = s7;. Not at all!
The difficulty comes from the relation between applying a substitution
¢ and making a generalization: more precisely, the two operations com-
mute only on condition that the substitution ¢ is not concerned with
the type variables quantified during the generalization. The following
lemma lays it down:

Lemma gen_in_subst_env:
V env: environment, V s: substitution, V t: type,
(are_disjoint (FV_subst s) (gen_vars t env)) —>
(apply_subst_tscheme s (gen_type t env))
=(gen_type (apply_subst_type s t) (apply_subst_env env s))

Let us take a counter-example to illustrate this pre-condition on s. Let
t be the type a — int with « not free in env, s is the substitution that
maps « to int. The generalization of t with respect to env is the type
scheme Va.a — int which remains unchanged when s is applied; the
other generalization results in the type scheme V.int — int.

As for all the propositions manipulating the operations gen_type,
this lemma is proved via an auxiliary lemma gen_in subst_env_aux
proved by induction on t. We write it below. We can think of it as an
invariant property verified at each step of the computation of (gen_type
t env).

Lemma gen_in_subst_env_aux:
V env: environment, V s: substitution, V t: type,
(are_disjoint (domain_of_subst s) (gen_vars t env)) ->
(are_disjoint (range_of_subst s) (gen_vars t env)) ->
V 1: (list stamp),
(gen_type_aux (apply_subst_type s t)
(apply_subst_env env s) 1)
= ((apply_subst_tscheme s (Fst (gen_type_aux t env 1))),
(Snd (gen_type_aux t env 1)))

Thus, the approach to solve the current goal, that is the let case in
the stability proof, consists in computing a substitution p that renames
the stamps in 71 that may interact with s (that is (gen_vars 71 I')) into
stamps not appearing in s and free for I'. We take as new stamps num-
bers from the greatest stamp found in (gen_vars 71 I'), (FV_subst s)
and (FV_env I'). The applicability condition is now satisfied and then
we can apply the lemma gen_in_subst_env with the substitution s and
the type p7i. The following equality (E) is verified:

s(gen_type pm1 pI') = (gen_type spri spl')

final.tex; 6/11/1998; 23:02; no v.; p.18



Certification of a type inference tool for ML: Damas-Milner within Coq 19

We can rewrite the expression pI" over the expression I' because of the
construction of p and the equality becomes:

s(gen_type p71 I') = (gen_type spr1 sI)

We prove then that the type schemes (gen type pm; I') and
(gen_type 11 I') are syntactically equal because of our canonical encod-
ing (see the lemma gen renaming in the next subsection. And then,
the previous equality (E) becomes:

s(gen_type 71 I') = (gen_type spm sI').

We can now easily conclude the initial proof, let us take 7 = sp7.
The first sequent sI' - e; : sp7m follows from the inductive assump-
tion relative to e; with the substitution sp and the second one
sI' @z : (gen-type spr; sT') Fex : s7 follows from the inductive
assumption relative to ez with the substitution s and the equality (E).

This part of the proof needs a lot of definitions and theorems, in
particular material on the renaming substitutions on which we focus in
the next subsection.

8.2. RENAMING SUBSTITUTIONS

A renaming substitution is a substitution with specific features:
— each variable in the domain is associated to another type variable
— the domain and the range of the substitution are disjoint
— two distinct variables in the domain have different images.

Although renaming substitutions are also substitutions, we have for
example specific operations for computing the domain and the range
and mapping a renaming substitution on a list. For that reason, we
prefer to define in Coq a specific type ren_subst for the renam-
ing substitutions, they are implemented as lists of pairs of stamps
(1ist stamp*stamp). To reuse operations on ordinary substitutions,
we have to coerce any renaming substitution into a substitution (done
by rename_to_subst).
Here is the Coq definition of the predicate is_rename_subst:

Definition is_rename_subst:= [rho: ren_subst]
(are_disjoint (domain_of_ren rho) (range_of_ren rho)) ->
(¥ x, y: stamp,
(in_list_stamp x (domain_of_ren rho)) = true ->
(in_list_stamp y (domain_of_ren rho)) = true ->
- X=y >
— (apply_ren_subst rho x)=(apply_ren_subst rho y))
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The following lemma determines under which circumstances the type
t and the type obtained by renaming its generalized variables give
identical type scheme under generalization.

Lemma gen_renaming: V env: environment,

YV rho: ren_subst, V t: type, V s: substitution,

(is_rename_subst rho) ->

(domain_of_ren rho)=(gen_vars t env) ->

(are_disjoint (range_of_ren rho) (FV_env env) ->

(are_disjoint (range_of_ren rho) (FV_subst s)) ->

(gen_type t env)
=(gen_type (apply_subst_type (rename_to_subst rho) t) env)

As previously, this lemma is proved via an auxiliary lemma proved by
induction on t. A consistent theory about disjoint lists and subsets is
a by-product of this part of the work.

8.3. COME BACK TO THE CORRECTNESS PROOF

The proof is done by induction on the expression e. In each case, we
first introduce and save in the context the constraints on variables
that derive from the fact that the computation W(T',e) does not fail.
This method can be compared with the predefined Inversion tactics
useful for inferring facts from inductive predicates. This kind of manual
inversion is performed by doing the elimination of the related inversion
lemma proved independently.

We exemplify here the inversion lemma for the case of the abstraction: if
W succeeds for Az.e with the type 7 and the substitution s, necessarily
7 is a functional type of the form o — 7/, where « is a new type variable
and W succeeds when appliedon e and I' @ z : V.a. It is written in Coq
as:

Lemma W_lambda_inversion: V n: nat, V st’: stamp,
V env: environment, V e: expr, V x: identifier,
V t: type, V s: substitution,
(W (Stamp n) env (Lambda x e))=(Some_infer t s st’) ->
3 t1l: type |
(W (Stamp (S n)) (add_env env x (Var_ts (Stamp n))) e)
=(Some_infer t1 s st’)
A t=(Arrow (apply_subst_type s (Var (Stamp n))) t1)

Our proof of this lemma consists in unrolling the computation of (W
(Stamp n) env (Lambda x e)) and eliminating every Cases expres-
sion. It requires several decision lemmas such as for example the trivial
one about the infer_check type:

Lemma infer_check_inv: V i: infer_check,
3 t: type, J s: substitution, J st: stamp |
{i=(Some_infer t s st)}V {i=Error_infer}
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As for the proof of the stability lemma, both identifier and let
cases are the most interesting ones in the correctness proof. We detail
them below.

8.3.1. Let e be the identifier 1

The present step leads to demonstrate that the type obtained by map-
ping each generic variable of a type scheme o to a fresh type variable
is a generic instance of ¢. This proposition is formulated in Coq below
and proved without any difficulty.

Lemma compute_gen_subst_create_generic_instance:
V ts: type_scheme, V st: stamp, V t: type,
(apply_subst_gen (Fst (compute_gen_subst st
(max_gen_vars ts)))
ts) = (Some_gen t) ->
(is_gen_instance t ts)

8.3.2. Let e be the expression let £ = e; in ey

The fact that W succeeds and yields 7 and s implies that W succeeds
also for e; and computes a type 71 and a substitution s;. It implies
also that W returns a type 7o and a substitution so for e with the
environment s1I" ® z : (gen_type 71 s1I'). Then the type 7 is equal to
79 and s is exactly s o s1. The two following sequents follow from
induction hypothesis on e; and es:

sil'Fer: 11 and so(s1I' @z : (gen-type 11 s1T')) Fex: m

Here we use the same techniques as in the let case in the proof of
the stability lemma. We introduce a renaming substitution p for the
generalized variables of 71 with respect to s1I', not concerned with the
free variables in s;I" and ss.

The application of the lemma typing_is_stable_under_substitution
(with sop as substitution) allows to write the following sequent:

sopsi' ey : sopmy
The theorem gen_renaming can be applied and then
(gen-type 71 s1I') = (gen-type p7y s1I')
By the lemma gen_in_subst_env, we can deduce that:
so(gen_type pm $1I') = (gen_type sop7i s281T)

Rewriting pSiT to s1I" gives:
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sos1' ey sopm1  and
s981 T @z : (gen_type sopt1 s251) Fea: 7o,

from which we establish that
sosiI'Flet x =€ iney:

holds, QED.

Remark: another possible way to verify this case might be to charac-
terize precisely the substitutions computed by W in order to state that
s9 has nothing to do with the generalized variables of 7 with respect
to s1I'. Thus the renaming substitution p would not be necessary and
we could use directly the lemma gen_in_subst_env with so71 and siI'.
However such a characterization cannot be expressed easily. Further-
more the stability of typing under substitutions is an intrinsic property
of the type system, consequently it is interesting to prove it in a for-
mal way, independently of the type inference tool. It is also required to
establish the subject reduction theorem, formally proved within Coq by
Dubois [5].

9. Completeness of the type inference algorithm
9.1. FORMULATION OF THE COMPLETENESS STATEMENT

Roughly speaking, the completeness of W means that if one can propose
a solution to the typing problem of the expression e with respect to the
environment I', then the type inference process will succeed and yield
the most general solution which implies the proposed solution. More
formally, the completeness statement establishes that if a type 7/ can
be associated to e with respect to I' where some free variables have
been instantiated (via a substitution ¢), then for a “correct” stamp
st, (W st T' e) succeeds and computes a type 7 and a substitution s,
furthermore 7’ and ¢ can be deduced from 7 and s. We refine this last
property as follows: 7/ is an instance of 7 and if s’ is the substitution
such that s’ 7 = 7/ then applying ¢ means to apply s and then s’. Of
course the equality between ¢ and s’ o s makes sense only for stamps
appearing in the derivation of ¢I' - e: 7'.

Upwards, we put a pre-condition on st which was supposed to be
“correct”, the stamp st is expected here to be a a new type variable,
i.e. not used elsewhere (more precisely in the free type variables of T")
and the same for the stamps greater than st. This is expressed by the
predicate new_tv_env that we define and study in the subsection 9.2.

Let us write now the completeness lemma in Coq:
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Lemma completeness: V e: expr, V env: environment,
Y t’: type, V phi: substitution, V st: stamp,
(type_of (apply_subst_env env phi) e t’) ->
(new_tv_env env st) ->
ds, t, st?, s’ |
(W st env e) = (Some_infer t s st’)) A
’=(apply_subst_type s’ t) A
(Y x : stamp, x < st ->
(apply_substitution phi x) =
(apply_substitution (compose_subst s s’) x))
At this point of the certification, we need to define and manipulate a
relation over type schemes that expresses that a type scheme is more
general than another. We introduce it in the subsection 9.3 before com-

ing back to the proof of the completeness of W.
9.2. NEW TYPE VARIABLES

The notion of new type variable is defined relatively to a type, a type
scheme, an environment or a substitution. Then a type variable st,
implemented in our context as a natural number, is considered as a new
type variable for a given structure r if st is greater than any free vari-
able occurring in r. This view imposes itself because W increments the
counter argument every time a new type variable is needed. Nazareth
and Nipkow [13] characterize the notion of new type variables in the
same way.

For example the inductive predicate new_tv_tscheme implements
this definition in the case of type schemes. Similar predicates are defined
also for types new_tv_type), environments (new_tv_env) and substitu-
tions (new_tv_subst).

Inductive new_tv_tscheme: type_scheme -> stamp -> Prop:=
new_tv_ts_Int: V st: stamp, (new_tv_tscheme Int_ts st)
| new_tv_ts_Var: V st,st’: stamp, st < st’ ->
(new_tv_tscheme (Var_ts st) st?’)
| new_tv_ts_Gen: V st,st’: stamp
(new_tv_tscheme (Gen_var st) st’)
| new_tv_ts_Arrow: V tsl, ts2 : type_scheme, V st: stamp,
(new_tv_tscheme tsl st) -> (new_tv_tscheme ts2 st) ->
(new_tv_tscheme (Arrow_ts tsl ts2) st).

Besides these definitions, we establish some technical lemmas, for exam-
ple new_tv_compose_subst:

Lemma new_tv_compose_subst:
V s1,s2: substitution, V st: stamp,
(new_tv_subst s1 st) ->
(new_tv_subst s2 st) ->
(new_tv_subst (compose_subst sl s2) st)
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Some theorems as for example new_tv_W and stamp_increases_in W
characterize the behaviour of W with respect to new type variables. The
lemma new_tv_W emphasizes that the stamp computed by W is a new
type variable for the computed type and substitution (according to the
validity of the input stamp). Both assertions are proved by induction
on the typed expression. They require a lot of supplementary properties
(around 500 lines).

Lemma stamp_increases_in_W: V e: expr, V env: environment,
VY st,st’: stamp, V t: type, V s: substitution,
(W st env e) = (Some_infer t s st’) -> st < st’

Lemma new_tv_W: V e: expr, V env: environment,

VY st,st’: stamp, V t: type, V s: substitution,

(new_tv_env env st) ->

(W st env e) = (Some_infer t s st’) ->
(new_tv_type t st’) A (new_tv_subst s st’)

9.3. THE more general RELATION OVER TYPE SCHEMES

A type scheme oy is said more general that a type scheme o9 and
written o, > oy or (more_general o; o2) in Coq, if and only if every
generic type instance of o9 is also a generic type instance of o;. For
example, Vaf.a — 3 is more general than Va.a — a.

The translation is straightforward in Coq:

Definition more_general
: type_scheme -> type_scheme -> Prop :=
[tsl, ts2 : type_scheme]
(VW t : type,
(is_gen_instance t ts2) -> (is_gen_instance t tsl))

This definition is extended classically upon the environments: an envi-
ronment I'y is said more general that the environment 'y (I'; > I'9) if
and only if I'; and T’y are relative to the same identifiers 1,z ...z,
and Vi € [l,n], Pl(l‘z) - FQ(.’L‘Z)

The definition we have encoded in Coq is more restrictive than the pre-
vious one, however it is sufficient in our context: we enforce that the
identifiers z1, x5 . ..z, occur at the same position in I'y and Ts.

Inductive more_general_env:
environment -> environment -> Prop:=
more_general _nil: (more_general_env nil nil)
| more_general_cons: V envl, env2: environment,
V i: identifier, V tsl, ts2 : type_scheme),
(more_general_env envl env2) —>
(more_general tsl ts2) ->
(more_general_env (cons (i,tsl) envl)
(cons (i,ts2) env2))
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The proof of the completeness of W uses still another property on the
typing rules: if we can prove that the type of the expression e is 7 under
the environment I'y, then we can also prove it under a more general
environment I';.

Lemma typing_in_a_more_general_env:
V e: expr, V env2, envl: environment, V t: type,
(more_general_env envl env2) ->
(type_of env2 e t) —>
(type_of envl e t)

This lemma, is easily proved by induction on e. The let case relies on
the following property:

Lemma more_general_gen_type:
VY env2, envl: environment, V t: type,
(more_general_env envl env2) ->

(more_general (gen_type t envl) (gen_type t env2))

It is interesting to have a look on the proof of this last theorem because
this kind of proof is repeated several times. Thus for a type instance
7 of (gen_type t env2), let us call s, = [t1;...;t,] the corresponding
generic substitution, we build a generic substitution s'g that transforms
(gen_type t envl) into 7 as follows: let a; ..., be the generalized
variables in t with respect to env2 (discovered in this order). We com-
pute the substitution ¢ = {(a1,%1) ... (an,ty)} (by the product_list
function) that is equivalent to s, (in the sense that s, (gen_type t
env2) = ¢ t) then the generic substitution sy, is [#(51); - . . ; $(Bk)] where
01 - .. B are the generalized type variables of t with respect to envl.
We have to check that s; (gen_type t envl) = 7. In fact, the proved
property has a more complex and less natural formulation because of
the intermediate function gen_type_aux.

9.4. PROOF OF THE COMPLETENESS

The proof we have mechanized follows the plan detailed in [11]. It is
done by an induction on the expression e. The verification of every
induction case can be sketched as follows: from the hypothesis we
deduce that the computation of W succeeds and we exhibit its results,
essentially a substitution s and a type 7. This first step may be
heavy, particularly for the application and the Rec construct (essential-
ly because we have to take into account most general unifiers). Then we
have to imagine the substitution s’ that allows to recreate the proposed
solution from s and 7 and then verify that it fits. In general, this phase
requires an important computational development.
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As for the correctness part, the difficulty comes from let, more pre-
cisely from the generalization. It is again the only case where a direct
use of the inductive hypothesis is forbidden. We detail this case below
in order to show exactly where the order > is needed.

From the hypothesis ¢I" F let z = e; in ey : 7/, we deduce the sequents

¢T' ke :7] and ¢ @z : (gen_type 7| ¢L) F ey : 7.
By applying the inductive hypothesis relative to e, it comes:

We I st =(m,s1,st1) and
3s), sim = 7] and ¢TI = & (s1T).

The success of W for the let expression requires the successful com-
putation of (W (s1I' @ z : (gen_type 71 s1I')) ey st1). To obtain that
result from the inductive hypothesis on ey, we need to show for example
that the sequent

si(siT @z : (gen_type 71 1)) F ez : 7 (H)

holds. At this point of the demonstration, the solution comes from the
fundamental relationship between applying a substitution and gener-
alizing a type (we have already shown in this paper that these two
operations do not commute): generalizing a type T and then applying
to it a substitution ¢ produces a type scheme more general than doing
this in the reverse order.

¢(gen_type 7 I') = (gen_type ¢7 ¢I').

The proof of this property follows exactly the same scheme than for
the lemma more_general_gen_type, the generic substitution to find is
just a little bit more complex!

Thus, in the present case, it follows that

si(gen_type 71 s1I') >~ (gen_type s|71 s)(s1)) rewritten as
st (gen_type 7 s1T') = (gen_type 7{ ¢I).
We deduce
' @z : s\ (gen_type 71 $1T') > ¢I' @z : (gen_type 71 ¢I).

The lemma typing_in_a more_general_env applies to this last rela-
tion and the sequent ¢I' @ z : (gen_type 7{ ¢I') - ex : 7' to assert the
typing sequent (H).

That’s it. We reach the end of the proof and the end of the certifi-
cation of W!
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10. A first step to reuse

In this section we address the certification of the type inference tool
when references are incorporated in the language. Several solutions
to integrate imperative features with Milner polymorphism have been
devised, we retain in our context the simpler one which becomes in fact
the more usual one now in the ML community, proposed by Wright [18].
It consists in limiting polymorphism to values, i.e. to let-expressions
where the binding is a syntactic value (for us, an integer constant, an
identifier or an abstraction, recursive or not).

The main interest of this variant in our context is the abstract syntax
for this extended language and its encoding in Coq. We have chosen to
fix the value polymorphism in the syntax itself. For example, an expres-
sion like let z = e1 e2 in eg is forbidden, nevertheless it is equivalent
here to (Az.e3)(e; e2) dynamically and statically. Then, instead of hav-
ing one syntactical sort and then one inductive type expr in Coq, we
introduce two sorts: one for syntactic values Left Let_expr and expr
for all the A-expressions. Of course, any syntactic expression is also a
A-expression, then the sort Left Let_expr is a subsort of the other one.

The let construct is described as follows: let = = Left_Let_expr in
eTpr.

We propose to encode this new abstract syntax within Coq via mutu-
al inductive definitions:

Mutual Inductive Left_Let_expr: Set :=
Const_int: nat -> Left_Let_expr
| Variable: identifier -> Left_Let_expr
| Lambda: identifier -> expr -> Left_Let_expr
| Rec: identifier -> identifier -> expr -> Left_Let_expr
with expr : Set :=
Coerce : Left_Let_expr -> expr
| Apply: expr -> expr -> expr
| Let_in: identifier -> Left_Let_expr -> expr -> expr.
| Ref: expr -> expr
| Deref: expr -> expr
| Assign: expr -> expr -> expr

The terms of the language involve the new constructors Ref, Deref
and Assign which are associated to respectively the allocation of a
reference cell, the extraction of the cell’'s contents and the assignment
of a value to a reference cell. The constructor Coerce is introduced to
include elements of the inductive set Left _Let_expr.

The type system and the inference algorithm need to be updated and
extended according to this new syntax. However there is no change for
the old expressions. We detail below the typing rule for the assignment,
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we write 7 ref the type of a cell whose contents has the type 7:

F'kFei:1ref, T'key:7

'k (Assign ej e): 7T

The certification of W replays the same proof, we only have to take
into account the expressions relative to references but it raises no dif-
ficulty at all, the associated goals follow usually from the inductive
hypothesis.

11. Comparison with Naraschewski and Nipkow’s proof

In this section we briefly compare our approach to the one taken
by Naraschewski and Nipkow [12]. Their specification of the ML lan-
guage, the type system and the inference algorithm is similar to ours
(except for the constants and the Rec expressions they do not take into
account). However we notice two significant differences: the encoding
of the substitution and the generalization function. They implement
a substitution as a function from variables to types. Amazingly their
proof requires no restriction to finite functions. And their generalization
function is the simpler and the more elegant one, without any partic-
ular encoding. This is essentially what we proposed at the beginning
of our experience reported in [6]. The reason why they can retain this
solution (and consequently the reason why we choose another one) can
be found in their proof of the stability statement, in the let case: at
the point of the demonstration where one needs to compare two type
schemes identical up to alpha-conversion, they use the > order and the
associated lemmas, e.g. typing_in_a more_general_env.

Last of all, we mention that the correctness property proved by
Naraschewski and Nipkow requires that the stamp given as a parame-
ter to W is a new type variable with respect to the considered environ-
ment in the typing sequent. Our certification does not require such a
hypothesis: in that sense, our correctness property is very close to the
one found in the informal proofs.

We can say that both proofs use more or less the same set of lemmas.

12. Conclusion

We can summarize the work described in this paper as follows:

— we have formalized within the Coq proof assistant a specification
of the polymorphic type discipline of ML as described in [4] [3],
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— we have implemented in a functional way the type inference algo-
rithm W within Coq,

— we have proved that W is correct and complete with respect to
the typing rules of the specification.

An important by-product affects the notion of substitution. We have
isolated and specified three kinds of substitutions: the (common) sub-
stitution that binds free variables to terms, the (renaming) substitution
that renames some variables and the (generic) substitution that binds
the bound variables of a term.

We have demonstrated that the certification of W is tractable within
the Coq system. It is a heavy proof requiring to handle sophisticat-
ed theories (substitutions, renaming, unification, fresh variables and so
on). The specification of the problem and the proofs count 7371 lines
detailed, more precisely 91 definitions and 322 lemmas, and also a very
large piece of work with much backtracking.

The certification of the type inference tool needed to be familiar with
the very details of the paper proof and furthermore to go beyond it,
for example the part about the management of the new type variables
is always ignored in a mathematical proof but it cannot be ignored in
any formal proof.
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