TSP Dantzig-Wolfe Decomposition - Column generation with 1-trees
Correction

X is the set of 1-Trees (contained in the complete graph). The complete graph K, has n vertices
numbered 1,...,n. Edges of K, are denoted by E. Each edge e of the complete graph has a cost c..

A 1-tree is a partial graph of K, such that vertices 2, 3,..., n are covered by a tree and vertex 1 is
connected by 2 edges to two vertices in 2, 3,..., n. The degree of vertex 1 is equal to 2. See the example
below in Ks.
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Figure 1: exemple de 1-arbre & 5 sommets

Question 1.
We search for a 1-Tree of degree 2 on every vertices, and of minimal cost.

A 1-tree with degree 2 on each vertex is a cycle that goes through each vertex. So, we search an
hamiltonian cycle of minimal cost.

We can modelize this problem by the following program (M) in 0-1 variables :

|X]
minz: c(xi)A
1 1

i=

( ?ill di(x)A; =2 j=2,..,n(constaints degree for vertex j)

Subject to x|
YisgAi=1 (convexity)

\ LEi=1,..,X]|
with
c(x) cost of 1-Tree y
d;(x) degree of vertexjin 1-Tree y

The convexity constraint is to select exactly one 1-tree



Question 2.
Now, we consider linear program (ML) where the 0-1 variables A; are relaxed to 4; = 0.

Kjis the dual variable related to the constraint degree of vertex j=2,...,n and 1 dual variable related to
convexity constraint.

Now, we concentre on the subproblem. The aim of the subproblem is to find a variable of minimum
reduced cost.

In order to simplify the presentation, the best is to introduce virtually a constraint degree on vertex 1
with a dual variable y; = 0.

In order to describe 1-tree y; let us introduce the following notations :
a;. =1if edgeeisinl—tree y;and a;, = 0 otherwise

The cost of variable A; is c(¥;) = Xeer CeQie

6(j) is the set of edges e starting from j: 6(j) = {e € E:j € e}

The degree of vertex j in 1-tree x; is d;(x;) = Xees(j) Gie

Reduced cost of A; is c(x;) — X=y 1jdj (X)) — 1 = Yeer Celie — Lim1lj Tees(j) Fe — 1 =
Ze=(j,j’)EE(Ce —H = #j’)ai,e -1

! —
e=(jj"H) ~
Ce — Mj — pjr. This is done by solving minimum cost tree (with cost c’) on vertices 2, 3,..., n and once

So solving the subproblem is equivalent to search a 1-tree of minimum cost with edge cost ¢

this is done, by adding the 2 minimum cost edges (with cost c’) starting from vertex 1. The minimum
cost tree can be solved by polynomial time Kruskal algorithm.

Question 3

We consider Ks. The edge costs are the following :

Costs Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5
Vertex 1 . 7 2 1 5
Vertex 2 . 3 6 8
Vertex 3 . 4 2
Vertex 4 9

We consider the following 1-trees
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Figure 2: 1-arbre numéro 1 Figure 3: l-arbre numéro 2 Figure 4: 1-arbre numéro 3
Question 3.1

We write the problem (ML) restricted to the three 1-trees given above.
(MLR)

min214; + 182, + 2245

( 241+ 21, + 213 =2 (v2)
2{ + 34, + 143 =2 (v3)
34+ 14, + 243 =2 (v4)
Subjectto{ 1A + 24, + 343 =2 (v5)

M+, + 23 =1 (convexity)
\ A, A5, A3 20

Question 3.2

Here, we give the primal and dual solutions of the previous (MLR), and we want to find a new column
if there is, to introduce in (MLR).

Primal solution 4; = 4, = 13 = % Primal objective=20+1/3

Dual solution py = 2,43 = 0,y = 2 +§,,u5 =2 —% , N = 8+§

Dual Objective=12+8+1/3=20+1/3

We can check the dual solution : reduced costs of 1, 4,, 13 must be nonnegative.

For Ay :21 —2uy, — 2u3—3uy — s — 1 =21-4-0-6-1-2+1/3-8-1/3=21-21=0
ForA,:18 — 2u, — 3u3—ps — 25 —n=18-4-0-2-1/3 —4+2/3-8-1/3=18-18=0
For Az : 22 — 2, — p3—2iy — 3s — N =22 -4-0-4-2/3 —6+1-8-1/3=22-22=0

So, the primal and dual solutions are optimal.



Solving subproblem.

Data : costs and dual variables

u Vertexl Vertex2 =2 Vertex3=0 Vertex4=2+1/3 | Vert.5=2-1/3
Vertexl 7 2 1 5
Vertex2 =2 3 6 8
Vertxx3 =0 4 2
Vertex4=2+1/3 9

Then reduced costs
u Vertexl Vertex2 =2 Vertex3=0 Vertex4=2+1/3 | Vert.5=2-1/3
Vertex1 7-2 2 1-2-1/3 5-2+1/3
Vertex2 =2 3-2 6-2-2-1/3 8-2-2+1/3
Vertex3=0 4-2-1/3 2-2+1/3
Vertex4=2+1/3 9-2-1/3-2+1/3
u Vertex1 Vertex2 = 2 Vertex3=0 Vertex4=2+1/3 | Vert.5=2-1/3
Vertex1 5 2 -1-1/3 3+1/3
Vertex2 =2 1 2-1/3 4+1/3
Vertex3 =0 2-1/3 1/3
Vertex4=2+1/3 5

We compute a minimum spanning tree on vertices 2, 3 ,4, 5

Edge (3,5) reduced cost 1/3,

Edge (2,3) reduced cost 1

Edege (2,4) reduced cost 2-1/3

Then we add the two edges of minimum reduced costs starting from vertex 1

Edges (1,4) reduced cost -1-1/3

Edge (1,3) reduced cost 2,

Reduced cost of this 1-tree is : 4-1/3 plus -8-1/3 (for the convexity constraint) which is —4 _§ <0

The cost of this 1-tree is 14. Degrees for vertices from 2 to 5 are 2, 3, 2, 1. We can check the reduced

cost of this 1-tree as if this column were in (MLR) :

reduced cost is 14 — 2u, — 3uz—2u, — lus —n = 14—4—0—4—§—Z+§—8—§=4———

1 2 .
8 — 3= —4 — 3 The result is correct.

1
3

A lower bound of (ML) is the value of (MLR) plus the reduced cost = 20+1/3 —4 -2/3 =16 -1/3.

We denote by A, the variable of the new 1-tree and add this variable to (MLR)




Question 3.3
The new (MLR) is the following :
(MLR)

min212; + 182, + 2225 + 1444

20 + 22, + 223+ 20, =2 (v2)
20 + 30, + 143+ 31, =2 (v3)
34+ 1A, + 243+ 21, =2 (v4)
Subjectto{ 14; + 24, +31;+14, =2 (v5)

M+, + 23+, =1 (convexity)
All AZ; A3’ A4 2 0

Here, we give the primal and dual solutions of this last (MLR), and we want to find a new column if
there is, to introduce in (MLR).

Primal solutionA; =4, =0,1; =1, = %; Primal objective=18

Dual solution yty = 3,u3 = 0,us =0, us =4 ,n = 4; Dual objective=14+4=18

We can check the dual solution i.e. reduced costs of 1;, 45, A3, 1, must be nonnegative.
For Ay :21 —2uy; — 2pu3—3uy — s —n=21-6-0-0 -4-4=21-14> 0

ForA, :18 — 2u, — 3u3—p4 — 25 —n=18-6-0-0-8-4=18-18=0

ForAz :22 — 2u, — fiz—2Uy — 3s —1=22-6-0-0 -12-4=22-22=0

ForA, :14 — 2uy, — 3u3—2p4 — s —n=14-6-0-0 -4-4=14-14=0

So, the primal and dual solutions are optimal.

Solving the subproblem

Data : costs and dual variables

u Vertexl Vertex2 =3 Vertex3=0 Vertex4 =0 Vertex5 = 4
Vertex1 7 2 1 5
Vertex2 =3 3 6 8
Vertxx3 =0 4 2
Vertex4 =0 9




Reduced costs

u Vertexl Vertex2 =3 Vertex3 =0 Vertex4 =0 Vertex5 =4
Vertexl . 7-3 2 1 5-4
Vertex2 =3 . 3-3 6-3 8-3-4
Vertxx3 =0 . 4 2-4
Vertex4 =0 . 9-4

u Vertexl Vertex2 =3 Vertex3=0 Vertex4 =0 Vertex5 =4
Vertexl . 4 2 1 1

Vertex2 = 3 . 0 3 1
Vertxx3=0 . 4 -2

Vertex4 =0 . 5

We compute a minimum spanning tree on vertices 2, 3, 4, 5

Edge (3,5) reduded cost= -2

Edge (2,3) reduced cost=0

— Edge (2,5) reduced cost=1, is not introduced because it makes a cycle

Edge (2,4) reduced cost=3

Then we add the two edges of minimum reduced costs starting from vertex 1

Edge (1,4) reduced cost=1

Edge (1,5) reduced cost=1

The reduced cost of this 1-tree is : 3 plus -4 (for the convexity constraint) . The total is -1

We note that this 1-tree is a cycle because the degree of each vertex is equal to 2. The cost of this 1-
tree is 17.

A lower bound of (ML) is the value of (MLR) plus the reduced cost =18 — 1 =17.

So, the cycle is reaching this lower bound, so it is optimal. We can stop the algorithm.



