
1 
 

TSP Dantzig-Wolfe Decomposition - Column generation with 1-trees 

Correction 

X is the set of 1-Trees (contained in the complete graph). The complete graph Kn has n vertices 

numbered 1,…,n. Edges of Kn are denoted by E. Each edge e of the complete graph has a cost ce.  

A 1-tree is a partial graph of Kn such that vertices 2, 3,…, n are covered by a tree and vertex 1 is 

connected by 2 edges to two vertices in 2, 3,…, n. The degree of vertex 1 is equal to 2. See the example 

below in K5. 

 

 

 

Question 1. 

We search for a 1-Tree of degree 2 on every vertices, and of minimal cost. 

A 1-tree with degree 2 on each vertex is a cycle that goes through each vertex. So, we search an 

hamiltonian cycle of minimal cost. 

 

We can modelize this problem by the following program (M) in 0-1 variables : 

 

min
𝜆
∑ 𝑐(𝜒𝑖)𝜆𝑖

|𝑋|

𝑖=1
 

Subject to  

{
 
 

 
 ∑ 𝑑𝑗(𝜒𝑖)𝜆𝑖

|𝑋|
𝑖=1 = 2   𝑗 = 2,… , 𝑛 (constaints degree for vertex j)

∑ 𝜆𝑖
|𝑋|
𝑖=1 = 1          (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦)

𝜆𝑖 ∈ {0,1} 𝑖 = 1,… , |𝑋|

 

with 

𝑐(𝜒) cost of 1-Tree 𝜒 

𝑑𝑗(𝜒) degree of vertex j in 1-Tree 𝜒 

The convexity constraint is to select exactly one 1-tree 
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Question 2. 

Now, we consider linear program (ML) where the 0-1 variables 𝜆𝑖 are relaxed to 𝜆𝑖 ≥ 0. 

𝜇𝑗  is the dual variable related to the constraint degree of vertex j=2,…,n and 𝜂 dual variable related to 

convexity constraint. 

 

Now, we concentre on the subproblem. The aim of the subproblem is to find a variable of minimum 

reduced cost. 

In order to simplify the presentation, the best is to introduce virtually a constraint degree on vertex 1 

with a dual variable 𝜇1 = 0. 

In order to describe 1-tree 𝜒𝑖  let us introduce the following notations : 

𝑎𝑖,𝑒 = 1 𝑖𝑓 𝑒𝑑𝑔𝑒 𝑒 𝑖𝑠 𝑖𝑛 1 − 𝑡𝑟𝑒𝑒 𝜒𝑖  and 𝑎𝑖,𝑒 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The cost of variable 𝜆𝑖 is 𝑐(𝜒𝑖) = ∑ 𝑐𝑒𝑎𝑖,𝑒𝑒∈𝐸    

𝛿(𝑗) is the set of edges e starting from j : 𝛿(𝑗) = {𝑒 ∈ 𝐸: 𝑗 ∈ 𝑒} 

The degree of vertex j in 1-tree 𝜒𝑖  is 𝑑𝑗(𝜒𝑖) = ∑ 𝑎𝑖,𝑒𝑒∈𝛿(𝑗)
 

 

Reduced cost of 𝜆𝑖 is 𝑐(𝜒𝑖) − ∑ 𝜇𝑗𝑑𝑗(𝜒𝑖)
𝑛
𝑗=1 − 𝜂 = ∑ 𝑐𝑒𝑎𝑖,𝑒𝑒∈𝐸 − ∑ 𝜇𝑗 ∑ 𝑎𝑖,𝑒𝑒∈𝛿(𝑗)

 

𝑛
𝑗=1 − 𝜂 =

∑ (𝑐𝑒 − 𝜇𝑗 − 𝜇𝑗′)𝑎𝑖,𝑒𝑒=(𝑗,𝑗′)∈𝐸 − 𝜂 

 

So solving the subproblem is equivalent to search a 1-tree of minimum cost with edge cost 𝑐𝑒=(𝑗,𝑗′)
′ =

𝑐𝑒 − 𝜇𝑗 − 𝜇𝑗′ . This is done by solving minimum cost tree (with cost c’) on vertices 2, 3,…, n and once 

this is done, by adding the 2 minimum cost edges (with cost c’) starting from vertex 1. The minimum 

cost tree can be solved by polynomial time Kruskal algorithm. 

 

Question 3 

We consider K5. The edge costs are the following : 

Costs Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 

Vertex 1 . 7 2 1 5 

Vertex 2  . 3 6 8 

Vertex 3   . 4 2 

Vertex 4    . 9 

 

We consider the following 1-trees 
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Question 3.1 

We write the problem (ML) restricted to the three 1-trees given above. 

(MLR) 

min
𝜆
21𝜆1 + 18𝜆2 + 22𝜆3 

Subject to 

{
 
 
 

 
 
 

2𝜆1 + 2𝜆2 + 2𝜆3 = 2   (𝑣2)
2𝜆1 + 3𝜆2 + 1𝜆3 = 2   (𝑣3)
3𝜆1 + 1𝜆2 + 2𝜆3 = 2   (𝑣4)
1𝜆1 + 2𝜆2 + 3𝜆3 = 2   (𝑣5)

𝜆1 + 𝜆2 + 𝜆3 = 1   (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦)

𝜆1, 𝜆2, 𝜆3 ≥ 0

 

 

Question 3.2 

Here, we give the primal and dual solutions of the previous (MLR), and we want to find a new column 

if there is, to introduce in (MLR). 

Primal solution 𝜆1 = 𝜆2 = 𝜆3 =
1

3
  Primal objective=20+1/3 

Dual solution 𝜇2 = 2, 𝜇3 = 0, 𝜇4 = 2 +
1

3
 , 𝜇5 = 2 −

1

3
   , 𝜂 = 8 +

1

3
    

Dual Objective=12+8+1/3=20+1/3 

We can check the dual solution : reduced costs of 𝜆1, 𝜆2, 𝜆3 must be nonnegative. 

For 𝜆1 : 21 − 2𝜇2 − 2𝜇3−3𝜇4 − 𝜇5 − 𝜂 = 21- 4 -0 -6-1 –2+1/3 - 8-1/3=21 – 21 = 0 

For 𝜆2 : 18 − 2𝜇2 − 3𝜇3−𝜇4 − 2𝜇5 − 𝜂 = 18 - 4 -0 -2 -1/3  –4+2/3 - 8-1/3=18 – 18 = 0 

For 𝜆3 : 22 − 2𝜇2 − 𝜇3−2𝜇4 − 3𝜇5 − 𝜂 = 22 - 4 -0 -4 -2/3  –6+1 - 8-1/3 = 22 – 22 = 0 

So, the primal and dual solutions are optimal. 

 

 

 



4 
 

Solving subproblem. 

Data : costs and dual variables 

 Vertex1 Vertex2 = 2 Vertex3 = 0 Vertex4=2+1/3 Vert.5=2-1/3 

Vertex1 . 7 2 1 5 

Vertex2 = 2  . 3 6 8 

Vertxx3 = 0   . 4 2 

Vertex4=2+1/3    . 9 

 

Then reduced costs 

 Vertex1 Vertex2 = 2 Vertex3 = 0 Vertex4=2+1/3 Vert.5=2-1/3 

Vertex1 . 7-2 2 1-2-1/3 5-2+1/3 

Vertex2 = 2  . 3-2 6-2-2-1/3 8-2-2+1/3 

Vertex3 = 0   . 4-2-1/3 2-2+1/3 

Vertex4=2+1/3    . 9-2-1/3-2+1/3 

 

 Vertex1 Vertex2 = 2 Vertex3 = 0 Vertex4=2+1/3 Vert.5=2-1/3 

Vertex1 . 5 2 -1-1/3 3+1/3 

Vertex2 = 2  . 1 2-1/3 4+1/3 

Vertex3 = 0   . 2-1/3 1/3 

Vertex4=2+1/3    . 5 

 

We compute a minimum spanning tree on vertices 2, 3 ,4, 5 

Edge  (3,5) reduced cost 1/3,  

Edge (2,3) reduced cost 1 

Edege (2,4) reduced cost 2-1/3 

Then we add the two edges of minimum reduced costs starting from vertex 1  

Edges  (1,4) reduced cost -1-1/3 

Edge (1,3) reduced cost 2,  

Reduced cost of this 1-tree is : 4-1/3 plus -8-1/3 (for the convexity constraint) which is −4 −
2

3
< 0 

The cost of this 1-tree is 14. Degrees for vertices from 2 to 5 are 2, 3, 2, 1. We can check the reduced 

cost of this 1-tree as if this column were in (MLR) :  

reduced cost is 14 − 2𝜇2 − 3𝜇3−2𝜇4 − 1𝜇5 − 𝜂 = 14 − 4 − 0 − 4 −
2

3
− 2 +

1

3
− 8 −

1

3
= 4 −

1

3
−

8 −
1

3
= −4 −

2

3
 . The result is correct. 

 

A lower bound of (ML) is the value of (MLR) plus the reduced cost = 20+1/3 – 4 -2/3 =16 -1/3. 

 

We denote by 𝜆4 the variable of the new 1-tree and add this variable to (MLR) 
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Question 3.3 

The new (MLR) is the following : 

(MLR) 

min
𝜆
21𝜆1 + 18𝜆2 + 22𝜆3 + 14𝜆4 

Subject to 

{
 
 
 

 
 
 
2𝜆1 + 2𝜆2 + 2𝜆3 + 2𝜆4 = 2   (𝑣2)
2𝜆1 + 3𝜆2 + 1𝜆3 + 3𝜆4 = 2   (𝑣3)
3𝜆1 + 1𝜆2 + 2𝜆3 + 2𝜆4 = 2   (𝑣4)
1𝜆1 + 2𝜆2 + 3𝜆3 + 1𝜆4 = 2   (𝑣5)

𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1   (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦)

𝜆1, 𝜆2, 𝜆3, 𝜆4 ≥ 0

 

 

 

Here, we give the primal and dual solutions of this last (MLR), and we want to find a new column if 

there is, to introduce in (MLR). 

 

Primal solution 𝜆1 = 𝜆2 = 0, 𝜆3 = 𝜆4 =
1

2
 ; Primal objective=18 

Dual solution 𝜇2 = 3, 𝜇3 = 0, 𝜇4 = 0 , 𝜇5 = 4   , 𝜂 = 4 ; Dual objective=14+4=18 

We can check the dual solution i.e. reduced costs of 𝜆1, 𝜆2, 𝜆3, 𝜆4 must be nonnegative. 

For 𝜆1 : 21 − 2𝜇2 − 2𝜇3−3𝜇4 − 𝜇5 − 𝜂 = 21- 6 -0 -0  -4 -4=21 – 14 ≥ 0  

For 𝜆2 : 18 − 2𝜇2 − 3𝜇3−𝜇4 − 2𝜇5 − 𝜂 = 18 - 6 -0 -0 -8 -4=18 – 18 = 0 

For 𝜆3 : 22 − 2𝜇2 − 𝜇3−2𝜇4 − 3𝜇5 − 𝜂 = 22 - 6 -0 -0  -12 -4 = 22 – 22 = 0 

For 𝜆4 : 14 − 2𝜇2 − 3𝜇3−2𝜇4 − 𝜇5 − 𝜂 = 14 - 6 -0 -0  -4 -4 = 14 – 14 = 0 

So, the primal and dual solutions are optimal. 

 

 

Solving the subproblem 

Data : costs and dual variables 

 Vertex1 Vertex2 = 3 Vertex3 = 0 Vertex4 = 0 Vertex5 = 4 

Vertex1 . 7 2 1 5 

Vertex2 = 3  . 3 6 8 

Vertxx3 = 0   . 4 2 

Vertex4 = 0    . 9 
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Reduced costs 

 Vertex1 Vertex2 = 3 Vertex3 = 0 Vertex4 = 0 Vertex5 = 4 

Vertex1 . 7-3 2 1 5-4 

Vertex2 = 3  . 3-3 6-3 8-3-4 

Vertxx3 = 0   . 4 2-4 

Vertex4 = 0    . 9-4 

 

 Vertex1 Vertex2 = 3 Vertex3 = 0 Vertex4 = 0 Vertex5 = 4 

Vertex1 . 4 2 1 1 

Vertex2 = 3  . 0 3 1 

Vertxx3 = 0   . 4 -2 

Vertex4 = 0    . 5 

 

We compute a minimum spanning tree on vertices 2, 3, 4, 5 

Edge (3,5) reduded cost= -2 

Edge (2,3) reduced cost=0 

 Edge (2,5) reduced cost=1, is not introduced because it makes a cycle 

Edge (2,4) reduced cost=3 

Then we add the two edges of minimum reduced costs starting from vertex 1  

Edge (1,4) reduced cost=1 

Edge (1,5) reduced cost=1  

The reduced cost of this 1-tree is : 3 plus -4 (for the convexity constraint) . The total is -1  

We note that this 1-tree is a cycle because the degree of each vertex is equal to 2. The cost of this 1-

tree is 17. 

 

A lower bound of (ML) is the value of (MLR) plus the reduced cost = 18 – 1 =17. 

So, the cycle is reaching this lower bound, so it is optimal. We can stop the algorithm. 


