Optimisation

ESP (Ecole Supérieure Polytechnique) de Dakar

Alain Faye

3 – Programmation linéaire

Résolution d'un PL

- 2 variables : résolution graphique
- n≥2 variables : algorithme du simplexe
- Chercher une base réalisable initiale

Un peu d'analyse

développement d'une fonction f autour d'un point x⁽⁰⁾

$$f(x) = f(x^{(0)}) + \nabla f(x^{(0)}) \bullet (x - x^{(0)}) + \cdots$$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial_f}{\partial x_1} \\ \vdots \\ \frac{\partial_f}{\partial x_n} \end{pmatrix} \text{ gradient de f}$$

Cas f linéaire:

$$f(x) = cx = c_1 x_1 + \dots + c_n x_n$$

$$\nabla f(x) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

$$cx = cx^{(0)} + c(x - x^{(0)})$$

Direction de déplacement

On considère f linéaire : f(x) = cx

A partir de $x^{(0)}$ on se déplace dans une direction $d: x=x^{(0)}+\alpha d \alpha \ge 0$ $c(x^{(0)}+\alpha d)=cx^{(0)}+\alpha c \bullet d$

- Si d = c= gradient de f $c\big(x^{(0)}+\alpha c\big)=cx^{(0)}+\alpha c \bullet c=cx^{(0)}+\alpha\|c\|^2$ La valeur de la fonction augmente quand on s'éloigne de $\mathbf{x}^{(0)}$
- Si d = -c = opposé du gradient de f $c\big(x^{(0)} \alpha c\big) = cx^{(0)} \alpha c \bullet c = cx^{(0)} \alpha \|c\|^2$ La valeur de la fonction diminue quand on s'éloigne de $x^{(0)}$

Exemple

Soit
$$f(x) = x_1 + 2x_2$$

Le point $x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Déplacement dans le sens du gradient $d =
abla f = inom{1}{2}$

$$x^{(0)} + \alpha d = \alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$f(x^{(0)} + \alpha d) = \alpha + 2(2\alpha) = 5\alpha$$

• Déplacement dans le sens opposé au gradient $d=abla f=-inom{1}{2}$

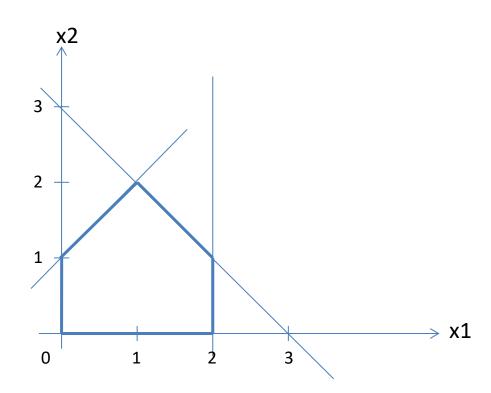
$$x^{(0)} + \alpha d = -\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$f(x^{(0)} + \alpha d) = -\alpha + 2(-2\alpha) = -5\alpha$$

Résolution graphique d'un PL

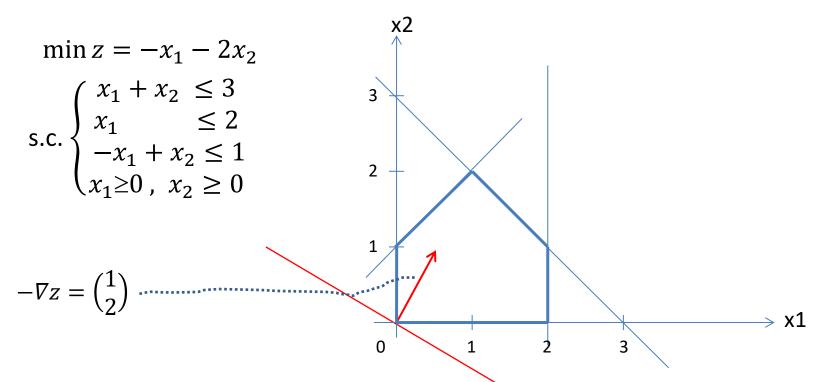
$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} x_1 + x_2 \le 3 \\ x_1 \le 2 \\ -x_1 + x_2 \le 1 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

On trace l'ensemble des solutions réalisables

$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} x_1 + x_2 \le 3 \\ x_1 \le 2 \\ -x_1 + x_2 \le 1 \\ x_1 \ge 0 , \ x_2 \ge 0 \end{cases}$$



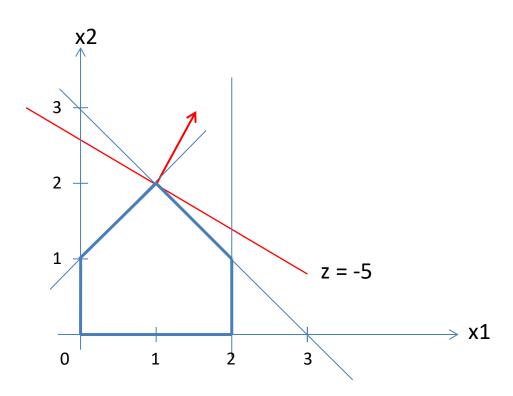
On minimise l'objectif z sur le domaine tracé



L'opposé du gradient de z est une direction de descente Pour minimiser pousser la droite z=0 z=0dans la direction opposée au gradient de z

Déplacement maximum en restant dans le domaine

$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} x_1 + x_2 \le 3 \\ x_1 \le 2 \\ -x_1 + x_2 \le 1 \\ x_1 \ge 0 , \ x_2 \ge 0 \end{cases}$$



pousser au maximum en restant dans le domaine Le dernier point = (1, 2)

D'où
$$z = -5$$

Bilan de la résolution graphique

- On se déplace selon une direction de descente (si on minimise)
- Direction de montée si on maximise
- L'optimum est atteint en un point extrême du domaine (l'ensemble des solutions réalisables)
- Pratique pour n=2 variables
- Pour n=3 faire des dessins en 3 dimensions
- et n≥4?

Algorithme du simplexe

- Mise sous forme standard
- Base, solution de base
- Critère d'optimalité d'une solution de base
- Déplacement d'une solution de base à une autre
- Méthode des tableaux : disposition pratique des calculs
- Recherche d'une base initiale: méthode des 2 phases

Forme standard

$$\min z = cx$$
 s.c. $Ax = b$, $x \ge 0$

On se ramène à la forme standard en rajoutant des variables d'écart

Base, solution de base

m contraintes , n variables m<n

B matrice carrée (m lignes m colonnes) formée de colonnes de A

B inversible

Quitte à permuter des colonnes, A se décompose en 2 matrice B et N A=[B N] x_B variables de base , x_N variable hors-base

$$Ax = b \iff Bx_B + Nx_N = b$$

$$\begin{cases} x_1 + x_2 + x_3 &= 3 \\ x_1 &+ x_4 &= 2 \\ -x_1 + x_2 &+ x_5 = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Variables de base x_3 , x_4 , x_5 , hors-base x_1 , x_2

$$B = \begin{pmatrix} \mathbf{X_3} & \mathbf{X_4} & \mathbf{X_5} & \mathbf{X_1} & \mathbf{X_2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ N = \begin{pmatrix} \mathbf{X_1} & \mathbf{X_2} \\ 1 & 1 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Il y a de nombreuses bases possibles

Solution de base

x_B variables de base, x_N variable hors_base $Ax = b \iff Bx_B + Nx_N = b \iff x_B + B^{-1}Nx_N = B^{-1}b$

Solution de base:

on fixe $x_N = 0$, alors $x_B = B^{-1} b$

$$\begin{cases} x_1 + x_2 + x_3 & = 3 \\ x_1 & + x_4 & = 2 \\ -x_1 + x_2 & + x_5 = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$
 $x_1 = x_2 = 0$ alors solution unique $x_3 = 3, x_4 = 2, x_5 = 1$

$$x_1 = x_2 = 0$$
 alors solution unique
 $x_3 = 3$, $x_4 = 2$, $x_5 = 1$

Coûts réduits

 x_B variables de base , x_N variable hors_base $Ax = b \iff Bx_B + Nx_N = b \iff x_B + B^{-1}Nx_N = B^{-1}b$

fonction z s'écrit : $z = cx \Leftrightarrow z = c_B x_B + c_N x_N$

On exprime z en fonction de x_N uniquement en éliminant x_B :

$$z = c_B (B^{-1} b - B^{-1} Nx_N) + c_N x_N = c_B (B^{-1} b) + (c_N - c_B B^{-1} N) x_N$$

Coûts réduits = coefficients des variables hors-base = $c_N - c_B B^{-1} N$

$$z = -x_1 - 2x_2$$

Variables de base x_3 , x_4 , x_5 , hors-base x_1 , x_2 $c_3 = 0$ $c_4 = 0$ $c_5 = 0$, hors-base $c_1 = -1$ $c_2 = -2$ coûts réduits = $c_N - c_B$ B^{-1} N = [-1 -2]

Sol. de base n°1 : var. en base x_3 , x_4 , x_5 Optimum atteint ?

On est sur la solution de base

$$x_1 = x_2 = 0$$

 $x_3 = 3, x_4 = 2, x_5 = 1$
et $z = -x_1 - 2x_2 = 0$

On voit que si on augmente x_2 (de coefficient -2) la valeur de z va diminuer. De combien peut-on l'augmenter ? Il faut que les variables restent ≥ 0

$$\begin{cases} x_1 + x_2 + x_3 &= 3 \\ x_1 &+ x_4 &= 2 \\ -x_1 + x_2 &+ x_5 = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

On voit sur le système que la valeur max est 1 (par la 3^è contrainte)

Et quand $x_2=1$ nécessairement $x_5=0$, $x_3=2$ $x_4=2$

Ce point est une autre solution de base: variables de base $x_2=1$, $x_3=2$, $x_4=2$, hors base $x_1=0$, $x_5=0$ Et z=-2

Sol. de base n°2 : var. en base x_2 , x_3 , x_4 Optimum atteint ?

Calculons les coûts réduits pour la nouvelle base: variables en base x_2 , x_3 , x_4 c'est-à-dire exprimons z en fonction des variables hors-base x_1 , x_5 Pour cela exprimons d'abord les variables de base en fonction des hors-base

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B^{-1}N = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
Ce qui donne le système:
$$\begin{cases} 2x_1 & + x_3 & -x_5 = 2 \\ x_1 & + x_4 & = 2 \\ -x_1 & x_2 & + x_5 = 1 \end{cases}$$

Ensuite on exprime z en fonction des variables hors-base donc on remplace $x_2=1-x_5+x_1$ (dernière ligne) et $z=-x_1-2(1-x_5+x_1)=-2-3x_1+2x_5$

z = -2 sur la sol. de base $x_2=1$, $x_3=2$, $x_4=2$, $x_1=0$, $x_5=0$

Sol. de base n°2 : var. en base x_2 , x_3 , x_4 Optimum non atteint

On a le système:
$$\begin{cases} 2x_1 & + x_3 & -x_5 = 2 \\ x_1 & + x_4 & = 2 \\ -x_1 & x_2 & + x_5 = 1 \end{cases}$$

z en fonction des variables hors-base $z = -2 - 3x_1 + 2x_5$

On voit que si on augmente x_1 (de coefficient -3) la valeur de z va diminuer. De combien peut-on l'augmenter ? Les variables doivent rester ≥ 0

On voit sur le système que la valeur max est 1 (première équation) Et quand $x_1=1$ nécessairement $x_3=0$, $x_4=1$, $x_2=2$

Ce point est une autre solution de base: variables de base $x_1=1$ $x_2=2$, $x_4=1$, hors base $x_3=0$, $x_5=0$ Et z=-5

Sol. de base n°3 : var. en base x_1 , x_2 , x_4 Optimum atteint ?

Calculons les coûts réduits pour la nouvelle base: variables en base x_1 , x_2 , x_4 c'est-à-dire exprimons z en fonction des variables hors-base x_3 , x_5 Pour cela exprimons d'abord les variables de base en fonction des hors-base

$$B = \begin{pmatrix} x_1 & x_4 & x_2 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} x_3, x_5 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, B^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{-1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}, B^{-1}N = \begin{pmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, B^{-1}b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Ce qui donne le système: $\begin{cases} x_1 & +\frac{x_3}{2} & -\frac{x_5}{2} = 1 \\ -\frac{x_3}{2} & +x_4 & +\frac{x_5}{2} = 1 \\ x_2 & +\frac{x_3}{2} & +\frac{x_5}{2} = 2 \end{cases}$

Ensuite on exprime z en fonction des variables hors-base donc on remplace $x_1=1-\frac{1}{2}x_3+\frac{1}{2}x_5$ (première ligne) $x_2=2-\frac{1}{2}x_3-\frac{1}{2}x_5$ (dernière ligne) et $z=-(1-\frac{1}{2}x_3+\frac{1}{2}x_5)-2(2-\frac{1}{2}x_3-\frac{1}{2}x_5)=-5+\frac{3}{2}x_3+\frac{1}{2}x_5$

z = -5 sur la sol. de base $x_1=1$, $x_2=2$, $x_4=1$, $x_3=0$, $x_5=0$

Sol. de base n°3 : var. en base x_1 , x_2 , x_4 Optimum atteint

$$z = -5 + \frac{3}{2}x_3 + \frac{1}{2}x_5$$

$$z = -5$$
 sur la sol. de base $x_1=1$, $x_2=2$, $x_4=1$, $x_3=0$, $x_5=0$

Les coefficients des variables x_3 , x_5 sont ≥ 0

Donc on ne peut plus diminuer la valeur de z.

La solution est optimale.

Bilan

- Une solution de base correspond à un point extrême de l'ensemble des solutions réalisables
- On passe de solution de base en solution de base voisines (une seule var. de base change)
- On s'arrête en consultant les coûts réduits:
 - Minimisation: coûts réduits≥0 on stoppe
 - Maximisation: coûts réduits≤0 on stoppe

Méthodes des tableaux

- On met les coefficients du problème dans un tableau
- Chaque tableau correspond à une solution de base
- Chaque ligne du tableau correspond à une contrainte
- La dernière ligne représente la fonction objectif z
- Le passage d'un tableau au suivant c'est-à-dire d'une solution de base à une solution de base voisine se fait simplement (sans calculer B⁻¹) par méthode de pivot de Gauss

Tableau initial: base initiale x3, x4, x5

Base	x1	x2	х3	х4	х5		
х3	1	1	1	0	0	=	3
x4	1	0	0	1	0	=	2
x5	-1	1	0	0	1	=	1
	-1	-2	0	0	0	=	0 + z

Zone bleu = contraintes Zone verte = fonction objectif z

Variable entrant en base

Base	x1	x2	х3	х4	х5		
х3	1	1	1	0	0	=	3
x4	1	0	0	1	0	=	2
x5	-1	1	0	0	1	=	1
	-1	-2	0	0	0	=	0 + z

Coût réduit le plus petit = $-2 \Rightarrow x2$ rentre en base

Base	x1	x2	х3	х4	х5		
х3	1	1	1	0	0	=	3
x4	1	0	0	1	0	=	2
x5	-1	1	0	0	1	=	1
	-1	-2	0	0	0	=	0 + z

Coût réduit le plus petit = $-2 \Rightarrow x2$ rentre en base

Qui sort ? Min $\{ \frac{3}{1}, \}$

Base	x1	x2	х3	х4	х5		
х3	1	1	1	0	0	=	3
x4	1	0	0	1	0	=	2
x5	-1	1	0	0	1	=	1
	-1	-2	0	0	0	=	0 + z

Coût réduit le plus petit = $-2 \Rightarrow x2$ rentre en base

Qui sort ? Min $\{ \frac{3}{1}, \frac{1}{1} \}$

Base	x1	x2	х3	x4	х5			
x3	1	1	1	0	0	=	3	
x4	1	0	0	1	0	=	2	
x5	-1	1	0	0	1	=	1	\rightarrow
	-1	-2	0	0	0	=	0 + z	
		↑						

Coût réduit le plus petit = $-2 \Rightarrow x2$ rentre en base

Qui sort ? Min
$$\{3/1, 1/1\} = 1$$
 qui correspond à x5

Ratios du second membre sur les coefficients>0 de la col. x2 (en zone bleue) $\min\left\{\frac{3}{1}, \frac{1}{1}\right\} = 1$ qui correspond à x5

Changement de base : pivotage

Base	x1	x2	х3	х4	х5			
х3	1	1	1	0	0	=	3	
x4	1	0	0	1	0	=	2	
x5	-1	1	0	0	1	=	1	\rightarrow
	-1	-2	0	0	0	=	0 + z	
		↑						_

- Ligne du pivot = ligne de la variable qui sort ici x5 (ligne rose)
 On la divise par le pivot entouré en rouge
- Une ligne i (autre que ligne du pivot) Soit a_{ir} le coef. à l'intersection de la ligne i et col. rentrante ici x2 On la remplace par ligne i $-a_{ir} \times$ nouvelle ligne du pivot

Nouveau tableau : base x3, x4, x2

Base	x1	x2	х3	х4	х5		
х3	2	0	1	0	-1	=	2
x4	1	0	0	1	0	=	2
x2	-1	1	0	0	1	=	1
	-3	0	0	0	2	=	2 + z

On voit qu'il apparait une colonne de la matrice identité sous la variable x2

Variable entrant en base

Base	x1	x2	х3	х4	х5		
х3	2	0	1	0	-1	=	2
x4	1	0	0	1	0	=	2
x2	-1	1	0	0	1	=	1
	-3	0	0	0	2	=	2 + z

Coût réduit le plus petit = $-3 \Rightarrow x1$ rentre en base

Base	x1	x2	х3	х4	х5			
х3	2	0	1	0	-1	=	2	\rightarrow
x4	1	0	0	1	0	=	2	
x2	-1	1	0	0	1	=	1	
	-3	0	0	0	2	=	2 + z	
	↑							-

Coût réduit le plus petit = $-3 \Rightarrow x1$ rentre en base

Variable de base qui va s'annuler et sortir de base ? Ratios du second membre sur les coefficients>0 de la col. x1 (en zone bleue) $\min\left\{\frac{2}{2},\frac{2}{1}\right\} = 1$ qui correspond à x3

Changement de base : pivotage

Base	x1	x2	х3	х4	х5			
x3	2	0	1	0	-1	=	2	\rightarrow
x4	1	0	0	1	0	=	2	
x2	-1	1	0	0	1	=	1	
	-3	0	0	0	2	=	2 + z	
	↑							_

- Ligne du pivot = ligne de la variable qui sort ici x3 (ligne rose)
 On la divise par le pivot entouré en rouge
- Une ligne i (autre que ligne du pivot)
 Soit a_{ir} le coef. à l'intersection de la ligne i et col. rentrante ici x1
 On la remplace par ligne i a_{ir} × nouvelle ligne du pivot

Nouveau tableau : base x1, x4, x2

Base	x1	x2	х3	х4	х5		
x1	1	0	1/2	0	-1/2	=	1
x4	0	0	-1/2	1	1/2	=	1
x2	0	1	1/2	0	1/2	=	2
	0	0	3/2	0	1/2	=	5 + z

Tous les coûts réduits ≥0 (ligne verte) STOP

La solution se lit dans le second membre pour les var. de base Les var. hors-base sont nulles

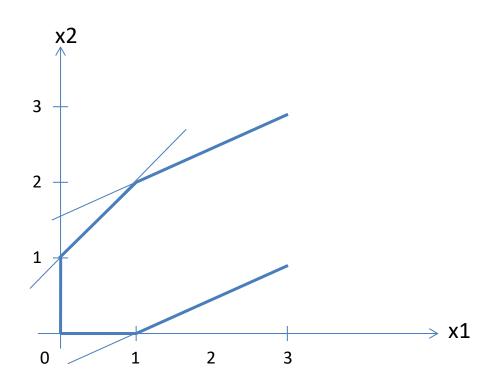
La solution est x1=1, x4=1, x2=2, x3=x5=0

Un autre exemple

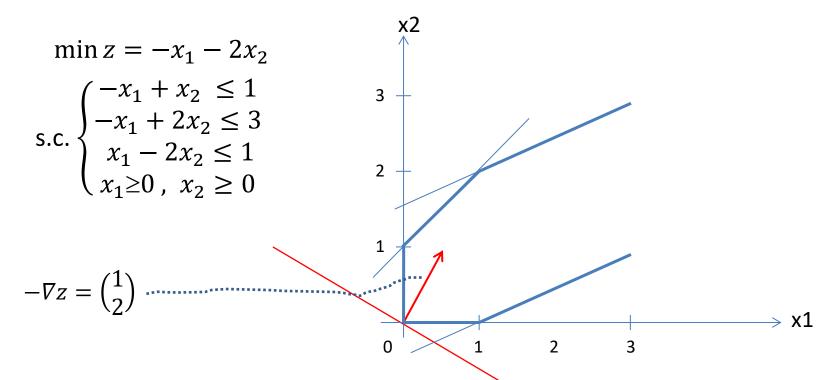
$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} -x_1 + x_2 \le 1 \\ -x_1 + 2x_2 \le 3 \\ x_1 - 2x_2 \le 1 \\ x_1 \ge 0 \text{ , } x_2 \ge 0 \end{cases}$$

On trace l'ensemble des solutions réalisables

$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} -x_1 + x_2 \le 1 \\ -x_1 + 2x_2 \le 3 \\ x_1 - 2x_2 \le 1 \\ x_1 \ge 0 , \ x_2 \ge 0 \end{cases}$$



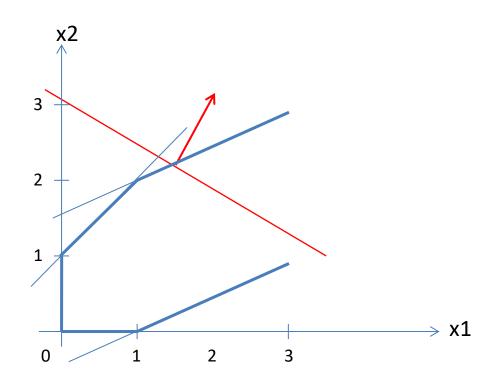
On minimise l'objectif z sur le domaine tracé



L'opposé du gradient de z est une direction de descente Pour minimiser pousser la droite z=0 dans la direction opposée au gradient de z

Déplacement maximum en restant dans le domaine

$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} -x_1 + x_2 \le 1 \\ -x_1 + 2x_2 \le 3 \\ x_1 - 2x_2 \le 1 \\ x_1 \ge 0 , \ x_2 \ge 0 \end{cases}$$



On peut pousser la droite tant que l'on veut sans quitter l'ensemble des solutions réalisables Optimum non borné = $-\infty$

Appliquons l'algorithme du simplexe

$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} -x_1 + x_2 + x_3 &= 1\\ -x_1 + 2x_2 &+ x_4 &= 3\\ x_1 - 2x_2 &+ x_5 &= 1\\ x_1, x_2, x_3, x_4, x_5 \geq 0 \end{cases}$$

Mise sous forme standard: variables d'écart x3, x4, x5 et =

Tableau initial: base x3, x4, x5

Base	x1	x2	х3	x4	х5			
х3	-1	1	1	0	0	=	1	\rightarrow
x4	-1	2	0	1	0	=	3	
x5	1	-2	0	0	1	=	1	
	-1	-2	0	0	0	=	0 + z	
		↑						

x2 va rentrer en base

Ratios du second membre sur les coefficients>0 de la col. x2 (en zone bleue) $\min\{\frac{1}{1},\frac{3}{2}\}=1$ correspond à x3

x3 va sortir de base

Tableau suivant : base x2, x4, x5

Base	x1	x2	х3	х4	х5			
x2	-1	1	1	0	0	=	1	
x4	1	0	-2	1	0	=	1	\rightarrow
x5	-1	0	2	0	1	=	3	
	-3	0	2	0	0	=	2 + z	
	↑							

x1 va rentrer en base

Ratios du second membre sur les coefficients>0 de la col. x1 (en zone bleue) $\min\left\{\frac{1}{1}\right\} = 1$ correspond à x4

x4 va sortir de base

Tableau suivant : base x2, x1, x5

Base	x1	x2	х3	х4	х5		
x2	0	1	-1	1	0	=	2
x1	1	0	-2	1	0	=	1
x5	0	0	0	1	1	=	4
	0	0	-4	3	0	=	5 + z

x3 va rentrer en base Dans la colonne x3 (zone bleue) tous les coefficients ≤ 0 : -1,-2,0 x3 peut augmenter indéfiniment Optimum non borné

Les deux conditions d'arrêt de l'algorithme du simplexe

- Problème de minimisation
 - 1. Coûts réduits $\geq 0 \Rightarrow$ STOP optimum trouvé
 - 2. Une variable x_i de coût réduit <0 et telle que les coefficients dans la colonne x_i sont $\le 0 \Rightarrow$ STOP optimum non borné $-\infty$
- Problème de maximisation
 - 1. Coûts réduits $\leq 0 \Rightarrow$ STOP optimum trouvé
 - 2. Une variable x_i de coût réduit >0 et telle que les coefficients dans la colonne x_i sont $\le 0 \Rightarrow$ STOP optimum non borné $+\infty$

Base initiale

Jusqu'à maintenant, la base initiale était donnée par les variables d'écart. Pas toujours possible.

$$\min z = -x_1 - 2x_2$$
s.c.
$$\begin{cases} 2x_1 + x_2 \ge 2\\ x_1 + 2x_2 \ge 2\\ x_1 + x_2 \le 3\\ x_1, x_2 \ge 0 \end{cases}$$

Ajout variables d'écart

$$\begin{cases} 2x_1 + x_2 - x_3 &= 2\\ x_1 + 2x_2 - x_4 &= 2\\ x_1 + x_2 + x_5 &= 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

Base x_3 , x_4 , x_5 . Sol. de base pas réalisable : x_3 =-2, x_4 =-2, x_5 =3, x_1 = x_2 =0 car 2 variables <0

Recherche d'une base réalisable: résolution du problème auxiliaire

- On ajoute des variables artificielles sur les contraintes où c'est nécessaire c'est-à-dire sur les contraintes où les var. d'écart sont précédées du signe –
- On minimise ensuite la somme des variables artificielles afin de les rendre nulles

$$\min z' = a_1 + a_2$$
s.c.
$$\begin{cases} 2x_1 + x_2 - x_3 &+ a_1 &= 2\\ x_1 + 2x_2 &- x_4 &+ a_2 &= 2\\ x_1 + x_2 &+ x_5 &= 3\\ x_1, x_2, x_3, x_4, x_5, a_1, a_2 \geq 0 \end{cases}$$

On a la base a_1 , a_2 , x_5 . Sol. de base réalisable a_1 =2, a_2 =2, x_5 =3, x_1 = x_2 = x_3 = x_4 =0

On résout le problème avec cette base de départ. Si on trouve $a_1=a_2=0$ (hors-base) alors on a une base réalisable formée par 3 variables du problème de départ.

Méthode des 2 phases

Phase 1

- Résolution du problème auxiliaire
- Si les variables artificielles se sont annulées

Alors on a une base de départ pour le problème initial, aller en phase 2

Sinon le problème initial n'a pas de solution réalisable (domaine vide) STOP

Phase 2

 Résoudre le problème initial en partant de la base trouvée en phase 1

Phase 1: tableau initial

Base	x1	x2	х3	x4	х5	a1	a2		
<i>a</i> 1	2	1	-1	0	0	1	0	=	2
a2	1	2	0	-1	0	0	1	=	2
x5	1	1	0	0	1	0	0	=	3
	-3	-3	1	1	0	0	0	=	-4 + z'

Il faut exprimer $z'=a_1+a_2$ en fonction des variables hors-base On remplace a1 et a2 par leur expression en fonction des variables x1, x2, x3, x4 donnée dans les deux premières ligne On obtient la ligne verte

Phase 1-Tableau initial: base a1, a2, x5

Base	x1	x2	х3	x4	х5	a1	a2			
<i>a</i> 1	2	1	-1	0	0	1	0	=	2	\rightarrow
a2	1	2	0	-1	0	0	1	=	2	
x5	1	1	0	0	1	0	0	=	3	
	-3	-3	1	1	0	0	0	=	-4 + z'	
	^									_

x1 va rentrer en base

Ratios du second membre sur les coefficients>0 de la col. x1 (en zone bleue) $\min\left\{\frac{2}{2}, \frac{2}{1}, \frac{3}{1}\right\} = 1$ correspond à a1

a1 va sortir de base

Phase 1-Tableau suivant : base x1, a2, x5

Base	x1	x2	х3	x4	x 5	a2			
x1	1	1/2	-1/2	0	0	0	=	1	
a2	0	$\frac{3}{2}$	1/2	-1	0	1	=	1	\rightarrow
x5	0	1/2	1/2	0	1	0	=	2	
	0	$-\frac{3}{2}$	-1/2	1	0	0	=	-1 + z'	
		^							-

x2 va rentrer en base

Ratios du second membre sur les coefficients>0 de la col. x2 (en zone bleue)

$$\min\left\{\frac{1}{1/2}, \frac{1}{3/2}, \frac{2}{1/2}\right\} = 2 \text{ correspond à } a2$$

a2 va sortir de base

Phase 1-Tableau final: base x1, x2, x5

Base	x1	x2	х3	x4	х5		
x1	1	0	$-\frac{2}{3}$	1/3	0	=	$^{2}/_{3}$
x2	0	1	1/3	$-\frac{2}{3}$	0	=	$^{2}/_{3}$
x5	0	0	1/3	1/3	1	=	5/3
	0	0	0	0	0	=	0 + z'

Les variables artificielles sont hors-base On a maintenant une base pour le problème initial

Phase 2: tableau initial

Base	x1	x2	х3	x4	х5		
x1	1	0	$-\frac{2}{3}$	1/3	0	=	$^{2}/_{3}$
x2	0	1	1/3	$-\frac{2}{3}$	0	=	$^{2}/_{3}$
x5	0	0	1/3	1/3	1	=	5/3
	0	0	0	-1	0	=	2 + z

Il faut exprimer $z=-x_1-2x_2$ en fonction des variables hors-base x3, x4 On remplace x1 et x2 par leurs expressions en fonction de x3, x4 qui sont données en ligne 1 et 2 du tableau On obtient la ligne verte

Phase 2-Tableau initial: base x1, x2, x5

Base	x1	x2	х3	x4	x5			
x1	1	0	$-\frac{2}{3}$	1/3	0	=	$^{2}/_{3}$	\rightarrow
x2	0	1	1/3	$-\frac{2}{3}$	0	=	2/3	
x5	0	0	1/3	1/3	1	=	5/3	
	0	0	0	-1	0	=	2 + z	
				^				

x4 va rentrer en base

Ratios du second membre sur les coefficients>0 de la col. x4 (en zone bleue)

$$\min\left\{\frac{2/3}{1/3}, \frac{5/3}{1/3}\right\} = 2 \text{ correspond à x1}$$

x1 va sortir de base

Phase 2-Tableau suivant: base x4, x2, x5

Base	x1	х2	х3	х4	x5			
x4	3	0	-2	1	0	=	2	
x2	2	1	-1	0	0	=	2	
x5	-1	0	1	0	1	=	1	\rightarrow
	3	0	-2	0	0	=	4 + z	
			^					•

x3 va rentrer en base

Ratios du second membre sur les coefficients>0 de la col. x3 (en zone bleue) $\min\left\{\frac{1}{1}\right\} = 1$ correspond à x5

x5 va sortir de base

Phase 2-Tableau final: base x4, x2, x3

Base	x1	x2	х3	х4	x 5		
x4	1	0	0	1	2	=	4
x2	1	1	0	0	1	=	3
х3	-1	0	1	0	1	=	1
	1	0	0	0	2	=	6 + z

Tous les coûts réduits ≥0 (ligne verte) STOP

La solution se lit dans le second membre pour les var. de base Les var. hors-base sont nulles

La solution est x4=4, x2=3, x3=1, x1=x5=0

Conclusion

- PL modèle de nombreux problèmes: économie, production, ...
- Résolution efficace par l'algorithme du simplexe et la méthode des tableaux
- D'autres algorithme existent : points intérieurs, méthodes des ellipsoïdes
- PLNE (nombres entiers) problème discret résolu par procédures arborescentes (B&B) mais la PL est utilisée, et donc le simplexe, dans ces procédures