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The Electric Vehicle Routing Problem with Time Windows and

Recharging Stations

Abstract

Driven by new laws and regulations concerning the emission of greenhouse gases, carriers are starting

to use battery electric vehicles (BEVs) for last-mile deliveries. The limited battery capacities of BEVs

necessitate visits to recharging stations during delivery tours of industry-typical length, which have to be

considered in the route planning in order to avoid inefficient vehicle routes with long detours. We introduce

the Electric Vehicle Routing Problem with Time Windows and Recharging Stations (E-VRPTW), which

incorporates the possibility of recharging at any of the available stations using an appropriate recharging

scheme. Furthermore, we consider limited vehicle freight capacities as well as customer time windows,

which are the most important constraints in real-world logistics applications. As solution method, we

present a hybrid heuristic, that combines a Variable Neighborhood Search algorithm with a Tabu Search

heuristic. Tests performed on newly designed instances for the E-VRPTW as well as on benchmark

instances of related problems demonstrate the high performance of the heuristic proposed as well as the

positive effect of the hybridization.

1 Introduction

In recent years, the greenhouse effect has become a hot political topic worldwide and laws and
regulations to reduce greenhouse gas pollution have already been passed or are currently under
debate. For example, to stop the increasing emissions of light commercial vehicles (<3.5t),
EU regulation No 510/2011 imposes a penalty of 95 Euro for each gram CO2/km above 147 g
CO2/km of the manufacturers’ average emissions starting in 2020 (European Parliament and
European Council 2011). The white book of the European Commission even envisages a mostly
emission-free city logistics until 2030 (European Comission 2011).

Such political decisions and visions have a strong effect on the logistics industry. Many
logistics companies have already started to establish “Green Logistics” projects to reduce CO2
emissions. Often, their first step is an increased application of optimization methods to im-
prove route planning, which helps to decrease the traveled distance of their vehicles and hence
emissions. However, this generally yields a decline of emissions of only a few percent and the
emission level of their trucks and vans remains on a high level.

A more promising alternative is the use of battery electric vehicles (BEVs), which EU regu-
lation No 510/2011 defines to have zero emissions. BEVs failed in earlier years due to exorbitant
battery prices and very short driving ranges. However, as BEVs have become one of the major
research areas in the automotive sector and more and more BEVs are developed, the magni-
tude of these problems diminishes. In the small package shipping (SPS) industry, several big
companies, like DHL, UPS, DPD and Japan Post, already started using BEVs for last-mile
deliveries from depots to customers, in particular in urban areas. This causes new challenges for
an efficient route planning due to several specifics of BEVs. For example, the maximum driving
range of BEVs is still not sufficient to perform the typical delivery tours of a small package
shipper in one run. Since reducing the number of deliveries performed by one vehicle is clearly
not a profitable option, visits to recharging stations along the routes are required. The number
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of available recharging stations is still relatively scarce, which might lead to long detours if the
recharging requirements are not integrated into the route planning.

Route planning issues of logistics companies are generally represented as Vehicle Routing
Problem (VRP), which seeks to minimize transportation costs for visiting customers, while
every customer is visited exactly once and routes start and end at one depot. The original VRP
was introduced by Dantzig and Ramser (1959) and over the years, many varieties and extensions
of the VRP have been proposed to incorporate real-world constraints and conditions. Two of
the most widely studied extensions are the Capacitated VRP (CVRP), where vehicles have a
limited freight capacity and the VRP with Time Windows (VRPTW), where customers have to
be reached within a specified time interval (Laporte 2009, Nagata et al. 2010). However, to the
best of our knowledge, only one routing model that considers recharging stations exists. Erdogan
and Miller-Hooks (2012) propose the Green VRP (G-VRP), a routing model for Alternative Fuel
Vehicles (AFVs). The G-VRP considers a limited fuel capacity of the vehicles and the possibility
to refuel at Alternative Fuel Stations (AFSs). For each refueling as well as for each customer
visit, a fixed service time is considered and the maximum duration of a route is restricted.

Logistics providers using BEVs for last-mile deliveries require the incorporation of their most
important practical constraints into routing models for electric vehicles. First, vehicle capacity
restrictions have to be considered for a significant share of delivery operations. Second, many
companies, e.g., in the SPS sector, face a high percentage of time-definite deliveries, which makes
the integration of customer time windows into the routing model a necessity. The second aspect
is especially interesting as recharging times for BEVs cannot be assumed to be fixed but depend
on the current battery charge of the vehicle when arriving at the recharging station. Moreover,
recharging operations take a significant amount of time, especially compared to the relatively
short customer service times of SPS companies, and thus clearly affect the route planning.

In this paper, we introduce the Electric Vehicle Routing Problem with Time Windows and
Recharging Stations (E-VRPTW), which incorporates the possibility of recharging at any of the
available stations using an appropriate recharging scheme, i.e., recharging times depend on the
battery charge of the vehicle on arrival at the station. Moreover, the most important practical
requirements of logistics providers using BEVs, namely capacity constraints on vehicles and
customer time windows are included. E-VRPTW aims at minimizing the number of employed
vehicles and total traveled distance.

As E-VRPTW extends the well-known VRPTW, the high complexity of the problem renders
exact solution methods inadequate for solving realistically sized problem instances (Baldacci
et al. 2012). To solve E-VRPTW, we develop a hybrid metaheuristic, which combines a Variable
Neighborhood Search (VNS) heuristic with a Tabu Search (TS) method for the intensification
phase of the VNS. In numerical studies, we prove the quality and efficiency of our VNS/TS on
test instances of related problems, namely the G-VRP and the Multi-Depot VRP with Inter-
Depot Routes (MDVRPI). Moreover, we design two sets of benchmark instances for E-VRPTW:
A set of small-sized instances that we can solve exactly with the optimization software CPLEX
in order to assess the performance of VNS/TS on E-VRPTW and a set of more realistically
sized instances, on which we study the effectiveness of every component of our hybrid solution
method.

The paper is organized as follows. In Section 2, a review of related literature is presented. In
Section 3, we introduce the notation in detail and provide a mixed-integer linear programming
formulation of E-VRPTW. Section 4 describes the VNS/TS hybrid for solving E-VRPTW.
Experimental results obtained on newly designed E-VRPTW instances as well as on benchmark
sets of related problems are presented in Section 5. Section 6 gives a short summary and
conclusion of the paper.
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2 Literature Review

In this section, we briefly review the literature related to the problem addressed in this paper.
The use of BEVs requires the integration of distance constraints depending on battery charge.

Distance constraints in order to include working hour restrictions by assuming the duration to be
related to route length by an average speed are quite common in VRPs. Due to the widespread
availability of petrol stations and the large cruising range of gasoline powered vehicles, distance
constraints, however, have scarcely attracted interest as pure range (fuel) constraints. Some
works on military issues propose concepts to extend the length of vehicle chains when fuel can
be transferred between vehicles (Mehrez and Stern 1985, Melkman et al. 1986).

E-VRPTW extends the VRPTW, which is probably the most studied VRP variant in the
last two decades. In the VRPTW, service at a customer has to start within a given time interval,
which is a highly relevant constraint in real-world routing applications (see, e.g., Bräysy and
Gendreau 2005a). Numerous heuristic solution methods has been proposed to solve the VRPTW.
Among the best performing are the edge-assembly memetic algorithm of Nagata et al. (2010),
the branch-and-price based large neighborhood search of Prescott-Gagnon et al. (2009) and the
reactive VNS of Bräysy (2003). For state-of-the-art reviews of heuristic and exact methods for
VRPTW, we refer the reader to Gendreau and Tarantilis (2010) and Baldacci et al. (2012).

Another problem that is closely related to E-VRPTW is an extension of the Multi-Depot
VRP (MDVRP) described in Crevier et al. (2007). The MDVRP itself is a well-known VRP
variant, where vehicles are located at several locally disperse depots and each route has to end
at the depot it originated from. The extension by Crevier et al. (2007) is called MDVRP with
Inter-Depot Routes (MDVRPI) and is motivated by the deliveries of a grocery in Montreal. The
model considers intermediate depots at which vehicles can be replenished with goods during the
course of a route. To solve the MDVRPI, Crevier et al. (2007) present a heuristic procedure that
combines ideas from adaptive memory programming, described in Rochat and Taillard (1995),
TS and integer programming. More precisely, the problem is split into three subproblems: an
MDVRP, a VRP and an inter-depot subproblem, for which solutions are determined by means
of a TS heuristic and saved in a solution pool. The generated routes are subsequently merged by
means of a set-partitioning algorithm, followed by an improvement phase. Although the multi-
depot case is described, all proposed benchmark instances consider only one depot at which the
vehicle fleet is stationed.

Therefore, Tarantilis et al. (2008) rename the problem to VRP with Intermediate Replenish-
ment Facilities (VRPIRF). They propose a hybrid guided local search heuristic that follows a
three-step procedure. First, an initial solution is constructed by means of a cost-savings heuris-
tics. Second, a VNS algorithm is applied using a TS in the local search phase, instead of a
greedy procedure. Third, the solution is further improved by means of a guided local search.
In numerical tests performed on available benchmark instances, the heuristic clearly outper-
forms the solution procedure proposed by Crevier et al. (2007). In addition, they present 54
new benchmark instances with up to 175 customers. Problems similar to VPRIRF arise in the
collection of waste, for example, described by Kim et al. (2006). In this context, however, the
objective is not only to minimize travel distance but also to balance the workload among the
vehicles and to obtain a high route compactness.

Relatively few literature has been published on optimization problems related to alternative
fuels. Most articles deal with the question how to place refueling stations in an infrastructure-
oriented context, either for refueling vehicles using compressed natural gas (CNG) (Boostani
et al. 2010) or electricity (Qiu et al. 2011). The development of an infrastructure consisting
of refueling stations, differing in terms of refueling speed and capacity, has been realized to be
crucial for the promotion of AFVs. The models usually use a node or flow-based set covering
problem to determine the optimal number and location of the refueling stations. To model
the fuel demand for short-distance trips in urban areas, customers are usually aggregated to
nodes and a node-based formulation is used. Considering long-distance trips within the location
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decision, the flow between origin-destination pairs is used as a measure for the demand (Wang
and Lin 2009, Wang and Wang 2010).

Other work concentrates on finding the energy shortest path from a given origin to a desti-
nation, which can, e.g., be used in navigation systems. Given a battery capacity, the objective
is to maximize the energy level at the destination while positive arcs represent energy consump-
tion and negative arcs recuperation (Artmeier et al. 2010). Wang and Shen (2007) propose a
scheduling problem for electric buses, called Vehicle Scheduling Problem with Route and Fueling
Time Constraints. They assign timetabled trips, that are known in advance, to buses with the
objective of minimizing total idle time. The travel range is limited by the vehicle’s charge so
every vehicle has to be recharged after several trips.

Finally, we are aware of three publications that explicitly consider the specific characteristics
of alternative fuels and adopt them to VRPs. Gonçalves et al. (2011) consider a VRP with
Pickup and Delivery (VRPPD) with a mixed fleet that consists of BEVs and vehicles using
internal-combustion engines. The objective is to minimize total costs, which consist of vehicle-
related fixed and variable costs. They consider time and capacity constraints and assume a time
for recharging the BEVs, which they calculate from the total distance travelled and the range
using one battery charge. However, they do not incorporate the actual location of recharging
stations into their model. Thus, they basically propose a mixed-fleet VRPPD with an additional
distance-dependent time variable.

To the best of our knowledge, Erdogan and Miller-Hooks (2012) are the first to combine a
VRP with the possibility of refueling a vehicle at a station along the route. They are mainly
motivated by vehicle fleets operating on a wide geographical region and driving with biodiesel,
liquid natural gas or CNG. For these fuels only a limited refueling infrastructure exists, but
refueling times may be assumed to be fixed. The proposed G-VRP considers a maximum route
duration and fuel constraint. Fuel is consumed with a given rate per traveled distance and can
be replenished at AFS. In principle, the G-VRP is modeled as an extension to the MDVRPI
and Erdogan and Miller-Hooks (2012) propose two heuristics to solve the new problem. The
first heuristic is a Modified Clarke and Wright Savings algorithm (MCWS) which creates routes
by establishing feasibility through the insertion of AFSs, merging feasible routes according to
savings and removing redundant AFSs. The second heuristics is a Density-Based Clustering
Algorithm (DBCA) based on a cluster-first and route-second approach. The DBCA forms
clusters of customers such that every vertex within a given radius contains at least a predefined
number of neighbors. Subsequently, the MCWS algorithm is applied on the identified clusters.
For the numerical studies, Erdogan and Miller-Hooks (2012) design two sets of problem instances.
The first consists of 40 small-sized instances with 20 customers and the second involves 12
instances with up to 500 customers.

3 The Electric Vehicle Routing Problem with Recharging Sta-
tions and Time Windows (E-VRPTW)

Let V be a set of vertices with V = I ∪ F ′, where I denotes the set of customers and F ′ a set
of dummy vertices generated to permit several visits to each vertex in the set F of recharging
stations. Further, let v0 and vn+1 denote instances of the same depot, where every route starts
at v0 and ends at vn+1 and let the indices 0 and n+ 1 indicate that a set contains the respective
instance of the depot, e.g., V0 = V ∪ {v0}. Then E-VRPTW can be defined on a complete
directed graph G = (V0,n+1, A), with the set of arcs A = {(i, j) | i, j ∈ V0,n+1, i 6= j}. With
each arc, a distance dij and a travel time tij are associated. Each traveled arc consumes the
amount r · dij of the remaining battery charge of the vehicle traveling the arc, where r denotes
the constant charge consumption rate.

At the depot, a set of homogeneous vehicles with a maximal capacity of C are positioned.
Each vertex i ∈ V0,n+1 is assigned a positive demand qi, which is set to 0 if i 6∈ I. Moreover,
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each vertex i ∈ V0,n+1 has a time window [ei, li] and all customers j ∈ I have an associated
service time sj . Service cannot begin before ei, which might cause waiting time, and is not
allowed to start after li but might end later. At a recharging station, the difference between the
present charge level and the battery capacity Q is recharged with a recharging rate of g, i.e., the
recharging time incurred depends on the fuel level of the vehicle when arriving at the respective
station.

Instead of a three-index formulation, we use decision variables associated with vertices to
keep track of vehicle states, thus keeping the number of required variables low. Variable τj
specifies the time of arrival, uj the remaining cargo and yj the remaining charge level on arrival
at vertex j ∈ V0,n+1. The decision variables xij | i ∈ V0, j ∈ Vn+1, i 6= j are binary and equal 1
if an arc is traveled and 0 otherwise.

The objective function of E-VRPTW is hierarchical. As commonly done for vehicle routing
problems with time window constraints (see, e.g., Bräysy and Gendreau 2005b), our first objec-
tive is to minimize the number of vehicles, i.e., a solution with less vehicles is always superior.
The second objective is to minimize the total traveled distance.

The mathematical model of E-VRPTW is formulated as mixed-integer program as follows:

min
∑

i∈V0,j∈Vn+1,i 6=j
dijxij (1)

∑
j∈Vn+1,i 6=j

xij = 1 ∀i ∈ I (2)

∑
j∈Vn+1,i 6=j

xij ≤ 1 ∀i ∈ F ′ (3)

∑
i∈Vn+1,i 6=j

xji −
∑

i∈V0,i 6=j
xij = 0 ∀j ∈ V (4)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ I0, ∀j ∈ Vn+1, i 6= j (5)

τi + tijxij + g(Q− yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F ′,∀j ∈ Vn+1, i 6= j (6)

ej ≤ τj ≤ lj ∀j ∈ V0,n+1 (7)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V0,∀j ∈ Vn+1, i 6= j (8)

0 ≤ u0 ≤ C (9)

0 ≤ yj ≤ yi − (r · dij)xij +Q(1− xij) ∀j ∈ Vn+1,∀i ∈ I, i 6= j (10)

0 ≤ yj ≤ Q− (r · dij)xij ∀j ∈ Vn+1,∀i ∈ F ′0, i 6= j (11)

xij ∈ {0, 1} ∀i ∈ V0, j ∈ Vn+1, i 6= j (12)

The objective function is defined in (1). Constraints (2) enforce the connectivity of costumers
and Constraints (3) handle the connectivity of visits to recharging station. Constraints (4)
establish flow conservation by guaranteeing that at each vertex, the number of incoming arcs
is equal to the number of outgoing arcs. Constraints (5) guarantee time feasibility for arcs
leaving customers and the depot, Constraints (6) do the same for arcs leaving recharging visits.
As mentioned above, recharge times are for a complete recharge with rate g from the charge
level yi on arrival up to the maximum battery capacity Q. Constraints (7) ensure that every
vertex is visited within its time window. Further, Constraints (5) - (7) prevent the formation of
subtours. Constraints (8) and (9) guarantee demand fulfillment at all customers by assuring a
non-negative cargo load upon arrival at any vertex. Finally, Constraints (10) and (11) ensure
that the battery charge never falls below zero.

4 A Hybrid VNS/TS Solution Method for the E-VRPTW

As solution method for E-VRPTW, we use a combination of VNS and TS, a hybrid that has
already proven its performance on routing and related problems (see, e.g., Melechovsky et al.
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1: Nκ ← set of VNS neighborhood structures for κ = 1, ..., κmax

2: Generate initial solution S
3: κ← 1
4: i← 0
5: feasibilityPhase ← true
6: while feasibilityPhase ∨ (¬ feasibilityPhase ∧ i < ηdist) do
7: S′ ← random point ∈ Nκ(S))
8: S′′ ← best solution after ηtabu iterations of tabu search with S′ as initial solution
9: if acceptSA(S′′,S) then
10: S ← S′′

11: κ← 1
12: else
13: κ← κ+ 1
14: end if
15: if feasibilityPhase then
16: if ¬ feasible(S) then
17: if i = ηfeas then
18: addVehicle(S)
19: i← −1
20: end if
21: else
22: feasibilityPhase ← false
23: i← −1
24: end if
25: end if
26: i← i+ 1
27: end while

Figure 1: Overview of our VNS/TS algorithm for solving E-VRPTW.

2005, Tarantilis et al. 2008). VNS, proposed by Mladenović and Hansen (1997), is an effective
metaheuristic performing local search on increasingly larger neighborhoods in order to efficiently
explore the solution space and to avoid getting stuck in local optima. It has successfully been
applied to a variety of combinatorial optimization problems, among them routing problems like
VRPTW with single or multiple depots (Bräysy 2003, Polacek et al. 2004).

TS is a powerful metaheuristic, which guides local search heuristics to search a solution space
economically and effectively (Glover and Laguna 1997). Starting from an initial solution, the
best non-tabu move is conducted at each iteration. The diversification of the search is obtained
by integrating a memory structure called tabu list, which prevents the search heuristic from
cycling. TS methods have provided near-optimal solution qualities and proved their efficiency
for many combinatorial optimization problems (Gendreau and Potvin 2010).

Figure 1 presents our solution method in pseudocode. After a preprocessing step removing
infeasible arcs, we generate an initial solution S with a given number of vehicles as described
in Section 4.1. Infeasible solutions are allowed during the search and evaluated based on a
penalizing cost function (see Section 4.2). We first perform a feasibility phase during which the
number of vehicles is increased after no feasible solution has been found for a given number
of ηfeas iterations. After a feasible solution is found, another ηdist iterations are performed to
improve traveled distance.

The search is guided by a VNS component described in Section 4.3. It uses the current
VNS neighborhood Nκ to generate a random perturbation which serves as initial solution for
ηtabu iterations of the TS phase (Section 4.4). The acceptance criterion of the VNS is based on
Simulated Annealing (SA).

4.1 Preprocessing and Generation of Initial Solution

As commonly done, we apply a preprocessing step to remove infeasible arcs (see, e.g., Psaraftis
1983, Savelsbergh 1985). Arc (v, w) connecting vertices v and w can be removed from the set
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of possible arcs if one of the following inequalities holds:

qv + qw ≥ C ∀v, w ∈ I (13)

ev + sv + tvw ≥ lw ∀v ∈ V0, ∀w ∈ Vn+1 (14)

ev + sv + tvw + sw + twn+1 ≥ l0 ∀v ∈ V0, w ∈ V (15)

r(djv + dvw + dwi) ≥ Q ∀v, j ∈ V0, ∀w, i ∈ Vn+1 (16)

Equation (13) - (15) are well-known preprocessing steps that base on capacity and time
window violations. Equation (16) is problem-specific and refers to violations of the battery
capacity. If the charge consumption of traveling an arc and traveling to and from that arc to
any station or the depot is higher than the battery capacity, this arc can be labelled infeasible.
Numerical studies showed that this preprocessing step is able to strongly reduce the number of
feasible arcs on our E-VRPTW test instances.

We construct an initial solution similar to the approach proposed in Cordeau et al. (2001).
First, all customers are sorted in increasing order of the angle between the depot, a randomly
chosen point and the customer. Then, customers are iteratively inserted into the active route at
the position causing minimal increase in traveled distance until a violation of capacity or battery
capacity occurs. If a violation occurs, we activate a new route until at most the predefined
number of routes are opened. The battery capacity violation is determined under the assumption
that no recharging possibility exists. To consider time window requirements, a customer u is
only allowed to be inserted between successive vertices i,j if ei ≤ eu ≤ ej . This rule helps to
keep time windows but feasibility is only guaranteed concerning capacity and battery capacity
for all routes but the last.

4.2 Generalized Cost Function

As commonly done in literature, our solution methods allows infeasible solutions during the
search process. A solution is evaluated by means of the following generalized cost function:

F (S) = L(S) + αPcap(S) + βPtw (S) + γPbatt(S) + Pdiv (S), (17)

where L(S) denote the total traveled distance, Pcap(S) the total capacity violation, Ptw (S)
the time window violation, Pbatt(S) the battery capacity violation, Pdiv (S) a diversification
penalty and α, β and γ are factors weighting the violations. The penalty factors are dynamically
updated between a given lower and upper bound. In order to balance between diversification
and intensification, they are increased by a factor δ after the respective constraint has been
violated for a certain number of iterations and divided by δ if the respective constraint was
satisfied.

In the following, we describe the efficient calculation of the constraint violations. Let the
sequence v(k) = 〈v0, v1, ..., vn, vn+1〉 contain all ordered vertices of route k. Then, the capacity
violation of route k can be calculated as

Pcap(k) = max{
∑
i∈v(k)

di − C, 0},

where v(k) refers to the set of customers in route k. The total capacity penalty of a solution S
is calculated by adding the individual violations of all routes m:

Pcap(S) =

m∑
k=1

Pcap(k)

By saving forward and backward capacity requirements for each vertex (see, e.g., Kindervater
and Savelsbergh 1997, Ibaraki et al. 2005), we are able to calculate the change in capacity
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violation in constant time O(1) for all neighborhood operators of our TS method, which are
introduced in Section 4.4.

To calculate battery capacity violations, we define the following two variables: Υ→vi contains
the battery charge that is needed to travel from the last visit to a recharging station or the
depot to vertex vi and Υ←vi is the battery charge that is needed from vi to the next recharging
station or the depot:

Υ→vi =

{
r · dvi−1vi if vi−1 ∈ F ′0
Υ→vi−1

+ r · dvi−1vi otherwise
(i = 1, ..., n+ 1)

Υ←vi =

{
r · dvivi+1 if vi+1 ∈ F ′n+1

Υ←vi+1
+ r · dvivi+1 otherwise

(i = 0, ..., n)

The battery capacity violation of a route k can then be calculated by adding the individual
violations at every visit to a recharging station and on return to the depot:

Pbatt(k) =
∑

vi∈v(k)∩F ′n+1

max{Υ→vi −Q, 0}

Using the presented variables, changes in battery capacity violation can be calculated in O(1)
for all of the neighborhood operators described in Section 4.4.

To calculate time window violations, we adapt the time window handling approach described
in Nagata et al. (2010) and enhanced by Schneider et al. (2012) to E-VRPTW. The approach
bases on the notion of time travel, i.e., the calculation of the violation at a customer that follows
a customer with a time window violation is executed as if a travel back in time to the latest
feasible arrival time at the preceding (violating) customer had taken place. By putting a penalty
only on the first vertex where a time window is violated instead of propagating the violation
along the entire route, the approach avoids penalizing good customer sequences only because
they occur after a time window violation. Another important advantage of the approach is
that potential time window violations for inter-route moves can be calculated in O(1) for most
classical neighborhood structures.

More precisely, by storing forward and backward time window penalty slacks, it is possible
to calculate in constant time the time window penalties of a route k1 = 〈0, ..., u, w, ..., 0〉 that is
constructed from two partial routes 〈0, ..., u〉 and 〈w, ..., 0〉 or of a route k2 = 〈0, ..., u, v, w, ..., 0〉
that is constructed by inserting a vertex v between two partial routes 〈0, ..., u〉 and 〈w, ..., 0〉.
This is not always possible if recharging stations are present as the recharging time at a station
depends on the battery charge, which itself depends on the traveled distance to the recharging
station. If the partial route 〈w, ..., 0〉 contains a recharging station ϑ, i.e., 〈w, .., ϑ, ϑ + 1, .., 0〉,
slack variables have to be recalculated by traversing the partial route 〈w, .., ϑ+1〉 for k1 and the
partial route 〈v, .., ϑ+1〉 for k2. Note that a recharging station in the first partial route 〈0, ..., u〉
or the vertex to insert v being a recharging station does not necessitate a recalculation.

4.3 The Variable Neighborhood Search Component

Within our hybrid VNS/TS heuristic, the VNS component is mainly used to diversify the search
in a structured way. To explain the functionality of our VNS, we first briefly sketch a standard
VNS procedure. Subsequently, we detail the specific characteristics of our implementation.

A general VNS algorithm works as follows: Given a predefined set of neighborhood structures
and the current best solution S, VNS randomly generates a neighboring solution S′ in the
shaking phase by means of the neighborhood structure Nκ. Next, a greedy local search is
applied on S′ to determine the local minimum S′′. If S′′ improves on the current best solution
S, the VNS algorithm accepts the solution S′′ and restarts with neighborhood N1 and the new
starting solution S′′. By contrast, if S′′ is worse than the incumbent best solution, S′′ is refused.
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In this case, VNS performs a random perturbation move according to the next more distant
neighborhood structure Nκ+1, starting again with S.

In our hybrid VNS/TS algorithm, the shaking phase is equal to the standard VNS approach,
but the intensification phase as well as the acceptance criterion clearly differs. In the following,
we detail the shaking phase, the local search phase and the acceptance criterion used in the VNS
component of our hybrid heuristic.

In every iteration our VNS performs a random perturbation move according to the prede-
fined neighborhood structure Nκ. Our neighborhood structures are all defined by means of the
cyclic-exchange operator. In the cyclic-exchange, introduced by Thompson and Orlin (1989),
Thompson and Psaraftis (1993), customer sequences of arbitrary length are simultaneously trans-
ferred between routes. Our κ neighborhood structures, shown in Table 1, are defined according
to the following parameters: The number of routes which built the cycle is equal to #Rts. In
each route k, we randomly select the number of successive vertices that form the translocation
chain in the interval [0,min{Γmax, nk}], where nk denotes the number of customers and stations
contained in k. The initial vertex of a chain is randomly chosen in each route. Cyclic-exchange,

κ #Rts Γmax κ #Rts Γmax κ #Rts Γmax

1 2 1 6 3 1 11 4 1
2 2 2 7 3 2 12 4 2
3 2 3 8 3 3 13 4 3
4 2 4 9 3 4 14 4 4
5 2 5 10 3 5 15 4 5

Table 1: The κ-neighborhood structures used in the VNS defined by the number of involved
route #Rts and the maximum number of translocated vertices Γmax.

or a variant that is restricted to two routes, called cross-exchange, are commonly used in the
perturbation phase of VNS-algorithms (see, e.g, Polacek et al. 2004, Hemmelmayr et al. 2009).

In the local search phase, we improve the randomly generated solution S′ by means of our
TS heuristic, detailed in Section 4.4. The search stops after ηtabu iterations. Note that the
perturbation move is added to the general tabu list to prevent its reversal. Subsequently, we
compare the best solution found during the local search S′′ to the initial solution S. Instead
of accepting only improving solutions, we use an acceptance criterion that is inspired by the
metaheuristic SA (Kirkpatrick et al. 1983). This method has been successfully applied in several
VNS approaches, for example, in Hemmelmayr et al. (2009) and Stenger et al. (2011).

To be more precise, improving solutions are always accepted, while we accept deteriorating
solutions according to the Metropolis probability. Let f(·) denote the objective function value,

the probability of accepting solution S′′ is calculated by e
−(f(S′′)−f(S))

θ . Variable θ is a system
parameter, that is called temperature. At the beginning of the search, the temperature is
usually initialized to a high value θinit , so that deteriorating solutions are often accepted, which
helps to diversify the search. By continuously decreasing the temperature during the search, an
intensification is achieved and, finally, only improving solutions are accepted. In our case, we
set θinit in a way that a solution value f(S′′), which is wSA worse than f(S) is accepted with
a probability of 50%. After every VNS iteration, the temperature is linearly decreased with a
cooling factor ε which is chosen such that the temperature is below 0.0001 during the last 20%
of iterations.

4.4 The Tabu Search Component

The TS phase starts from the solution S′ generated by the perturbation move of the VNS
component. In each iteration, the composite neighborhood N (S) of TS is generated by applying
the following neighborhood operators on every arc in the list of generator arcs (cp. Toth and
Vigo 2003): 2-opt*, relocate, exchange and a new, problem-specific operator called stationInRe.
Each move is evaluated and the best non-tabu move is performed. A move is superior if it is
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able to reduce the number of employed vehicles or if it has a lower cost function value calculated
with Equation (17).

The 2-opt* operator is a modification of the 2-opt operator originally introduced in Lin
(1965) and was specifically proposed for the VRPTW by Potvin and Rousseau (1995). It avoids
the reversal of route directions by removing one arc from each route and reconnecting the first
part of the first route with the second part of the second route and vice versa. We apply
2-opt* for inter-route moves and define the operator for moving recharging stations, i.e., we
allow the removal and insertion of arcs including recharging stations. The relocate operator
was introduced in Savelsbergh (1992) and removes one vertex from a route and inserts it into
another route or a different position in the same route. Relocate is also defined for recharging
station and applied as intra- and inter-route operator. The exchange operator, also introduced
in Savelsbergh (1992), swaps the position of two vertices. The operator is applied for inter-route
and intra-route moves, but is not defined for recharging stations, i.e., we exclude the swapping
of a recharging station with a customer or another station.

As the name suggests, the stationInRe operator performs insertions and removals of recharg-
ing stations. The operator is defined for all generator arcs (v, w), where either v or w is a
recharging station. Let w− denote the predecessor of vertex w. If the arc (v, w) is not part of
the current solution, stationInRe performs an insertion as depicted in Figure 2(a). If the arc is
already present, a recharging station is removed as shown in 2(b).

w- w

v

(a) Insertion

w- w

v

(b) Removal

Figure 2: Insertion and removal of a recharging station with the stationInRe operator. Generator
arcs are shown in bold and removed arcs as dashed lines.

We set every arc ξ that is deleted from the solution by the execution of a move tabu, i.e, we
forbid the reinsertion of the arc into the solution for a specified number of iterations called tabu
tenure. As station visits have a strong effect on charge levels and also on time windows due to
recharging times incurred, we define the tabu attribute (ξ, k, µ, ζ). It prohibits the insertion of
arc ξ into route k between µ and ζ, where µ, ζ ∈ F0,n+1 denote either a station or the depot. In
this way, we allow the reinsertion of an arc into a different part of the route. The tabu tenure
for each arc is randomly drawn from the the interval [ρmin, ρmax]. The tabu status of a move
can be lifted if a so-called aspiration criterion is met, in our case if a feasible new best solution
is generated.

To further diversify the search, we adapt the continuous diversification mechanism pre-
sented in Cordeau et al. (2001) to E-VRPTW. Using the notation introduced above, we define
vertex-based attributes (u, k, µ, ζ) to describe that customer/station u is positioned between
stations/depot µ and ζ in route k. In this way, each solution S can be characterized by the
attribute set Bvertex (S) = {(u, k, µ, ζ)}. For each attribute, the frequency pukµζ of its addition
to a solution in previous moves is memorized and used to penalize solutions according to the
frequency of their attributes. Thus, we guide the search to explore the possibilities of using
different stations and different positions of customers and stations (relative to other stations or
the depot) within a route. A solution S, which does not improve the overall best solution, is
penalized by:

Pdiv (S) = λL(S)
√
nm

∑
(u,k,µ,ζ)∈Bvertex (S)

pukµζ ,

where λ is a parameter to control the amount of diversification and the scaling factor L(S)
√
nm

establishes a relation between the diversification penalty and the traveled distance and the
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investigated problem size with n customers and m vehicles. The TS procedure is stopped after
ηtabu iterations.

5 Numerical Experiments

In this section, we present the extensive numerical testing conducted to evaluate the performance
of our hybrid VNS/TS method. The first study evaluates the performance of our VNS/TS on
E-VRPTW instances. To be able to asses the solution quality, we use newly designed small
instances which can be solved by means of the commercial solver CPLEX. In our second study,
we analyze the efficiency of the algorithmic components of our hybrid heuristics, namely the
VNS, TS and SA, on a set of medium-sized E-VRPTW instances, which we designed based on
classical Solomon VRPTW instances. Finally, we demonstrate the strong performance concern-
ing solution quality and runtime of our VNS/TS on available benchmark instances of the related
problems MDVRPI and G-VRP.

The section is structured as follows. After a brief discussion of the chosen parameter setting
in Section 5.1, we describe the tests performed on E-VRPTW benchmark instances in Section
5.2 and those performed on benchmark instances of related problems in Section 5.3.

5.1 Experimental Environment & Parameter Settings

All tests are performed on a desktop computer equipped with an Intel Core i5 processor with
2.67 GHz and 4 GB RAM, operating Windows 7 Professional. The VNS/TS is implemented as
single-thread code in java. The parameters we used to generate the final results are provided in
Table 2. The presented values are the result of intensive studies we conducted to fine-tune our
algorithm. In the following, we briefly discuss only those parameters that have a strong effect
on the performance of our algorithm.

Phases Penalties Tabu list Conti. Div. VNS

ηfeas 500 α0, β0, γ0 10 ρmin 15 λ 1.0 ηtabu 100
ηdist 200 αmin, βmin, γmin 0.5 ρmax 30 wSA 8%

αmax, βmax, γmax 5000
δ 1.2
ηpenalty 2

Table 2: Overview of the parameter settings chosen for the numerical studies.

During our testing, we observed that the values chosen for the initial penalty factors α0, β0, γ0

are crucial for the solution quality of our VNS/TS. In case of high values, the search often got
stuck in low-quality local minima and required several iterations before continuing an effective
search of solution space. By contrast, setting the initial value too low favors the acceptance of
highly infeasible solutions, which also has a negative influence on the performance. We obtained
best results with a value of 10, which seems a good compromise between diversification and
intensification at the beginning of the search. During the search, the penalty factors are updated
by multiplying or dividing by factor 1.2, while limiting the values to the interval [0.5, 5000].

Concerning the feasibility phase, the tests showed that if the VNS/TS is not able to find a
feasible solution with the given number of vehicles in 500 VNS iterations, it is very unlikely that
a feasible solution with this vehicle number is found in later iterations. The entire algorithm
terminates after 200 additional distance minimization iterations as this resulted in a good trade-
off between computing time and solution quality. Furthermore, the length of the tabu list clearly
affected the performance of our algorithm. However, we were not able to find a unique value
that performed well on all instances of the different benchmark sets that we solved. Instead, we
achieved the overall best results by randomly selecting the length from the interval [15, 30] in
each iteration.
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5.2 Experiments on E-VRPTW Instances

As we are the first to study E-VRPTW, no benchmark instances for assessing solution methods
for this problem exist. We design two new sets of benchmark instances, which we describe in
Section 5.2.1. Section 5.2.2 presents the results of our testing on the generated instances.

5.2.1 Generation of E-VRPTW Benchmark Instances

We create two sets of benchmark instances for the E-VRPTW. A set of 56 large instances, each
with 100 customers and 21 recharging stations, and a set of 36 small instances with 5, 10 and
15 customer per instance. All instances are created based on the benchmark instances for the
VRPTW proposed by Solomon (1987). These instances are divided into 3 classes depending
on the geographical distribution of the customer locations: Random customer distribution (R),
clustered customer distribution (C) and a mixture of both (RC). Groups R1, C1 and RC1
have a short scheduling horizon, meaning that generally more vehicles are required to serve all
customers than in R2, C2 and RC2, which have a long scheduling horizon. The instances within
a group differ in terms of time window density and time window width. In the following, we
detail the design of the large E-VRPTW instances based on the described VRPTW instances.

Given an original Solomon instance, we first determine the locations of the recharging sta-
tions. We locate one recharging station at the depot because a recharging possibility at the
depot seems to be a reasonable claim. The location of the remaining 20 stations is determined
in a random manner. However, we limit the possible locations such that the feasibility of the
instance is guaranteed, i.e., that every customer can be reached from the depot using at most
two different recharging stations.

The battery capacity is set to the maximum of the following two values: 1) 60% of the average
route length of the best known solution to the corresponding VRPTW instance and 2) twice the
amount of battery charge required to travel the longest arc between a customer and a station.
This procedure ensures that instances with geographically disperse and remote customers stay
feasible and, on the other hand, allows the formation of reasonable routes in instances with
closely located customers. Furthermore, we thus guarantee that recharging stations have to be
used. For the sake of simplicity, we set the consumption rate to 1.0. The inverse refueling rate
is set to a value so that a complete refueling requires three times the average customer service
time of the respective instance.

Since the limited battery capacity and the need for recharging along the routes lead to longer
route durations, the customer time windows given in the original VRPTW instances have to
be altered, as instances with tight time windows would otherwise become infeasible. To this
end, we determine new time windows following the procedure described in Solomon (1987).
For a detailed description of our instance design, we refer the reader to the following URL:
http://evrptw.wiwi.uni-frankfurt.de, where the generated instances are also available for
download.

To generate the set of small instances, we first generate 168 instances of three sizes (5, 10, 15
customers) by randomly drawing the respective number of customer from each of the large
instances. The created instances are solved with our VNS/TS heuristic and the solutions are
inspected. For each problem group and instance size, we select the two instances whose solution
uses the highest number of recharging stations. In this way, we create 6 · 3 · 2 = 36 small test
instances.

5.2.2 Performance of VNS/TS on Small E-VRPTW Instances

We use the generated E-VRPTW test instances to analyze the performance of our VNS/TS
heuristic on small E-VRPTW instances. To this end, we solve the instances with VNS/TS and
compare the obtained results to the optimal (or near optimal) solution found by the commercial
solver ILOG CPLEX 12.2, using the E-VRPTW formulation presented in Section 3. Table

12



3 provides an overview of the results. For both, CPLEX and our heuristic, we provide the
number of vehicles required in column m and the computing time in seconds in column t(s).
For the solutions obtained with CPLEX, the objective function value given in column Lbest(S)
corresponds to the optimal solution, or the best upper bound found within 7200 seconds. For
VNS/TS, this column provides the best solution found in 10 runs and column ∆ denotes the
gap to the solution found by CPLEX.

CPLEX VNS/TS

m Lbest (S) t(sec) m Lbest (S) ∆best(%) t(sec)

C101C5 2 257.75 81 2 257.75 0.00 0.21
C103C5 1 176.05 5 1 176.05 0.00 0.12
C206C5 1 242.56 518 1 242.55 0.00 0.14
C208C5 1 158.48 15 1 158.48 0.00 0.11
R104C5 2 136.69 1 2 136.69 0.00 0.13
R105C5 2 156.08 3 2 156.08 0.00 0.11
R202C5 1 128.78 1 1 128.78 0.00 0.11
R203C5 1 179.06 5 1 179.06 0.00 0.15
RC105C5 2 241.3 764 2 241.3 0.00 0.14
RC108C5 1 253.93 311 2 253.93 0.00 0.17
RC204C5 1 176.39 54 1 176.39 0.00 0.15
RC208C5 1 167.98 21 1 167.98 0.00 0.13

C101C10 3 393.76 171 3 393.76 0.00 0.77
C104C10 2 273.93 360 2 273.93 0.00 0.95
C202C10 1 304.06 300 1 304.06 0.00 0.71
C205C10 2 228.28 4 2 228.28 0.00 0.49
R102C10 3 249.19 389 3 249.19 0.00 0.65
R103C10 2 207.05 119 2 207.05 0.00 0.72
R201C10 1 241.51 177 1 241.51 0.00 0.78
R203C10 1 218.21 573 1 218.21 0.00 0.71
RC102C10 4 423.51 810 4 423.51 0.00 0.69
RC108C10 3 345.93 39 3 345.93 0.00 0.9
RC201C10 1 412.86 7200 1 412.86 0.00 0.9
RC205C10 2 325.98 399 2 325.98 0.00 0.81

C103C15 3 384.29 7200 3 384.29 0.00 15.37
C106C15 3 275.13 17 3 275.13 0.00 14.94
C202C15 2 383.62 7200 2 383.61 0.00 13.41
C208C15 2 300.55 5060 2 300.55 0.00 11.08
R102C15 5 413.93 7200 5 413.93 0.00 19.55
R105C15 4 336.15 7200 4 336.15 0.00 13.35
R202C15 2 358 7200 2 358 0.00 13.17
R209C15 1 313.24 7200 1 313.24 0.00 13.73
RC103C15 4 397.67 7200 4 397.67 0.00 14.62
RC108C15 3 370.25 7200 3 370.25 0.00 12.92
RC202C15 2 394.39 7200 2 394.39 0.00 12.74
RC204C15 1 407.45 7200 1 384.86 -5.87 15.57

Average 2483.25 -0.16 5.03

Table 3: Comparison of results obtained with CPLEX and VNS/TS on the small-sized instances.
Lbest(S) denotes the best found solution with the minimal number of vehicles m. t(s) denotes the
total runtime in seconds. The maximum duration for CPLEX was set to 2 hours, so optimality
is not guaranteed for CPLEX results which used the full time.

The results clearly show the ability of our VNS/TS heuristic to solve small E-VRPTW
instances to optimality in only a few seconds. Independent of the instance structure or size,
we always obtain the optimal solution, if CPLEX found an optimum within 7200s. For most
of the 15-customer instances and one 10-customer instance, CPLEX was not able to provide
the optimal solution. On those instances, we either found a solution equal to the upper bound
provided by CPLEX or a better solution in one case.

5.2.3 Analyzing the Effect of the VNS/TS components

This section aims at demonstrating the positive effect achieved by the hybridization of VNS and
TS. To this end, we compare the results obtained by our VNS/TS heuristic on the 100-customer
instances to the solutions found with 1) a VNS/TS heuristic that accepts only improving solution
after the local search phase instead of using an SA-based criterion (VNS/TS w/o SA) and 2) a
pure TS heuristic.

An overview of the results is given in Table 4. For each heuristic, we provide the best solution
found in 10 runs (Lbest(S)) and the number m of required vehicles. Furthermore, we determine
gaps to the best solution found during the overall testing (BKS ) for both the objective function
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value (∆L) and the number of vehicles (∆m). Finally, at the bottom of the table, the average
computing time in minutes is reported in row t(min).

BKS VNS/TS VNS/TS w/o SA TS

Instance m Lbest (S) m Lbest (S) ∆m ∆L(%) m Lbest (S) ∆m ∆L(%) m Lbest (S) ∆m ∆L(%)

c101 12 1053.83 12 1053.83 0 0.00 12 1053.83 0 0.00 12 1053.83 0 0.00
c102 11 1056.47 11 1057.16 0 0.07 11 1056.47 0 0.00 11 1069.35 0 1.22
c103 10 1041.55 10 1041.55 0 0.00 11 1002.03 1 -3.79 10 1134.36 0 8.91
c104 10 979.51 10 980.82 0 0.13 10 988.77 0 0.95 10 979.63 0 0.01
c105 11 1075.37 11 1075.37 0 0.00 11 1075.37 0 0.00 11 1079.69 0 0.40
c106 11 1057.87 11 1057.87 0 0.00 11 1057.87 0 0.00 11 1057.87 0 0.00
c107 11 1031.56 11 1031.56 0 0.00 11 1031.56 0 0.00 11 1033.08 0 0.15
c108 10 1100.32 10 1100.32 0 0.00 11 1015.73 1 -7.69 11 1015.73 1 -7.69
c109 10 1036.64 10 1051.84 0 1.47 10 1036.64 0 0.00 10 1051.36 0 1.42
c201 4 645.16 4 645.16 0 0.00 4 645.16 0 0.00 4 645.16 0 0.00
c202 4 645.16 4 645.16 0 0.00 4 645.16 0 0.00 4 645.16 0 0.00
c203 4 644.98 4 644.98 0 0.00 4 644.98 0 0.00 4 644.98 0 0.00
c204 4 636.43 4 636.43 0 0.00 4 636.43 0 0.00 4 636.43 0 0.00
c205 4 641.13 4 641.13 0 0.00 4 641.13 0 0.00 4 641.13 0 0.00
c206 4 638.17 4 638.17 0 0.00 4 638.17 0 0.00 4 638.17 0 0.00
c207 4 638.17 4 638.17 0 0.00 4 638.17 0 0.00 4 638.17 0 0.00
c208 4 638.17 4 638.17 0 0.00 4 638.17 0 0.00 4 638.17 0 0.00

r101 18 1670.8 18 1672.55 0 0.10 18 1673.12 0 0.14 18 1670.8 0 0.00
r102 16 1495.31 16 1535.81 0 2.71 16 1522.84 0 1.84 16 1495.31 0 0.00
r103 13 1299.17 13 1299.64 0 0.04 13 1299.17 0 0.00 13 1348.25 0 3.78
r104 11 1088.43 11 1088.43 0 0.00 11 1143.69 0 5.08 11 1097.09 0 0.80
r105 14 1461.25 14 1473.59 0 0.84 15 1401.24 1 -4.11 14 1514.36 0 3.63
r106 13 1344.66 13 1344.66 0 0.00 13 1395.18 0 3.76 13 1369.55 0 1.85
r107 12 1154.52 12 1154.52 0 0.00 12 1158.13 0 0.31 12 1162.9 0 0.73
r108 11 1050.04 11 1065.89 0 1.51 11 1061.91 0 1.13 11 1056.84 0 0.65
r109 12 1294.05 12 1294.05 0 0.00 12 1341.01 0 3.63 12 1308.62 0 1.13
r110 11 1126.74 11 1143.52 0 1.49 11 1141.9 0 1.35 11 1126.74 0 0.00
r111 12 1106.19 12 1124.06 0 1.62 12 1107.52 0 0.12 12 1123.96 0 1.61
r112 11 1026.52 11 1026.52 0 0.00 11 1033.97 0 0.73 11 1047.92 0 2.08
r201 3 1264.82 3 1264.82 0 0.00 3 1264.82 0 0.00 3 1266.26 0 0.11
r202 3 1052.32 3 1052.32 0 0.00 3 1053.11 0 0.08 3 1052.65 0 0.03
r203 3 895.91 3 912.86 0 1.89 3 914.68 0 2.10 3 914.1 0 2.03
r204 2 790.57 2 790.57 0 0.00 2 801.56 0 1.39 2 790.68 0 0.01
r205 3 988.67 3 988.67 0 0.00 3 1000.96 0 1.24 3 997.15 0 0.86
r206 3 925.2 3 925.2 0 0.00 3 926.94 0 0.19 3 928.26 0 0.33
r207 2 848.53 2 852.73 0 0.49 2 848.53 0 0.00 2 855.99 0 0.88
r208 2 736.6 2 736.6 0 0.00 2 737.05 0 0.06 2 741.44 0 0.66
r209 3 872.36 3 872.36 0 0.00 3 877.4 0 0.58 3 874.74 0 0.27
r210 3 847.06 3 847.06 0 0.00 3 850.41 0 0.39 3 848.44 0 0.16
r211 2 847.45 2 866.21 0 2.21 2 860.32 0 1.52 2 861.17 0 1.62

rc101 16 1731.07 16 1731.07 0 0.00 16 1766.44 0 2.04 16 1753.35 0 1.29
rc102 15 1554.61 15 1554.61 0 0.00 15 1556.08 0 0.09 15 1559.95 0 0.34
rc103 13 1351.15 13 1353.55 0 0.18 13 1351.15 0 0.00 13 1355.36 0 0.31
rc104 11 1238.56 11 1249.23 0 0.86 11 1267.55 0 2.34 11 1280.82 0 3.41
rc105 14 1475.31 14 1483.38 0 0.55 14 1475.31 0 0.00 14 1479.56 0 0.29
rc106 13 1437.96 13 1440.19 0 0.15 13 1469.99 0 2.23 13 1437.96 0 0.00
rc107 12 1279.08 12 1275.89 0 0.00 12 1280.44 0 0.36 12 1284.47 0 0.67
rc108 11 1209.61 11 1238.81 0 2.41 11 1227.88 0 1.51 11 1209.61 0 0.00
rc201 4 1444.94 4 1447.2 0 0.16 4 1444.94 0 0.00 4 1446.03 0 0.08
rc202 3 1418.79 3 1412.91 0 0.00 3 1418.79 0 0.42 3 1425.17 0 0.87
rc203 3 1073.98 3 1078.28 0 0.40 3 1077.16 0 0.30 3 1084.66 0 0.99
rc204 3 885.35 3 889.22 0 0.44 3 886.03 0 0.08 3 889.22 0 0.44
rc205 3 1330.53 3 1321.75 0 0.00 3 1353.54 0 2.41 3 1360.39 0 2.92
rc206 3 1190.75 3 1191.13 0 0.03 3 1204.93 0 1.19 3 1207.77 0 1.43
rc207 3 1004.38 3 995.52 0 0.00 3 1015.6 0 2.02 3 1010.66 0 1.52
rc208 3 837.82 3 838.03 0 0.03 3 838.41 0 0.07 3 838.03 0 0.03

Average 0 0.35 0.05 0.46 0.02 0.75

t(min) 15.34 16.22 16.01

Table 4: Comparison of the effect of different heuristic components: VNS/TS denotes the
standard setting of a hybrid VNS with an SA acceptance criterion. VNS/TS w/o SA denotes
a combination of TS and a VNS only accepting improving solutions. TS denotes a pure TS
without VNS. Gaps are calculated to the best known solution (BKS).

The results show that the VNS/TS heuristic performs best with an average gap of 0.35% to
the BKS. A comparison to the results obtained with VNS/TS w/o SA allows to quantify the
impact of the SA-based acceptance criterion. Using SA instead of simply accepting improving
solutions yields a reduction of the gap of 0.1% on average. Comparing the results to those of the
pure TS, we can see that the hybridization of VNS and TS reduces the gap to the best solution
by more than half. Overall, the results show the positive effect of the hybridization of VNS, TS
and SA. The solution quality is improved by every component incorporated into our heuristic,
while computing times remain stable on a moderate level.
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5.3 Performance on Benchmark Instances of Related Problems

The E-VRPTW is closely related to the MDVRPI and the G-VRP. For both problems, sets of
benchmark instances exist. To demonstrate the performance of our VNS/TS heuristic on large
problem sets, we solve all benchmark instances available for the related problems and compare
the results obtained to those reported for the competing algorithms, which were specifically
designed for MDVRPI and G-VRP.

5.3.1 MDVRPI

For the MDVRPI (respectively the VRPIF), two benchmark sets with a total of 76 instances
are available from the literature. The first set of benchmark instances was proposed by Crevier
et al. (2007) and includes 22 instances. The instances consist of 48-216 customers, 3-6 depots
and 4-6 vehicles. Depots are centered and customers are located in clusters. The second set
was designed by Tarantilis et al. (2008) and involves 54 instances. The set consists of 18 depot-
customer combinations, which were created following the design described in Crevier et al.
(2007) and compromise 50-175 customers and 3-8 depots. From each of these 18 depot-customer
combinations, three instances were created differing in the number of vehicles available. In all
instances, travel time is assumed to be equal to travel distance and distances between vertices
are computed as Euclidean distances from the given coordinates.

In Table 5, we compare the results obtained with our VNS/TS on the instance set of Crevier
et al. (2007) to the solutions of the heuristic proposed in Tarantilis et al. (2008), denoted as
HGL, and in Crevier et al. (2007), denoted as CCL. For CCL and our VNS/TS, we provide
the best solution found in 10 runs (Lbest(S)) and the computing time in minutes (t(min)). By
contrast, the value given in column Lbest(S) for HGL corresponds to the best solution ever found
with the final parameter setting. We further provide the gap of the best (∆best) and average
solution (∆avg) to the best known solution (BKS ). Additionally, the last column (VNS/TS)
shows the best solutions that we found with our VNS/TS heuristic during the overall testing as
well as the percentage improvement to the formerly best known solutions.

Considering the complete set, our VNS/TS heuristic clearly outperforms the CCL approach
in terms of solution quality and speed. We obtain an average gap to the best solution of
0.18% in about 27 minutes on average, while CCL achieves a 0.66% gap requiring more than
double our computing time. In addition, we found 10 new overall best solutions during the
testing. Tarantilis et al. (2008) solved only the first subset of instances with their HGL approach.
Compared to their results, we are on average 0.48% worse, however, a direct comparison is not
fair, since the HGL results correspond to the best solution they ever found during their testing.

Table 6 compares the results of our VNS/TS heuristic with those of HGL on the instance
set of Tarantilis et al. (2008). On those instances, our VNS/TS heuristic shows a really strong
performance. Our results are on average 0.05% better than those of HGL. This is even more
impressive when considering the fact that they provide only the best solution ever found. The
gap of the average solution found by our VNS/TS is 1.44% and is hence also lower than the 1.6%
gap of HGL. During our overall testing activities, we additionally obtained new best solutions
for the majority of instances that improve the former ones by 0.45% on average.

5.3.2 G-VRP

The benchmark instances for the G-VRP were proposed in Erdogan and Miller-Hooks (2012)
and consist of four sets, each involving ten instances with 20 customers each. The instances
differ in the customer distribution (random or clustered) and the number of available AFS (2
to 10). Furthermore, Erdogan and Miller-Hooks (2012) present a case study with 12 instances
incorporating up to 500 customers.

Note that some customers contained in the small instances are infeasible, i.e., they cannot
be served under the given restriction that each customer has to be reached in time with at most
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CCL HGL VNS/TS VNS/TS

Inst. BKS Lbest (S) ∆best ∆avg t(min) Lbest (S)∗ ∆best* ∆avg t(min) Lbest (S) ∆best ∆avg t(min) Lbest (S) ∆best
(%) (%) (%) (%) (%) (%) (%)

a1 1179.79 1203.39 2.00 2.67 4.58 1179.79 0.00 0.84 3.4 1179.79 0.00 1.51 1.82 1179.79 0.00
b1 1217.07 1217.07 0.00 1.28 9.17 1217.07 0.00 0.66 7.8 1217.07 0.00 0.80 7.14 1217.07 0.00
c1 1883.05 1888.22 0.27 0.53 36.22 1883.05 0.00 0.84 34.2 1897.3 0.76 2.24 33.93 1897.3 0.76
d1 1059.43 1059.43 0.00 1.59 8.55 1059.43 0.00 0.46 5.9 1060.1 0.06 0.34 1.82 1059.43 0.00
e1 1309.12 1309.12 0.00 0.19 13.52 1309.12 0.00 0.00 8.7 1309.12 0.00 2.66 7.29 1309.12 0.00
f1 1572.17 1592.25 1.28 1.87 41.41 1572.17 0.00 0.87 38.8 1584.06 0.76 3.03 34.61 1575.57 0.22
g1 1181.13 1190.93 0.83 1.77 55.22 1181.13 0.00 0.77 5.8 1181.99 0.07 0.81 4.21 1181.13 0.00
h1 1547.25 1566.75 1.26 3.31 32.07 1547.24 0.00 1.96 11.1 1566.19 1.22 2.27 18.03 1562.56 0.99
i1 1925.99 1945.73 1.02 2.60 51.01 1925.99 0.00 1.57 42.5 1953.39 1.42 4.07 45.62 1933.05 0.37
j1 1117.20 1144.41 2.44 3.99 58.90 1117.20 0.00 1.04 5.5 1115.78 -0.13 0.31 4.24 1115.78 -0.13
k1 1580.39 1586.92 0.41 2.41 64.61 1580.39 0.00 0.72 12.1 1586.64 0.40 1.35 18.11 1580.92 0.03
l1 1880.60 1897.74 0.91 1.94 104.27 1880.60 0.00 1.27 51.4 1902.72 1.18 2.78 46.14 1894.05 0.72

Avg. 0.87 2.01 39.96 0.00 0.92 18.92 0.48 1.85 18.58

a2 997.94 1000.24 0.23 0.72 6.4 997.94 0.00 0.47 1.8 997.94 0.00
b2 1307.28 1307.28 0.00 1.98 14.7 1301.21 -0.46 1.34 7.35 1291.19 -1.23
c2 1747.61 1751.45 0.22 2.57 61.7 1732.19 -0.88 0.76 18.05 1719.47 -1.61
d2 1871.42 1877.03 0.30 1.43 40.5 1892.62 1.13 1.97 35.1 1866.97 -0.24
e2 1942.85 1974.13 1.61 2.72 73.8 1940.52 -0.12 2.61 59.12 1928.06 -0.76
f2 2284.35 2298.51 0.62 1.22 162.2 2292.4 0.35 1.79 89.86 2275.28 -0.40
g2 1162.58 1162.58 0.00 2.01 29.5 1158.21 -0.38 -0.09 4.14 1152.92 -0.83
h2 1587.37 1593.40 0.38 1.54 160.8 1597.41 0.63 1.46 18.35 1580.55 -0.43
i2 1972.00 1978.70 0.34 1.33 322.4 1934.09 -1.92 -0.10 47.58 1925.52 -2.36
j2 2294.06 2303.01 0.39 1.36 256.9 2293.4 -0.03 1.58 91.3 2276.52 -0.76

Avg. 0.41 1.69 112.89 -0.17 1.18 37.27

Tot. Avg. 0.66 1.86 73.11 0.18 1.54 27.07

* Note that this value corresponds to the best solution ever obtained with the final parameter setting

Table 5: Comparison of the solutions obtained on the MDVRPI instances, proposed by Crevier
et al. (2007), to those of HGL and CCL. BKS denotes the previously best known solution. Gaps
are calculated in dependence of BKS. Additionally, we provide the best solutions in VNS/TS
that we ever obtained on the instances during our testing activities. t(min) denotes the average
runtime for each run.

one halt at an AFS for refueling. Thus, these customers have to be identified and removed
in a preprocessing step. Erdogan and Miller-Hooks (2012) report solutions found by their two
heuristics (MCWS and DBCA), as well as solutions determined with the commercial solver
ILOG CPLEX. The CPLEX solution is, however, not the optimal solution to the instance. In
their mathematical formulation, they fixed the number of vehicles required to the value obtained
with the best heuristic in order to get solutions that are comparable, i.e., to determine the best
solution with a given number of vehicles.

We compiled an improved version of their G-VRP model, which is also available online at
http://evrptw.wiwi.uni-frankfurt.de, and use it to solve the set of small instances with
CPLEX 12.2. In Table 7, we report the best upper bound found in at most 3 hours of computing
time. In four cases, CPLEX was not able to determine any feasible solution. Furthermore, we
solved all instances 10 times by means of our VNS/TS heuristic and report the best solution
found (Lbest(S)) as well as the average computing time in minutes (t(min)). We compare our
results to those obtained with the MCWS and the DBCA heuristic. Unfortunately, no computing
times are available for those heuristics. In the table, we further report the gap of the best solution
to the solution found by CPLEX (∆). Column n provides the number of feasible customers,
and m the number of vehicles required.

Our VNS/TS heuristic clearly outperforms both heuristic methods proposed by Erdogan
and Miller-Hooks (2012), which both achieve an average gap to best solution of about 8%. On
all instances, we obtain the best solution found by CPLEX or even a solution that improves on
the upper bound, resulting in an average gap of -0.09%. It is also worth mentioning that we are
able to reduce the number of vehicles in almost half of the instances, while requiring less than
40 seconds of computing time on average.

We additionally solve all large instances of the case study presented by Erdogan and Miller-
Hooks (2012). In Table 8, we compare the results obtained with our heuristic to those of MCWS
and DBCA. The value given in column ∆ denotes the gap to the best solution found, reported
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HGL VNS/TS VNS/TS

Instance BKS Lbest (S)∗ ∆best* Lavg (S) ∆avg t(min) Lbest (S) ∆best Lavg (S) ∆avg t(min) Lbest (S) ∆best
(%) (%) (%) (%) (%)

50c3d2v 2209.83 2209.83 0.00 2260.02 2.27 2.85 2209.83 0.00 2212.08 0.10 1.82 2209.83 0.00
50c3d4v 2368.33 2368.33 0.00 2419.86 2.18 2.23 2368.33 0.00 2389.5 0.89 1.84 2368.33 0.00
50c3d6v 3000.88 3000.88 0.00 3064.71 2.13 2.74 2999.29 -0.05 3023.46 0.75 1.88 2999.29 -0.05
50c5d2v 2608.25 2608.25 0.00 2683 2.87 1.54 2608.25 0.00 2634.63 1.01 2 2608.25 0.00
50c5d4v 3086.58 3086.58 0.00 3124.59 1.23 2.07 3086.58 0.00 3086.58 0.00 1.98 3086.58 0.00
50c5d6v 3552 3552 0.00 3583.9 0.90 3.04 3552 0.00 3562.07 0.28 2.02 3548.88 -0.09
50c7d2v 3353.08 3353.08 0.00 3432.68 2.37 3.16 3353.83 0.02 3457.14 3.10 2.38 3353.08 0.00
50c7d4v 3381.57 3381.57 0.00 3470.6 2.63 3.36 3380.27 -0.04 3399.73 0.54 2.1 3380.27 -0.04
50c7d6v 4097.8 4097.8 0.00 4108.1 0.25 3.42 4074.44 -0.57 4113.05 0.37 2.07 4074.44 -0.57

75c3d2v 2678.8 2678.8 0.00 2694.04 0.57 4.5 2692.76 0.52 2723.84 1.68 4.67 2678.8 0.00
75c3d4v 2746.74 2746.74 0.00 2800.41 1.95 3.38 2746.74 0.00 2751.43 0.17 4.33 2746.74 0.00
75c3d6v 3454.71 3454.71 0.00 3499.54 1.30 4.89 3448.64 -0.18 3468.77 0.41 4.34 3404.34 -1.46
75c5d2v 3373.69 3373.69 0.00 3474.37 2.98 3.29 3386.64 0.38 3452.66 2.34 5.09 3373.69 0.00
75c5d4v 3568.35 3568.35 0.00 3655.04 2.43 3.54 3569.82 0.04 3590.88 0.63 4.42 3553.46 -0.42
75c5d6v 4198.61 4198.61 0.00 4268.19 1.66 4.18 4215.3 0.40 4284.36 2.04 4.55 4193.86 -0.11
75c7d2v 3569.02 3569.02 0.00 3655.05 2.41 5.38 3581.32 0.34 3627.34 1.63 5.06 3569.02 0.00
75c7d4v 3830.43 3830.43 0.00 3911.89 2.13 5.51 3830.43 0.00 3895.67 1.70 4.61 3825.37 -0.13
75c7d6v 4239.76 4239.76 0.00 4325.33 2.02 4.29 4244.35 0.11 4271.7 0.75 4.8 4242.08 0.05

100c3d3v 3123.51 3123.51 0.00 3157.96 1.10 7.01 3127.65 0.13 3196.39 2.33 7.94 3126.55 0.10
100c3d5v 3552.5 3552.5 0.00 3636.56 2.37 7.31 3548.75 -0.11 3558.91 0.18 7.62 3548.44 -0.11
100c3d7v 4239.83 4239.83 0.00 4274.86 0.83 6.62 4268.34 0.67 4339.03 2.34 7.92 4239.5 -0.01
100c5d3v 4053.95 4053.95 0.00 4096.98 1.06 7.88 4053.95 0.00 4118.03 1.58 8.49 4053.95 0.00
100c5d5v 4413.17 4413.17 0.00 4531.9 2.69 7.2 4424.81 0.26 4656.75 5.52 7.7 4415.48 0.05
100c5d7v 5148.98 5148.98 0.00 5178.02 0.56 7.72 5142.52 -0.13 5156.9 0.15 7.93 5142.52 -0.13
100c7d3v 4216.47 4216.47 0.00 4242.24 0.61 8.53 4242.38 0.61 4284.85 1.62 8.87 4216.47 0.00
100c7d5v 4462.51 4462.51 0.00 4523.01 1.36 8.79 4448.15 -0.32 4492.44 0.67 8 4439.72 -0.51
100c7d7v 4897.47 4897.47 0.00 4973.37 1.55 8.35 4916.62 0.39 5084.82 3.83 8.1 4869.66 -0.57

125c4d3v 3920.05 3920.05 0.00 3966.16 1.18 8.73 3966.61 1.19 4061.97 3.62 13.23 3916.02 -0.10
125c4d5v 4315.68 4315.68 0.00 4371.7 1.30 9 4308.44 -0.17 4327.81 0.28 12.33 4308.44 -0.17
125c4d7v 4763.49 4763.49 0.00 4833.91 1.48 8.4 4694.32 -1.45 4790.8 0.57 12.54 4668.77 -1.99
125c6d3v 4064.2 4064.2 0.00 4095.72 0.78 9.19 4117.41 1.31 4202.41 3.40 13.56 4076.04 0.29
125c6d5v 4826.71 4826.71 0.00 4956.95 2.70 8.33 4786.74 -0.83 4837.25 0.22 13.09 4765.97 -1.26
125c6d7v 5325.28 5325.28 0.00 5466.55 2.65 9.18 5221.52 -1.95 5295.95 -0.55 12.89 5164.18 -3.03
125c8d3v 4553.28 4553.28 0.00 4677.51 2.73 10.23 4574.82 0.47 4621.98 1.51 14.98 4545.44 -0.17
125c8d5v 5045.65 5045.65 0.00 5115.35 1.38 9.64 4958.26 -1.73 5139.14 1.85 13.38 4958.26 -1.73
125c8d7v 5416.96 5416.96 0.00 5450.87 0.63 9.34 5397.86 -0.35 5473.96 1.05 13.38 5347.1 -1.29

150c4d3v 4049.48 4049.48 0.00 4050.08 0.01 9.71 4072.95 0.58 4172.94 3.05 21.84 4069.72 0.50
150c4d5v 4638.72 4638.72 0.00 4705.63 1.44 8.19 4622.77 -0.34 4666.79 0.61 19.11 4622.77 -0.34
150c4d7v 5176.5 5176.5 0.00 5243.96 1.30 8 5163.02 -0.26 5205.56 0.56 19.06 5137.69 -0.75
150c6d3v 4057.09 4057.09 0.00 4063.34 0.15 9.96 4066.71 0.24 4116.11 1.45 22.07 4062.53 0.13
150c6d5v 4872.08 4872.08 0.00 4898.39 0.54 10.23 4931.13 1.21 4989.97 2.42 21.16 4876.91 0.10
150c6d7v 5768.29 5768.29 0.00 5916.88 2.58 10.73 5840.52 1.25 5883.53 2.00 20.4 5712.01 -0.98
150c8d3v 4653.9 4653.9 0.00 4737.16 1.79 10.18 4689.13 0.76 4823.95 3.65 22.67 4667.5 0.29
150c8d5v 5113.77 5113.77 0.00 5169.84 1.10 11.62 5116.55 0.05 5200.19 1.69 19.6 5073.8 -0.78
150c8d7v 5665.23 5665.23 0.00 5665.27 0.00 12.01 5648.32 -0.30 5693.24 0.49 19.67 5612.02 -0.94

175c4d4v 4706.76 4706.76 0.00 4782.13 1.60 21.74 4720.36 0.29 4781.93 1.60 28.69 4708.66 0.04
175c4d6v 4835.64 4835.64 0.00 4960.33 2.58 23.01 4863.88 0.58 4956.47 2.50 26.71 4841.51 0.12
175c4d8v 5943.28 5943.28 0.00 6034.04 1.53 18.4 5853.9 -1.50 5934.35 -0.15 27.35 5832.26 -1.87
175c6d4v 5025.51 5025.51 0.00 5108.08 1.64 21.51 5011.01 -0.29 5120.82 1.90 29.28 5020.01 -0.11
175c6d6v 5431.34 5431.34 0.00 5437.14 0.11 22.54 5382.57 -0.90 5483.57 0.96 27.43 5360.35 -1.31
175c6d8v 6090.01 6090.01 0.00 6167.31 1.27 25.81 6066.1 -0.39 6156.06 1.08 27.97 6043.43 -0.76
175c8d4v 5878.58 5878.58 0.00 6031.02 2.59 24.9 5840.25 -0.65 5954.97 1.30 29.83 5822.55 -0.95
175c8d6v 5989.63 5989.63 0.00 6157.32 2.80 25.21 5968.99 -0.34 6123.9 2.24 27.78 5953.54 -0.60
175c8d8v 6943.63 6943.63 0.00 7075.23 1.90 26.7 6840.04 -1.49 7054.85 1.60 27.98 6775.68 -2.42

Average 0.00 1.60 9.54 -0.05 1.44 12.79 -0.45

* Note that this value corresponds to the best solution ever obtained with the final parameter setting

Table 6: Comparison of the performance of our VNS/TS heuristic on the MDVRPI instances
proposed by Tarantilis et al. (2008) with the solutions of HGL. BKS denotes the previously
best known solution. Gaps are calculated in dependence of BKS. Additionally, we provide the
best solutions in VNS/TS that we ever obtained on the instances during our testing activities.
t(min) denotes the average runtime for each run.
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CPLEX MCWS DBCA VNS/TS
m n Lbest (S) m n Lbest (S) ∆(%) Lbest (S) ∆(%) m n Lbest (S) t(min) ∆(%)

20c3sU1 6 20 1797.49 6 20 1818.35 1.16 1797.51 0.00 6 20 1797.49 0.69 0.00
20c3sU2 6 20 1574.77 6 20 1614.15 2.50 1613.53 2.46 6 20 1574.77 0.64 0.00
20c3sU3 6 20 1704.48 7 20 1969.64 15.56 1964.57 15.26 6 20 1704.48 0.64 0.00
20c3sU4 5 20 1482 6 20 1508.41 1.78 1487.15 0.35 5 20 1482 0.65 0.00
20c3sU5 6 20 1689.37 5 20 1752.73 3.75 1752.73 3.75 6 20 1689.37 0.67 0.00
20c3sU6 6 20 1618.65 6 20 1668.16 3.06 1668.16 3.06 6 20 1618.65 0.67 0.00
20c3sU7 6 20 1713.66 6 20 1730.45 0.98 1730.45 0.98 6 20 1713.66 0.64 0.00
20c3sU8 6 20 1706.5 6 20 1718.67 0.71 1718.67 0.71 6 20 1706.5 0.67 0.00
20c3sU9 6 20 1708.81 6 20 1714.43 0.33 1714.43 0.33 6 20 1708.81 0.66 0.00

20c3sU10 4 20 1181.31 5 20 1309.52 10.85 1309.52 10.85 4 20 1181.31 0.64 0.00

20c3sC1 4 20 1173.57 5 20 1300.62 10.83 1300.62 10.83 4 20 1173.57 0.62 0.00
20c3sC2 5 19 1539.97 5 19 1553.53 0.88 1553.53 0.88 5 19 1539.97 0.58 0.00
20c3sC3 3 12 880.2 4 12 1083.12 23.05 1083.12 23.05 3 12 880.2 0.25 0.00
20c3sC4 4 18 1059.35 5 18 1135.9 7.23 1091.78 3.06 4 18 1059.35 0.53 0.00
20c3sC5 7 19 - 7 19 2190.68 2190.68 7 19 2156.01 0.6
20c3sC6 8 17 2758.17 9 17 2883.71 4.55 2883.71 4.55 8 17 2758.17 0.71 0.00
20c3sC7 4 6 1393.99 5 6 1701.4 22.05 1701.4 22.05 4 6 1393.99 0.18 0.00
20c3sC8 9 18 3139.72 10 18 3319.74 5.73 3319.74 5.73 9 18 3139.72 0.62 0.00
20c3sC9 6 19 1799.94 6 19 1811.05 0.62 1811.05 0.62 6 19 1799.94 0.6 0.00

20c3sC10 8 15 - 8 15 2648.84 2644.11 8 15 2583.42 0.45

S1 2i6s 6 20 1578.12 6 20 1614.15 2.28 1614.15 2.28 6 20 1578.12 0.71 0.00
S1 4i6s 5 20 1413.96 5 20 1561.3 10.42 1541.46 9.02 5 20 1397.27 0.75 -1.18
S1 6i6s 5 20 1560.49 6 20 1616.2 3.57 1616.2 3.57 5 20 1560.49 0.73 0.00
S1 8i6s 6 20 1692.32 6 20 1902.51 12.42 1882.54 11.24 6 20 1692.32 0.74 0.00

S1 10i6s 4 20 1173.48 5 20 1309.52 11.59 1309.52 11.59 4 20 1173.48 0.71 0.00
S2 2i6s 6 20 1633.1 6 20 1645.8 0.78 1645.8 0.78 6 20 1633.1 0.75 0.00
S2 4i6s 5 19 1555.2 6 19 1505.06 -3.22 1505.06 -3.22 5 19 1532.96 0.88 -1.43
S2 6i6s 7 20 - 10 20 3115.1 3115.1 7 20 2431.33 0.78
S2 8i6s 7 16 2158.35 9 16 2722.55 26.14 2722.55 26.14 7 16 2158.35 0.57 0.00

S2 10i6s 6 17 - 6 16 1995.62 1995.62 6 17 1958.46 0.61

S1 4i2s 6 20 1582.21 6 20 1582.2 0.00 1582.2 0.00 6 20 1582.21 0.63 0.00
S1 4i4s 5 20 1460.09 6 20 1580.52 8.25 1580.52 8.25 5 20 1460.09 0.68 0.00
S1 4i6s 5 20 1397.27 5 20 1561.29 11.74 1541.46 10.32 5 20 1397.27 0.75 0.00
S1 4i8s 6 20 1403.57 6 20 1561.29 11.24 1561.29 11.24 6 20 1397.27 0.82 -0.45

S1 4i10s 5 20 1397.27 5 20 1536.04 9.93 1529.73 9.48 5 20 1396.02 0.85 -0.09
S2 4i2s 4 18 1059.35 5 18 1135.89 7.23 1117.32 5.47 4 18 1059.35 0.51 0.00
S2 4i4s 5 19 1446.08 6 19 1522.72 5.30 1522.72 5.30 5 19 1446.08 0.6 0.00
S2 4i6s 5 20 1434.14 6 20 1786.21 24.55 1730.47 20.66 5 20 1434.14 0.69 0.00
S2 4i8s 5 20 1434.14 6 20 1786.21 24.55 1786.21 24.55 5 20 1434.14 0.75 0.00

S2 4i10s 5 20 1434.13 6 20 1783.63 24.37 1729.51 20.60 5 20 1434.13 0.78 0.00

Average 5.58 18.8 1575.98 6.13 18.78 1781.42 8.52 1774.15 7.94 5.58 18.8 1645.45 0.65 -0.09

Table 7: Results on the small-sized G–VRP instances. Comparison of the solutions obtained
by the MCWS and DBCA heuristics, the solutions determined by our CPLEX implementation
and those of our VNS/TS. Lbest(S) denotes the best solution found in 10 runs, and ∆ the gap
to the best known solution (BKS). t(min) reports the average computing time in minutes. We
terminate CPLEX after 3 hours, so optimality is for none of the solutions guaranteed. Numbers
in bold indicate the best solution found. Note that in some cases, our preprocessing identified a
higher number of feasible customers (numbers in italic) than Erdogan and Miller-Hooks (2012).
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in the first columns.

BKS MCWS DBCA VNS/TS
m n Lbest (S) m n Lbest (S) ∆(%) Lbest (S) ∆(%) m n Lbest (S) t(min) ∆(%)

111c 21 17 109 4797.15 20 109 5626.64 17.29 5626.64 17.29 17 109 4797.15 21.76 0.00
111c 22 17 109 4802.16 20 109 5610.57 16.83 17 109 4802.16 23.56 0.00
111c 24 17 109 4786.96 20 109 5412.48 13.07 17 109 4786.96 21.9 0.00
111c 26 17 109 4778.62 20 109 5408.38 13.18 17 109 4778.62 25.12 0.00
111c 28 17 109 4799.15 20 109 5331.93 11.10 17 109 4799.15 24.17 0.00

200c 35 192 8963.46 35 190 10428.59 16.35 10413.59 16.18 35 192 8963.46 76.65 0.00
250c 39 237 10800.18 41 235 11886.61 10.06 11886.61 10.06 39 237 10800.18 120.9 0.00
300c 46 283 12594.77 49 281 14242.56 13.08 14229.92 12.98 46 283 12594.77 182.23 0.00
350c 51 329 14323.02 57 329 16471.10 15.00 16460.30 14.92 51 329 14323.02 232.03 0.00
400c 61 378 16850.21 67 378 19472.10 15.56 19099.04 13.35 61 378 16850.21 305.12 0.00
450c 68 424 18521.23 75 424 21854.17 18.00 21854.19 18.00 68 424 18521.23 525.52 0.00
500c 76 471 21170.9 84 471 24527.46 15.85 24517.08 15.81 76 471 21170.9 356.01 0.00

Average 38.42 238.25 10598.98 42.33 237.75 12189.38 14.61 15510.92 14.82 38.42 238.25 10598.98 159.58 0.00

Table 8: Results on the large-scale G–VRP instances. Comparison of the solutions obtained
by the MCWS and DBCA heuristics and those of our VNS/TS. Better solutions are marked in
bold; differences below 0.3 are neglected. Lbest(S) denotes the best solution found in 10 runs,
and ∆ the gap to the best known solution (BKS). t(min) reports the average computing time
in minutes. Numbers in bold indicate the best solution found. Note that in some cases, our
preprocessing identified a higher number of feasible customers (numbers in italic) than Erdogan
and Miller-Hooks (2012).

The results obtained by our VNS/TS heuristic on the large instance set is even more impres-
sive. The solutions of MCWS and DBCA are on average almost 15% worse than our solutions.
In addition, we require significantly less vehicles on average.

To conclude, although our approach is not specifically tailored to the MDVRPI or G-VRP,
we are able to outperform the state-of-the-art heuristics on the G-VRP and the second MDVRPI
benchmark set. On the first MDVRPI instance, we obtain competitive results while requiring
moderate computing times.

6 Conclusion

In this paper, we present a new vehicle routing problem for determining cost-optimal routes for
electric vehicles. The E-VRPTW considers a limited vehicle and battery capacity and traveling
along arcs consumes battery charge according to a constant consumption factor r. Vehicles have
the possibility of visiting recharging stations along the route. The recharging time depends on
the current battery charge on arrival at the station. Furthermore, customer time windows are
incorporated into the E-VRPTW model in order to represent real-world requirements.

We develop a hybrid VNS/TS heuristic, which makes use of the strong diversification effect
of VNS and involves a TS heuristic to efficiently search the solution space from a randomly
generated solution of the VNS component. Furthermore, we increase the diversification abilities
of our method by implementing an acceptance criterion based on the Metropolis probability. In
numerical studies performed on newly designed E-VRPTW benchmark instances, we demon-
strate the positive effect of combining the two metaheuristics VNS and TS. Moreover, we solve
benchmark instances of the related problems MDVRPI and G-VRP. Although our VNS/TS
algorithm is not specifically tailored to solve those problems, it outperforms all competing al-
gorithms on both G-VRP instance sets as well as on the large MDVRPI instance set. It is also
worth mentioning that we found new best solutions for a large number of benchmark instances
available for MDVRPI and G-VRP.
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