
1 

A VERY SIMPLE STEADY-STATE EVOLUTIONARY ALGORITHM 
 

L.Gacôgne * ** 

 

* LIP6 - Université Paris VI  104 av. du pdt Kennedy 75016 Paris 

tel : 01 44 27 87 49  mail : Louis.Gacogne@lip6.fr 

** ENSIIE 1 square de la résistance 91025 Evry 

 

 

 

 

 

 

 
Abstract 

A particular steady-state strategy of evolution with a small sized population is studied in this paper. We specially 

focus our attention on two ways to attempt a compromise with best parameters, we observe improvements in 

order to optimise classical problems when exploration is directly function of the homogeneity of the population. 

 
Keywords evolutionary algorithms -  steady state genetic algorithms  

 
 

I INTRODUCTION 

 

Evolutionary computation comprises different techniques that have been inspired by 

biological mechanisms. Beyond the canonical genetic algorithm (GA) [Holland 75], 

[Goldberg 82, 89], many ways of research intend to accelerate evolution in view of 

optimization problems with elitist heuristics [Schwefel 1995] or small population [Coello, 

Pulido 2000]. It is well known that a too homogeneous population must be avoid. A lot of 

different ideas have been proposed (clearing, changing the fitness, parallel evolution…) In 

previous works [Gacogne 2002, 2006] we showed that a small population with various 

operators is really better. We, now, focus on a simple way to favour heterogeneous 

population. 

As a lot of heuristics in artificial intelligence, the tuning of parameters is difficult, but for the 

proposed strategy, we can reduce them to the population size, the updating rate and finally a 

migration rate which is a solution to the clearing way or a variable rate according to similarity 

inside the population. 

 

 

II THE ALGORITHM SSGA(µ, τ, ξµ, τ, ξµ, τ, ξµ, τ, ξ) 
The very simple option we chose, according to the steady-state updating, is to take the same 

idea to remove some individuals. To go on exploration searching in the same time 

exploitation of real-time results of optimum, we decide a rate ξ of exploration. Thus, each  

generation, in the population of µ individuals, the τ best children and a number ξ of random 

individuals remove the τ + ξ worst parents under the condition 0 < τ and τ + ξ < µ. 

Let us assume that for any positive function f  from [a, b]
m
 to R, in order to find the global 

minimum of f, we could choose a vector of m components x = (x1, x2, … , xm) evaluated by 

f(x).  

µ is the number of individuals in the population 

ε is the threshold we want to reach to stop the run if we want f(x) < ε  

evalmax is the maximum number of evaluation of f to avoid infinite course 



2 

 nv is the number of evaluation (returned by the algorithm) to reach f(x) < ε and we 

give the average of it on 100 runs 

  

1) t ← 0, A population P0 of µ random float-vector in [0, 1]
m
 is built. 

Each x of P0 is evaluated by f (x), vm is the best value of the µ individuals and nv ← µ 

2) Loop while vm > ε and nv < evalmax do 

for i = 1 to µ do let Ct(i) = op(Pt(i)) where op is a genetic operator randomly chosen  

between mutation or a crossover with another random Pt(j) 

(Ct is called the population offspring and Pt the parents) 

- Evaluations by f of the µ children and sorting of Ct, 

- Updating : let Pt+1 the sorted union of the best µ - τ - ξ parents of Pt, the best  

τ elements of Ct and  ξ new evaluated individuals picked in the space of research. 

 - Sort of Pt+1 according to f and  

- Incrementation nv ← nv + µ + ξ 

 

At the end of the course, the algorithm returns all information about the best value f(x) < ε 

reached by the best x and the number of evaluation of f to reach it. A simple average for 100 

runs of nv gives a good idea for the parameters tuning.  

More precisely we do experiments for µ = 3 to 15, for τ = 1 to µ – 2, for ξ = 0 to µ - τ - 1, on 

three problems. 

 

III RESULTS 

 

To make tests with various problems, it is necessary to average runs which have a quite great 

dispersion. So, experimentally two parameters must be fixed. We chose to average on 100 

runs, the number of evaluations of the function to be optimised and we chose a maximal 

number evalmax = 5000 evaluations to the following functions the symbolic problem, 

according with experiments. 
 
III-1 The "tripod" function.  
 
The first test holds on this function [Gacôgne 
2000] which is very fast to compute but hard 
to optimize the real minimum 0, because of 
three minima :  
tripod(x, y) = if y < 0 then |x| + |y + 50| 
 else if x < 0 then 1 + |x + 50| + |y - 50| 
 else 2 + |x - 50| + |y – 50|  

defined on [-100, 100]
2
. 

 

About the representation, if m = 4, an 

individual (a, b, c, d) is a pair : 

 

(x, y) = (20a+2b-100, 20c+2d-100) to get : 

(x, y) = (0, -50) that is tripod(5 0 2 5) = 0 

(x, y) = (-50, 50),  tripod(2 5 7 5) = 1 

(x, y) = (50, 50),  tripod(7 5 7 5) = 2 

 
 

Figure 1 The tripod function 

 

From the tests, we selected the rows τ = 1 where best results are located and we show below 

that results are not very relevant, but we can say that µ = 6 is a good result. When we choose 

ξ = 1, the best results for τ are as usual reached if τ is roughly the third part of µ (figure 3). 



3 

 

 
Figure 2 Averaging number of evaluation to reach 10

-4
 with τ  = 1, according to ξ. 

 

 
Figure 3 Averaging number of evaluation to reach 10

-4
 with ξ  = 1, according to τ. 

 

 

III-2 Tests for Rastrigin’ s function 

Our second test is on the well known function FR(x) = Σi=1..n[xi

2
 + 10 - 10 cos(2πxi)] / 100 

For example, for the 3-dimensional Rastrigin’s function, individuals could be 3*5 digits and 

we use a “decode” function to arrive in the space [0, 1]
3
 and next in [-30, 30]

3
 with the 

dilatation φ from [0, 1] to [a, b] defined by φ(x) = a + x(b – a). 

Thus in one dimension decode (3, 4, 5, 6, 7) → 0.34567 

 

 
Figure 4 The Rastrigin’s function in one dimension 

 

In one dimension we first test the algorithm with all possibilities on small values for µ = 3 to 

15, for τ = 1 to µ – 2, for ξ = 0 to µ - τ - 1. For the value ξ = 0 (no exploration) results are 

roughly twice worse than for ξ = 1. 1 is very often but not always the best elimination rate. 

That is why, we present on figure 5 and 6 all possibilities for 2 < µ < 16, τ < µ – 2. In any 

case the updating rate τ is at the better choice when being roughly the third part of µ. 



4 

 

 
Figure 5 Average number of evaluation to reach 10

-4
 without exploration ξ = 0 with µ = 3 to 15, τ = 1 to µ – 2 

 

 
Figure 6 Average number of evaluations to reach 10

-4
 for ξ = 1 with µ = 3 to 15, τ = 1 to µ – 2 

 

III-3 Results for the Gauss’ queens problem 

We can solve the Gauss’ queens problem taking the function gauss equal to the number of 

couple of queens in catching positions on a chessboard. For example, we minimize it to zero 

for the schema figure 7 in 7-dimension : (3 1 6 2 5 7 4) 

queens 4 → (2 4 1 3) 

queens 5 → (3 1 4 2 5) 

queens 5 → (1 4 2 5 3) 

queens 6 → (3 6 2 5 1 4) 

queens 7 → (2 7 5 3 1 6 4) 

queens 7 → (3 1 6 2 5 7 4) 

queens 8 → (6 3 1 8 4 2 7 5) 

queens 9 → (4 1 7 9 2 6 8 3 5) 

 

 

 

 

 

 

 

 

Figure 7 A solution : (3 1 6 2 5 7 4) 

for the Gauss queens’ problem 
 

In previous works, it is shown that dimension 6 is harder to solve that 7 or 8 dimensions. A lot 

of experiments for every possibilities from µ = 3 to 15 have been performed and, the best 

results are always for ξ = 1. We eliminate the cases ξ = 0 which are always very worse than 

others. 



5 

 
Figure 8 Average number of evaluations to reach a solution in the 6-Gauss queens problem 

 

We can observe now that curves for dimension 7 or 8 are more regular : 
 

 
Figure 9 Average number of evaluations to reach a solution to 7-Gauss problem according to ξ 

 

Comparison between SSGA(µ, τ, ξµ, τ, ξµ, τ, ξµ, τ, ξ) and SSGA(µ, τ, πµ, τ, πµ, τ, πµ, τ, π) 

In [Gacôgne 2002] we presented SSGA(µ, τ, π) as an algorithm where the rate of new random 

individuals is not constant but given by the state of the population each generation, that is to 

say, at the end of each generation, according to a similarity measure in the space of research, 

each time a pair of individual i, j with f(i) < f(j) and prox(i, j) > π, then j is killed and 

removed by a new individual. 

It is natural to think that this way is better than a fixed rate ξ of removing, because this last 

option is not a security of homogeneity. A first experiment shows that it is not right; the very 

simple function sum(a, b, c, ....) = a + b + c .... for a sequence of digits a, b, c, ... in 0..9, 

which 0 as mimimum shows similar results (figure 10). 

 

 
Figure 10 Average number of evaluations to reach a solution 0 for the sum of digits of a gene (a, b, c, d,...) with 

the best pairs (µ, τ) from (3, 1) untill (12, 4) 

 



6 

 
 

Figure 11 Average number of evaluations to reach 10
-4

 for the Rastrigin function in one dimension with the same 

(µ, τ) from (3, 1) untill (12, 4) 

 

As we see, in spite of the last experiment, results in the two ways we tried are very closed for 

the Rastrigin function, so we show now what appens for the tripod function and the 

Gauss’queens problem 8*8, results are mostly better with elimination, that is to say with 

SSGA(µ, τ, π) but as we said in previous work, the rate of elimination π is not really relevant 

between 33% and 75%. 
 

 
 

Figure 12 Average number of evaluations to reach 0 for the tripod function in two dimensions  

with the same pairs (µ, τ) from (3, 1) to (12, 4) 

 

 

 
 

Figure 13 Average number of evaluations to reach 0 for the Gauss problem 8*8  

with the pairs (µ, τ) from (3, 1) to (12, 4) 



7 

Conclusion 

Experiments to find the averaging number of evaluation to reach global optimum always 

displays about the same results. First, best results are very often for a population size 

µ between 3 and 12 more precisely with µ = 7 or 8 individuals and with an updating rate τ 

from 1/3 to 1/2 of it. Secondly, this number of evaluations is always increasing with ξ for the 

same µ, τ, it is, nevertheless better than when ξ = 0. So ξ  = 1 is tested face to an other option 

which is a variable elimination rate π. According to the representation of the problem, if a 

similarity measure is defined on the genotypes, then clearing the population at each 

generation and replacement with new individuals is a satisfying way to keep the best 

individual and to go on the exploration 

 

References 
 

Bäck T. Fogel D.B. Schwefel H.P. Handbook of evolutionary computation, Oxford University Press, 1997 

Coello C., Pulido G. A micro genetic algortihm for multiobjective optimization, Intrenal report Laboratorio 

National de Informatica Avanzada 2000 

Davis L. Adaptating operator probabilities in genetic algorithm, Proc. 5th Int. Conf. on GA p61-69, Morgan K. 

1993 

De Jong K. Sarma J., Generation Gaps Revisited, in Foundations of G.A. Morgan Kaufmann, p5-17, 1993 

Gacôgne L. Benefit of a steady state genetic algorithm with adaptive operators, Mendel Brno p236-242, 2000 

Gacôgne L. Steady-state evolutionary algorithm with an operators family, EISCI Kosice p173-182, 2002 

Gacôgne L. Methods to apply operators in a steady-state evolutionary algortithm  IPMU conf. Paris 2006 

Goldberg D.E. Genetic algorithms in search, optimization and machine learning, Addison Wesley, 1989 

Holland J.H Adaptation in natural and artificial system. Ann Arbor University of Michigan Press, 1975 

Michalewicz Z. Genetic algorithms + data structures= evolution programs, Springer Verlag 1992  

Schwefel H.P. Evolution and optimum seeking. Sixth generation computer technology series. Wiley, 1995 

Tvrdik J. Misik L. Krivy I. Competing heuristics in evolutionary algorithms, Intelligent Technology, Theory and 

Applications IOSpress vol 76 p159-165, 2002 

Whitley D. Kauth J. Genitor : a different genetic algorithm, Proc. of Rocky Mountain Conf. on A.I. p118, 1988 

 

 


