
INTRODUCTION TO
GAME PROGRAMMING & GAME ENGINES

Guillaume Bouyer, Adrien Allard

v4.2

www.ensiie.fr/~bouyer/

guillaume.bouyer@ensiie.fr

JIN – GAME PROGRAMMING

Objectives and schedule
•Be aware of the technical problems and existing solutions that underpin the development of a video game
(among others to succeed as well as possible in the team project)
•Understand the theoretical and technical components of game engines
•Operate a high-level but relatively closed game engine (Unity). Being able to create a project that looks like a
game

1. Prerequisites : Unity installed, several completed Unity tutorials (ex. introduction from ENSIIE S4 course)

2. Continue project

3. Finish project part 1 & 2

4. Finish project part 3

2

bouyer@ensiie.fr

http://www.ensiie.fr/~bouyer/jin.html

Office 111 @ ENSIIE

Monday Tuesday Wednesday Thursday Friday

Am Pm Am Pm Am Pm Am Pm Am Pm

JIN Intro . Course Part. 1
+ Project Part. 1 SHS Course Part. 2

+ Project Part. 2

Adrien Allard
Frog Collective,

Talk + Project Part. 3

1 2 3 4Homeworks

JIN – GAME PROGRAMMING

References

•Game Engine Architecture, Jason Gregory, A K Peters/CRC Press, 2009-2015-2019
(http://www.gameenginebook.com/)
•Game Coding Complete, 4th Edition, Mike McShaffry and David Graham, Course Technology, 2013
•Game Programming Algorithms and Techniques, Sanjay Madhav, Addison-Wesley, 2013
•Game Programming Patterns, Robert Nystrom, Paperback, 2014 (gameprogrammingpatterns.com/)

3

http://www.gameenginebook.com/
http://gameprogrammingpatterns.com/

JIN – GAME PROGRAMMING

Contents

1. The Basics : general games & game engines knowledge
2. Interactive Real-time Simulation : game loop & game objects
3. More Advanced Concepts : low level and technical

elements

4

What if we programmed
our own video game?

5

JIN PROJECT

JIN – GAME PROGRAMMING

Our game?

•Spaceships !

•Bullets !

6

SteredennSkytte

eXceed

SCHMUP !

PART 1:

7

THE BASICS

A VIDEO GAME?

JIN – GAME PROGRAMMING

What is a video game?

•Player's point of view:
•“An interactive experience that provides the player with an increasingly challenging
sequence of patterns which he learns and eventually masters”

•Raph Koster, A Theory of Fun for Game Design

•Artistic & interactive content (assets, objects, world…)
•Gameplay, game mechanics

•Player’s abilities
•Non-player entities
•Rules of the world and interactions
•Objectives, criteria for success/failure
•Overall flow
•…
•=> More significant than technology to define a game

9

http://www.raphkoster.com/

JIN – GAME PROGRAMMING

What is a video game?

•Developer's point of view:
•"A soft real-time interactive agent-based computer simulation"

•Jason Gregory, Game Engine Architecture

•Agents: distinct entities or objects in the game world
•Real-time Simulation

•Update objects to create a dynamic game world
•Approximated numerical mathematical models
•Various technical sub-systems (3D, AI, game logic, physics…)

•Interactive
•Responds to unpredictable human input
•Provides visual and audio rendering of the simulation result

10

JIN – GAME PROGRAMMING

Our game

•Artistic content
•Interactive content
•Gameplay, rules, abilities…
•Objects
•Real-time simulation
•Human input
•Graphics rendering, audio…
•…

SCHMUP !

TEAM / ROLES

JIN – GAME PROGRAMMING

Typical Game Team

•Software developers
•Runtime programmers:

•Single engine/game system: rendering, AI, physics, UI…
•Low level: memory, network…
•Gameplay/3C : Character-Controls-Camera

•Tools programmers: off-line tools for the team
•=> Lead programmer (+ management), Technical director (high
level)… Chief technical officer (for the entire studio)

•Artists Produce visual and auditory content
•Concept artists, 3D modeler, Animators, Texture & lighting
artists, Actors (mocap, voice), Sound designers & composers,
Technical artists…
•=> Lead artists, art directors

13

when an engineer meets artists

JIN – GAME PROGRAMMING

Typical Game Team

•Game designers Design the gameplay
•Macro level

•Story arc, sequence of levels, high-level objectives of the player

•Individual levels or areas of the game world
•Static background geometry, enemies spawning, items placement, puzzle elements…

•Technical level
•Close to gameplay engineers and code (high-level scripting language)

•=> Game director

•Quality Assurance (QA)
•Tester, analyst, engineer

•Producers
•Manage the schedule, the human resources, link between the dev. and the business
units…

•Publishers
•Marketing, manufacture and distribution (usually not the studio)

14

JIN – GAME PROGRAMMING

•SNJV

More job descriptions

•Gaming Campus

15

http://snjv.org/wp-content/uploads/2021/01/Referentiel-2020-detaille.pdf
https://gamingcampus.fr/metiers/

JIN – GAME PROGRAMMING

Our team

•Producer : me
•Game designer : contractor
•Artists : internet…
•Engineers : you
•Self-published

16

SCHMUP !

GAME ENGINES

17

JIN – GAME PROGRAMMING

Game Engine

•Extensible set of software that can be used as a basis for different games
•Based on the division between:

•Core runtime components: 3D graphics rendering, collision detection, audio…
•Art assets, game worlds, gameplay that constitute the gaming experience

•Benefits
•Create new games with new contents & "minimal" changes to reusable core
software
•Mod community
•Engine licensing = additional income

18

Engine names?

JIN – GAME PROGRAMMING

Game Engine Examples

•Doom & Quake Engines, ID tech (Id Software)
•Castle Wolfenstein 3D (92), Doom, Quake 1-4 (96-05), HalfLife (98), Medal of Honor…

•Unreal Engines (Epic Games)
•Unreal (98-08), Deus Ex (00-03), Gears of War (06-13), Bioshock (07)…

•Source Engine (Valve)
•Half-life 2, Team Fortress, Portal…

•CryEngine (Crytek), Lumberyard (Amazon)
•FarCry (2004), Crysis (2007), Crysis 2 (2011), Crysis 3 (2013), Evolve (2015)…

•Unity 3D
•Gamemaker, Construct 2, RPG Maker…
•Open Source Engines

•Godot, Ogre 3D, Panda3D, Yake, Crystal Space, Torque, Irrlicht…

•Proprietary in-House Engines
19

More at https://en.wikipedia.org/wiki/List_of_game_engines

https://en.wikipedia.org/wiki/List_of_game_engines

JIN – GAME PROGRAMMING

Engine Architecture
Game-Specific Subsystems

Game-Specific
Rendering

Player
Mechanics Game Camera AI

Front End

Visual Effects

Scene-graph / Culling
Optimizations

Skeletal
Animation

Online
Multiplayer Audio

Low-Level Renderer Profiling &
Debugging

Collision &
Physics

Human
Interface
Devices

Resources / Assets Manager

Core systems

Platform Independence Layer

3rd Party SDKs

OS

Drivers

Hardware

Resources
/ Assets

Gameplay Foundations

Game
Objects

Events Scripting
Game
Flow

Source: J. Gregory, Game Engine Architecture 1st edition

Scripts

Data World
Editor

JIN – GAME PROGRAMMING

Platform

•Hardware
•PC, console, mobile…

•Drivers
•Shield the OS and upper layers from the communication details
•Manage hardware resources

•Operating System (OS)
•Runs all the time
•Orchestrates the execution of multiple programs, including the game
•Pre-emptive multitasking: time-sliced approach to sharing hardware
•Rq: previously on console only a thin library layer compiled into the game
executable (game "owns" the machine)

21

JIN – GAME PROGRAMMING

Engine Architecture

•Third-Party SDKs and Middleware
•Data Structures and Algorithms

•STL, STLport, Boost…
•Memory allocation performance vs. convenience?

•Graphics
•OpenGL, DirectX, libgcm (PS3), Edge (Naughty Dog)…

•Collision and Physics
•Havok, PhysX, ODE, I-Collide, V-Collide, RAPID…

•Character Animation
•Granny, Havok Animation, Edge…

•Artificial Intelligence

•Platform Independence Layer
•Wrap/replace common standard library functions, OS calls, and other foundational APIs
•Shields upper layers from the knowledge of the underlying platform

22

JIN – GAME PROGRAMMING

Engine Architecture

•Core Systems: common useful utilities
•Assertions, unit testing…
•Memory allocation
•Custom data structures and algorithms
•Math library, random number generator

•Resources/Assets Manager
•Interfaces for accessing game assets and other input data
•3D model, texture, material, font, skeleton, collision, map…

•Profiling and Debugging Tools
•Profile performance and analyze memory to optimize
•In-game debugging facilities
•Record and play-back gameplay
•Config, stats…
•Commercial or custom

23

JIN – GAME PROGRAMMING

Engine Architecture

•Rendering Components/Engine
•Low-Level Renderer
•Scene Graph/Culling Optimizations
•Visual Effects

•Particles, decal, light and environment mapping, dynamic shadows, full-screen post effects (HDR, AA, color
correction…)

•Front End
•2D or 3D: Heads-up display (HUD), in-game menus, console, development tools, in-game GUI
•Full-motion video or in-game cinematics system

•Animation
•Collision and Physics

•Collision detection
•"Rigid body kinematics and dynamics" system

24

JIN – GAME PROGRAMMING

Engine Architecture

•Human Interface Devices
•Manages and transforms the low-level raw data from the hardware
•Provides high-level game controls and detection (chords, sequences,
gestures…)

•Audio
•Needs lots of tuning, engines vary greatly in sophistication

•Ex: XACT (Microsoft), SoundR!OT (EA), Scream (Sony)…

•Multiplayer/Networking
•Single-screen, Split-screen, Networked, Massively multiplayer online
•Single-player is often special case of a multiplayer game: better to design
multiplayer features at the beginning

25

JIN – GAME PROGRAMMING

Engine Architecture

Gameplay Systems: at the interface between game and engine
•Game’s rules, objectives, and dynamic world elements
•Game object model
•Game objects updating
•Messaging and event handling
•Scripting language
•Level management and streaming
•Objectives and game flow management
•Artificial Intelligence

•Game-Specific Subsystems: features of the game
•Mechanics of the player character, in-game camera systems, AI for NPCs, weapon
systems, vehicles…

26

JIN – GAME PROGRAMMING

Assets Management

•Game resources
•3D model/mesh
•Material properties, texture, shaders…
•Animations, skeletal data
•Collision and physical properties
•Audio clips
•Particles system…

•Usually created with external
specialized content creation tools

•Ex. Maya, 3ds Max (Autodesk),
Photoshop (Adobe), Soundforge…

27

Unreal Editor browser

JIN – GAME PROGRAMMING

Assets Management

•Data formats of assets rarely ready for direct in-game use
•In-memory model too complex

•File format too slow to read at runtime, or proprietary

•Asset Conditioning Pipeline (ACP)
•Data exported to a more accessible standardized or custom format,
then further processed (ex. differently for each target platform)

28

JIN – GAME PROGRAMMING

Game World Editor

•GUI tool(s) to build the game world
•Dedicated, with custom rendering engine
•Integrated into a 3D geometry editor
•Integrated into the engine

•Rapid iteration
•Dynamic tweaking

29

Hammer
(Source engine)

GtkRadiant
(Quake engine)

JIN – GAME PROGRAMMING

Game World Editor

•Insertion and selection of game objects
•Placement and alignment aids (special handles, assistance tools)
•3D or tree view (hierarchy)
•Special object handling (lights, cameras, particles…)

•Visualization and navigation
•3D perspective view of the world and/or a 2D orthographic projection
•View pane divided into sections
•Camera control

•Levels/world chunks
•Creation, saving, loading and management
•Tools for authoring specialized static elements: terrain, water, background sprites…

30

JIN – GAME PROGRAMMING

Game Scripting

•Provides high-level, relatively easy access to features of the engine to
•Develop a new game
•Mod an existing game
•Customize the functionalities of the engine’s subsystems (callbacks)
•Create data structures consumed by the engine
•Create new game object types or components (inheritance, composition)
•Handle communication between objects…

•Benefits
•Faster iteration than native language source code (sometimes no recompilation/relink, no game
shut down and rerun)
•Customizable to suits the needs of a particular game
•Can make common tasks simple and less error-prone

•Examples: QuakeC, UnrealScript, LUA, Python, Pawn / Small / Small-C

31

JIN – GAME PROGRAMMING

Visual Scripting Editors

32

Unreal
Engine

Blueprint

Godot
Visual
Scripting

RPG Maker

GameMaker: Studio

JIN – GAME PROGRAMMING

Data-Driven

•Data-driven engine permits designers and
artists to

•Create content
•Control some parts of the behavior of the game
•Directly by data rather than programming

•Benefits and risks
•Improved creation and iteration times
•Heavy cost to develop appropriate runtime code
and robust and usable tools

33Source: paulallenrenton.com

Source:
raywenderlich.com

CHOOSING AN ENGINE?

34

JIN – GAME PROGRAMMING

Questions

1. What’s my timeframe?
2. How big is my team?
3. What’s my budget?
4. Am I good at programming?
5. What genre is my game?
6. How big is my scope/what platform am I releasing on?

Source: blackshellmedia.com/2016/09/29/6-crucial-questions-ask-choosing-game-engine/

35

https://blackshellmedia.com/2016/09/29/6-crucial-questions-ask-choosing-game-engine/

JIN – GAME PROGRAMMING

Choosing an engine for 1 person

1. Pick the game engine for you, not for your game
2. Apply the marketing filter
3. Performance is not a feature
4. Prefer a programming language you already know
5. Documentation
6. Maintenance
7. Support
8. Cost
9. Features

Source: “The Game Engine Dating Guide: How to Pick Up an Engine for Single Developers”, Steffen Itterheim (no more available)

36

JIN – GAME PROGRAMMING

General/Optimal Trade-off

•Initial game engines designed and tuned to run a particular game on a particular hardware
platform
•Now, technological and content overlap between games/genres + more powerful hardware
•=> Possible to reuse the same engine across disparate genres and hardware platforms
•But more general engine => less optimal for running a particular game
•=> Assumptions about how the software will be used and about the target hardware

37

Reusability gamut (Source: J. Gregory, Game Engine Architecture 1st edition)

JIN – GAME PROGRAMMING

Technical differences by genre
•First-Person Shooters (FPS)

Third-Person games

38

Rendering high fidelity & large 3D worlds (often specific environment)

3C responsive camera & aiming, forgiving character motion and collision (“floaty”)

Animations high-fidelity player’s arms and weapons, high-fidelity NPC

AI non-player characters

Multiplayer small-scale online capabilities (ex. 64), various game mode, match making…

Gameworld complex level design, wide range of items (weapons, pickable…)

Rendering, AI, Multiplayer… = FPS

3C emphasis on character’s abilities and locomotion, 3rd-person “follow camera”, complex
camera collision system

Animations high-fidelity full-body player’s avatar, high-fidelity NPC

Gameworld complex level design with various locomotion modes: platforms, ladders, ropes,
vehicles…, puzzle-like elements

Battlefield 1

Overwatch

Tomb Raider

JIN – GAME PROGRAMMING

Technical differences by genre
•Fighting games

•Racing games

39

Rendering high-definition character (skin, sweat…), physics-based cloth and hair simulations

3C robust user input system, complex button and joystick combinations, accurate hit
detection

Animations rich and high-fidelity fighting characters animations

AI non-player characters

Multiplayer typically 2 players local or online, ranking…

Gameworld relatively static backgrounds (crowds)

Rendering high-fidelity vehicles, track, and surroundings, can optimize rendering (distant
background elements…)

3C various cameras: 3rd-person, 1st-person…

Physics realistic (tires, materials, collisions…)

AI path finding for non-player vehicles, driver assistance

Multiplayer small-scale online capabilities, local split-screen, ranking…

Audio high-fidelity (tires, engines, collisions…)

Street Fighter 5

Forza Horizon 4

JIN – GAME PROGRAMMING

Technical differences by genre
•Real-Time Strategy (RTS)

•Massively Multiplayer Online Games (MMOG)
•

40

Rendering low-res but large number of units, height-field terrain

3C oblique top-down camera, can optimize rendering, grid-layout system for
units and buildings, complex user interaction (keyboard/mouse, menus,
equipment, unit types, building types…)

AI non-player characters

Multiplayer typically 2-4 players local or online, ranking…

Rendering lower fidelity than offline counterparts

Gameworld huge and varied (zones)

Network data centers to maintain the state of the game world, manage users login,
provide chat or VoIP services, central server to handle the billing and
micro-transactions

Starcraft 2

World of Warcraft

JIN – GAME PROGRAMMING

Our game

•Read the "game design document" (see end of presentation)

41

Rendering 2D, relatively low res, sprites

3C fixed camera, very responsive user input system, accurate hit detection

Animations simple animated sprites

AI no, scripted/randomized levels

Multiplayer no

Gameworld relatively static backgrounds, numerous visible objects (enemies, bullets, particles…)

SCHMUP !

JIN – GAME PROGRAMMING

Classic Dominant Choice

42

JIN – GAME PROGRAMMING

Reality: Market Fragmentation

43

Market share of engine for notable Steam games
(source 2018 : reddit shorturl.at/ruF25)

Our game
SCHMUP !

https://www.gamedeveloper.com/business/game-engines-on-
steam-the-definitive-breakdown

https://emploi.afjv.com/
57 Programmer jobs (04/09/24)
Unity : 13+3 = 28%
Unreal : 6+9 = 26%
C++: 4+10 = 25%

shorturl.at/ruF25
https://www.gamedeveloper.com/business/game-engines-on-steam-the-definitive-breakdown
https://www.gamedeveloper.com/business/game-engines-on-steam-the-definitive-breakdown
https://emploi.afjv.com/

JIN – GAME PROGRAMMING

Unity

•Editor / Runtime
•Rapid iteration
•3D views
•Scenes
•Game Objects, Object-oriented
•Hierarchy
•Inspector
•Assets, Management tools
•Layers
•Scripting system

44

http://docs.unity3d.com/ScriptReference/

PART 2

45

AGENT-BASED INTERACTIVE
REAL-TIME SIMULATION

AGENTS / GAME OBJECTS

JIN – GAME PROGRAMMING

Game Objects: Components of the Game World

•Agents, actors, entities…
•Player & non-player characters
•Environment:

•Terrain, building, road, bridge, trees…

•Locomotion tools:
•Vehicles, platforms, ropes, graspable edges…

•Scenery and ambiance elements:
•Background, furniture, particle emitters, lights…

•Player items:
•Weaponry, armor, collectible objects, floating power-ups and health packs…

•Invisible utility data:
•Collision information, volumetric areas (events or logic), navigation mesh, paths of objects…

•3D objects, data containers, spatial zones, invisible or special objects…

47

JIN – GAME PROGRAMMING

Dynamic vs. Static Objects

•"Dynamic" objects
•Evolving state
•Main support of the gameplay
•Usually more CPU expensive

•"Static" objects
•Stable state
•No critical interaction with gameplay (but
layout can play a role)
•Possible optimizations (eg. baked lighting)

•Dynamic/Static ratio
•High ratio => perception of a more “alive” and
interactive game world
•Distinction often blurry (eg. waterfalls, destructible elements)
•In general, limited number of dynamic elements in a large static background area

48

Uncharted

JIN – GAME PROGRAMMING

Game Objects: Types and Properties

•Object-oriented logic
•Types/Instances
•Attributes/Values

•Current state of the object (locations, orientations, parameters…)
•Atomic data types, Key-value pairs, Arrays, Structures, Strings…

•Behavior
•How the state will change over time and in response to events
•usually controlled with Data-driven configuration parameters or
Scripting language

•Different types of objects have different attributes and
different behaviors
•All instances of a type have the same attributes and
behaviors, but different values

49

•Ex: Types and instances for
Pacman ?

JIN – GAME PROGRAMMING

Game Objects?

•Read the "game design document" (end of presentation)

50

SCHMUP !

JIN – GAME PROGRAMMING

Assets?

51

SCHMUP !

JIN – GAME PROGRAMMING

"Runtime" vs. "Tool-side" Game Objects

•Model in the world editor != concrete implementation
•Must be flexible to easily define new game object types (data-driven or
programmed)

•A single tool-side game object type can be implemented as
•A single instance of a class
•A collection of interconnected instances of classes
•A collection of loosely coupled objects
•Or even a unique id, with state data stored in tables

•(Not necessarily object-oriented language)

52

JIN – GAME PROGRAMMING

Class Hierarchies

•Provides a taxonomy of game objects
•Common, generic functionality at the root
•Increasingly specific functionality toward the leaves
•Tendency to monolithic hierarchy

53

A hypothetical class hierarchy for Pac-Man
Source: J. Gregory, Game Engine Architecture

JIN – GAME PROGRAMMING 54

Class Hierarchy ? SCHMUP !

JIN – GAME PROGRAMMING

Problems with Deep Hierarchies

•Understanding, maintaining, and modifying classes
•Need to understand all parents

•Inability to describe multidimensional taxonomies
•A single axis/criteria at each level, “hack” the hierarchy to add unanticipated objects

•Multiple inheritance: the deadly diamond
•Most game studios prohibit/limit the use of multiple
inheritance in their hierarchies
•=> Mix-in classes

•The bubble-up effect
•Factorization vs. Duplication of code

55

Source: J. Gregory, Game
Engine Architecture

JIN – GAME PROGRAMMING

•Static destructible enemy turret ?
•Special player invicible bullet ?

56

Class Hierarchy ? SCHMUP !

JIN – GAME PROGRAMMING

Components

•Divide object into dedicated and loosely coupled classes
•Each component provides a single well-defined and independent
service
•Functionalities easier to understand, test,
maintain, reuse, refactor and extend
•Ex: root GameObject class composed
of pointers to all possible components

57

Source: J. Gregory, Game
Engine Architecture

http://gameprogrammingpatterns.com/component.html

JIN – GAME PROGRAMMING

Generic Components

58

•Arbitrary number of instances of each type of component
•ex. linked list in the root GameObject

•Permits to create new types of components without modifying the
game object class
•Can iterate polymorphic operations

•ex. update

•No assumptions about what other
components exist within a particular
game object
•Components can have a hierarchy

•ex. Input -> PlayerInput & AIInput
Source: J. Gregory, Game
Engine Architecture

JIN – GAME PROGRAMMING

Unity

•Generic components :
• transform, renderer, collider…

•Behaviours, Monobehaviours

59

http://docs.unity3d.com/ScriptReference/Component.html
http://docs.unity3d.com/ScriptReference/Behaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

GAME LOOP

PRINCIPLES

JIN – GAME PROGRAMMING

Game Loop

•Game composed of many interacting subsystems
•I/O, rendering, animation, collision detection, rigid body dynamics simulation (optional), multiplayer
networking (optional), audio, game objects model…

•Subsystems require periodic update with various rates
•Rendering and Animation: 30 or 60 Hz
•Dynamics simulation: higher rates (e.g. 120 Hz)
•Higher-level systems (e.g. AI): 1 or 2 times/second (can be async. with rendering)

 Solution: a single loop to update everything

61

while (true) { //(need something to quit…)
processInput(); //but don’t wait for input
updateGameState(); //one step of the game simulation
renderGame(); //generate outputs

}

JIN – GAME PROGRAMMING

Theoretical Example: Pong

62

initGame()
while (true) { // game loop

readHumanInterfaceDevices();
if (quitButtonPressed())

break; // exit the game loop
movePaddles();
moveBall();
collideAndBounceBall();
if (ballImpactedSide(LEFT_PLAYER)){

incrementScore(RIGHT_PLAYER);
resetBall();

}
else if (ballImpactedSide(RIGHT_PLAYER)) {

incrementScore(LEFT_PLAYER);
resetBall();

}
renderGame();

}

JIN – GAME PROGRAMMING

Theoretical Example: PacMan

63

while (player.lives > 0){
// Process Inputs
JoystickData j = grabRawDataFromJoystick();
// Update Game World
player.move(j);
for (Ghost g in world){

if (collision(player, g))
killPlayerOrGhost(player, g);

else
g.move(player.position);

}
// Pac-Man eats any pellets
...
// Generate Outputs
renderGame();

}

JIN – GAME PROGRAMMING

Our game loop (theory)?

•Read the "game design document" (end of presentation)

64

initGame();
while (getHealth(player)>0) { // game loop

readHumanInterfaceDevices();
if (quitButtonPressed())

break; // exit the game loop
moveAndShootShip(); // up/down/left/right/shoot based on inputs
movePlayerBullets();

 moveAndShootAllEnemies();
 moveEnemiesBullets();
foreach (enemyBullet) {

 if (collide(player, enemyBullet)){
 decreaseHealth(player);

 }
 }

//... same for player’s bullets
updateScore()

 renderGame(); // draw entire content
}

SCHMUP !

TIME MANAGEMENT

GAME LOOP

JIN – GAME PROGRAMMING

Frame rate

•Frame rate
•Number of game loop renderings/second (Hz or
FramePerSecond)
•Describes the speed at which the sequence of images is
displayed

Frame time, Time delta, Delta time, Frame period…
•Amount of time between 2 successive frames
(seconds)

•Amount of time to get inputs, update game state
and render image

•Ex: f = 60 FPS -> dt = 16,6 ms/frame…

66

while (true) {
processInput();
updateGameState();
renderGame();

}

Source: Tim Hengeveld

JIN – GAME PROGRAMMING

Frame rate

•Depends on the complexity of calculating each frame and the
power of the hardware
•=> Basic game loop will run the game at inconsistent speeds
depending on the hardware or the situation

•Ex: move x meters per frame

•=> Need to track time and adapt
the loop architecture to control
the rate of the game

67

Source: PCMag

JIN – GAME PROGRAMMING

Real Time

•Amount of time elapsed in the real world
•Insufficient resolution of OS function for querying the system time

•Ex. time() in C

•=> Use high-resolution timer hardware register on CPU
•Origin = last power on or CPU reset
•Counts the units of elapsed CPU cycles (or some multiple thereof)
•Converted into seconds by multiplying by the frequency
•Ex: 3 GHz CPU, incremented 3 billion times / s -> 0.333 ns resolution
•Wrapping problem !
•Caution with multicore CPU: 1 timer / core

68

JIN – GAME PROGRAMMING

Game Logic Time

•Amount of time elapsed in the game world
•What happens during 1 frame (or "tick") of the game loop
•Independent from real time and rendering time

•Pause -> stop updating the game temporarily (!= breakpoint)
•Slow-motion -> updating the game more slowly than the real-time clock
•Rewind…

•Useful for debug
•Ex: freeze the action but not the rendering and debug camera (different clock)
•Single-stepping the game clock by 1 target frame interval (e.g., 1/30 of a second)
with a button while the game is in a paused state

69

JIN – GAME PROGRAMMING

Use delta time in update

•Most game engines

•Update takes into account the amount of elapsed game time
since last frame

70

1. Basic Game Loop

move 1 meter/frame

30 fps => 30m/s
10 fps => 10m/s

2. With delta time

move (30*dt) meter/frame

30 fps => (30*0,033)*30 = 30m/s
10 fps => (30*0,1)*10 = 30m/s

JIN – GAME PROGRAMMING

Use delta time in update

•Most game engines

•Update takes into account the amount of elapsed game time
since last frame

71

double lastTime = getCurrentTime(); //CPU’s timer
while (true){

double current = getCurrentTime();
double elapsed = current - lastTime; //last frame duration
processInput();
update(elapsed);
render();
lastTime = current;

}

JIN – GAME PROGRAMMING

Use delta time in update

72

Consistent rate on different hardware
Faster machines = smoother gameplay

Measured value 𝛥𝑡 for frame 𝑘 is an
estimation of the duration of the
next frame (𝑘 + 1)

=> Subject to “frame-rate spike” (sudden
change of time frame)

Undeterminism
Physics will behave differently depending
on the frame rate (numerical integration /
rounding error)
Online multiplayer will not work properly
with variable frame rates

JIN – GAME PROGRAMMING

Running average

•Game loops tend to have at least some frame-to-frame
coherency
•=> Use an average of the frame-time on a small number of
frames as an estimate of Δ𝑡

•Allows the game to adapt to varying frame rate, and mitigates
the effects of momentary performance peaks

•Long averaging interval => less responsive to varying frame rate + less
spikes impact

73

JIN – GAME PROGRAMMING

Breakpoints issue

•Game loop stops running but not CPU nor clock
•=> A false measured frame time

•Simple solution:
•Compare Δ𝑡 to predefined upper limit and set Δ𝑡 to an
artificial target frame rate

74

JIN – GAME PROGRAMMING

Frame Rate Governing

•Attempt to guarantee frames’ duration (rather than guess)
•Frame limiting: delay rendering if update is complete before a
fixed target frame rate

•Frame drop: skip a rendering if an update is too long

75

while (true){
double start = getCurrentTime();
processInput();
update();
render();
sleep(start + MS_PER_FRAME - getCurrentTime());

}

JIN – GAME PROGRAMMING

Frame Rate Governing

•OK if game’s frame rate is close to target frame rate on average
•“Variable frame rate” mode during development
•Switch on rate governing when game close to consistent frame rate

•Consistent frame rate is important for
•Physics
•Graphics
•Record and playback
•Power consumption

•Further readings
•http://gameprogrammingpatterns.com/game-loop.html
•http://gafferongames.com/game-physics/fix-your-timestep/
•http://www.brandonfoltz.com/downloads/tutorials/The_Game_Loop_and_Frame_Rate_Management.pdf
•http://higherorderfun.com/blog/2010/08/17/understanding-the-game-main-loop/

76

http://gameprogrammingpatterns.com/game-loop.html
http://gafferongames.com/game-physics/fix-your-timestep/
http://www.brandonfoltz.com/downloads/tutorials/The_Game_Loop_and_Frame_Rate_Management.pdf
http://higherorderfun.com/blog/2010/08/17/understanding-the-game-main-loop/

GAME OBJECTS

GAME LOOP

JIN – GAME PROGRAMMING

Game Objects Updating

•Game loop updates the states of all game objects dynamically, maybe in
a particular order

•Dependencies between the objects
•Dependencies on various engine subsystems
•Interdependencies between those engine subsystems themselves

•Linkage to low-level engine systems: ensure that every game object has
access to the services it depends on

•Rendering, particles, audio, animation, collisions, physics…

78

JIN – GAME PROGRAMMING

Game Objects Updating

•Game object’s notion of time is discrete
•Game object’s state describes its configuration at one specific instant in
time

•Defined as the values of all its attributes

•Game object updating:
•Process of determining the state of each object at the current time 𝑆𝑖(𝑡) given its
state at a previous time 𝑆𝑖(𝑡 – Δ𝑡)

•Once all object states have been updated, the current time 𝑡 becomes the new
previous time

79

JIN – GAME PROGRAMMING

Simplistic Approach

•Iterate over a collection of active game objects
•Often stored in a singleton manager class (“GameWorld”, “GameObject Manager”…)
•A linked list or array of pointers, smart pointers, or handles

•Call a custom implementations of Update(dt) on each object once per
frame of the main loop to advance its state

80

while (true){
PollJoypad();
float dt = g_gameClock.CalculateDeltaTime();
for (each gameObject) {

gameObject.Update(dt); // updates all engine subsystems
}
g_renderingEngine.SwapBuffers();

}

JIN – GAME PROGRAMMING

Simplistic Approach

•Each Update() function updates directly all the engine subsystems
concerned by the object (rendering, animation, physics…)

81

virtual void Tank::Update(float dt){
// Update the state of the tank itself.
MoveTank(dt);
DeflectTurret(dt);
FireIfNecessary();
// Now update low-level engine subsystems on behalf
// of this tank. (NOT a good idea)
m_pAnimationComponent->Update(dt);
m_pCollisionComponent->Update(dt);
m_pPhysicsComponent->Update(dt);
m_pAudioComponent->Update(dt);
m_pRenderingComponent->draw();

}

JIN – GAME PROGRAMMING

Batched Updates

•Low-level engine systems benefit from batched updating
•Global calculations done once and reused for many game objects rather than
being redone for each object
•Minimal duplication of computations

•Ex: collisions depend on multiple objects by nature

•Reduced reallocation of resources: once per frame and reused
•Maximal cache coherency: data arranged in a contiguous region of RAM

•Each engine subsystem is updated by the main game loop rather than
each object’s Update()

•A game object can require a particular engine subsystem to allocate some state
information
•Ex: game object control the properties of the mesh instance, but not directly the
rendering

82

JIN – GAME PROGRAMMING

virtual void Tank::Update(float dt){
// Update the state of the tank itself.
MoveTank(dt);
DeflectTurret(dt);
FireIfNecessary();
// Control the properties of the various engine
// subsystem components, but do NOT update
// them here...
if (justExploded) {

m_pAnimationComponent->PlayAnimation("explode");
}
if (isVisible) {

m_pCollisionComponent->Activate();
m_pRenderingComponent->Show();

}
else {

m_pCollisionComponent->Deactivate();
m_pRenderingComponent->Hide();

}
// etc.

}

Batched Updates: Example
•Game Object’s Update

83

Game Loop

while (true){
PollJoypad();
float dt = g_gameClock.CalculateDeltaTime();
for (each gameObject) {

gameObject.Update(dt);
}
g_animationEngine.Update(dt);
g_physicsEngine.Simulate(dt);
g_collisionEngine.DetectResolveCollisions(dt);
g_audioEngine.Update(dt);
g_renderingEngine.RenderFrameAndSwapBuffers();

}

JIN – GAME PROGRAMMING

Phased updates

•Game objects/subsystems can depend on one another => Order
•=> Subsystems update within the main game loop
•=> Call of game objects updates

•May be updated multiple times during the frame if it depends on intermediate
results of calculations
•Not all game objects require all update phases
•Cost of iteration

84

JIN – GAME PROGRAMMING

Bucketed updates

•Inter-object dependencies can lead to
conflicting rules governing the order of
updates
•=> Collect objects into N independent groups

•For each bucket, run complete update of the game
objects and the engine systems, then all update
phases
•Repeat for each bucket

85

JIN – GAME PROGRAMMING

Object State Inconsistencies - One-Frame-Off Lag

•Objects are not updated from 𝑡1 to 𝑡2 instantaneously and in parallel but
sequentially
•The states are consistent before and after the update loop, but may be inconsistent
during the loop
•Problem when game objects query one another for state information: previous
state or new state?
•=> Object state caching + Time-stamping

•Caches previous consistent state vector 𝑆𝑖(𝑡1) while calculating new 𝑆𝑖(𝑡2) rather than
overwriting it during update
•Allows any object to query the available 𝑆𝑖(𝑡1) of any other object without regard to update order
•Can linearly interpolate between previous and next states to approximate the state of an object at
any moment

86

IN PRACTICE

GAME LOOP

JIN – GAME PROGRAMMING

Callback-Driven Frameworks

•Game loop exists but is largely empty
•=>Write callback functions to complete it

•Ex: Game Loop Ogre3D
•Cf. Ogre::Root::renderOneFrame() in OgreRoot.cpp

88

while (true){
for (each frameListener)

frameListener.frameStarted();
renderCurrentScene();
for (each frameListener)

frameListener.frameEnded();
finalizeSceneAndSwapBuffers();

} Source: http://wiki.ogre3d.org/

http://wiki.ogre3d.org/

JIN – GAME PROGRAMMING

Callback-Driven Frameworks

•Derive a class from Ogre::FrameListener
•Override frameStarted() and frameEnded()

•Resp. called before and after the rendering

89

class GameFrameListener : public Ogre::FrameListener {
public:

virtual void frameStarted(const FrameEvent& event) {
// Do things that must happen before the 3D scene is rendered
// (i.e., service all game engine subsystems).
pollJoypad(event);
updatePlayerControls(event);
updateDynamicsSimulation(event);
resolveCollisions(event);
updateCamera(event);
// etc.

}
virtual void frameEnded(const FrameEvent& event) {

// Do things that must happen after the 3D scene has been rendered.
drawHud(event);
// etc.

}
};

Source:
http://wiki.ogre3d.org/

http://wiki.ogre3d.org/

JIN – GAME PROGRAMMING

Unity

•Callback-driven framework
•Game parts already implemented: game loop, rendering…
•customizable functions called during the game loop
(Start(), Update()…)

•http://docs.unity3d.com/Manual/ExecutionOrder.html
•http://docs.unity3d.com/Manual/class-
ScriptExecution.html

90

http://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://docs.unity3d.com/Manual/class-ScriptExecution.html
http://docs.unity3d.com/Manual/class-ScriptExecution.html

JIN – GAME PROGRAMMING

Unity

•Time
•http://docs.unity3d.com/ScriptReference/Time.html
•“Game time“
•timeScale
•deltaTime
•timeSinceLevelLoad
•captureFramerate
•maximumDeltaTime…

•http://docs.unity3d.com/Manual/class-TimeManager.html

91

http://docs.unity3d.com/ScriptReference/Time.html
http://docs.unity3d.com/Manual/class-TimeManager.html

INPUTS

92

JIN – GAME PROGRAMMING

Inputs

•Collect and store all information from the outside world
•Player: mouse, keyboard, touch, controller…
•Network message queues (multiplayer…)
•Saved replay information
•Others: camera, gps…

•Process input but doesn’t wait for it

•NB: Try to keep inputs/events handling separated from the
game logic

93

JIN – GAME PROGRAMMING

Unity

•Input
•http://docs.unity3d.com/ScriptReference/Input.html

•Input Manager
•Custom axis and buttons, dead zone, gravity, sensitivity, key binding…

•Time
•New Input System (2021)

94

http://docs.unity3d.com/ScriptReference/Input.html

JIN – GAME PROGRAMMING

Inputs ?

•Read the "game design document" (end of this course)

95

SCHMUP !

Component Input Manager

In game :
• Player Input only (no network or replay)
• 4 Direction arrows
• 1 Fire key
• 1 Change of shoot key
• 1 Pause/Esc key

In Launch Menu
• Launch
• Quit

In Pause Menu
• Resume
• Restart
• Quit

SCHMUP !

SCHMUP !

SETUP

JIN – GAME PROGRAMMING

Usual Development Tools

•Game Engine Interface
•Various editors and/or IDE

•Code: specific engine editor, Visual Studio…
•Files: json, xml, hex (binary files)…

•Version Control
•SVN, Git, Mercurial, Perforce…

•Difference & 3-way merge tools
•Build tools

98

JIN – GAME PROGRAMMING

Git

1. Register on a git hosting platform
Github, gitlab, bitbucket, forge ensiie or tsp ...
Complete the necessary procedure for secure connections (ssh)

2. Install the git shell + graphical client
Github desktop, Sourcetree ...

3. Create the dev project
4. Initialize the git repository in the project folder with the "create“ function
5. Dev
6. Commit
7. Set the remote repository
8. Push
9. Goto 5

99

SCHMUP !

JIN – GAME PROGRAMMING

Coding practices

•Design patterns
•Gang of Four book
•gameprogrammingpatterns.com

•Singleton, Iterator, Abstract Factory…

•Recommended coding standards
•Clean, understandable and commented interfaces

•Good names and prefixes

•Consistency
•Make common errors easier to see

100

http://gameprogrammingpatterns.com/

JIN – GAME PROGRAMMING

Project Setup

•Design the game objects architecture
•Gather and organize the assets
•Build the game world and set up the objects

SCHMUP !

SCHMUP !

PLAYER & ENEMIES – MOVE & SHOOT

JIN – GAME PROGRAMMING 103

SCHMUP !

JIN – GAME PROGRAMMING

Player (resp. Enemy)

•Prefab composed of
•Sprite renderer
•Collider + RigidBody2D
•PlayerAvatar <- BaseAvatar

- maxSpeed
- health
- energy
- …

•Engines
•InputController
•BulletGun(s)

SCHMUP !

JIN – GAME PROGRAMMING

Inputs

•Input Manager + Input class Unity
•InputController.cs

•gathers all user inputs
•know the other components of the player

•can get/set their attributs and call their methods

105

SCHMUP !

JIN – GAME PROGRAMMING

Movements

•InputController component
• change the speed of the engines based on dedicated axis (ex. horizontal/vertical)
•Engines component
• calculate new position based on position, speed, time et maxspeed
•For the enemies : same component with input replaced by a "AI" controlling the speed

SCHMUP !

JIN – GAME PROGRAMMING

Shoot

•PlayerBullet object
•Sprite
•Bullet component

•damage and speed
•update position
•collision test

•damages to the avatar

•BulletGun component
•damage and speed
•fire()

107

SCHMUP !

JIN – GAME PROGRAMMING

Ex. of Class Diagram

108

JIN – GAME PROGRAMMING

Ex. of Class Diagram

109

PART 3

110

LOW-LEVEL ASPECTS

DEBUGGING & PROFILING

JIN – GAME PROGRAMMING

Errors

•Player errors
•Inform and continue
•Ex: impossible action, bad input
information

•Creator errors
•Inform and stop
•Handle the problem
•Ex: bad asset

112

•Programmer errors (bugs)
• Fix
• Error return codes
• Exceptions

•Performance costs

• Assertions
•Checks an expression (i.e. assumptions):
if false stops the program

JIN – GAME PROGRAMMING

Logging and Tracing

•"printf debugging"
•Formatted output

•Ex. custom OutputDebugString()

•Level of verbosity, channels, filters
•Log files
•Crash Reports

•Gather useful information: level, player location, animation state,
running scripts, stack trace, memory allocators states…
•E-mail

113

JIN – GAME PROGRAMMING

Debug Facilities

114

Debug cameras

Pause and slow motion

Cheats
Displacement, invincibility,
infinite characteristics…

Might be in the final game

Screen shots and movie
capture

Debug drawing API
Visualization: math calculations…

Lines, shapes, points, 3D text…

In-game menus
Configure subsystems options at runtime

Call engine functions

In-game console
Command-line interface to the engine

Hard-coded commands, rich interface or scripts

JIN – GAME PROGRAMMING

Profiling: “90/10 rule”

•90% of software running time is caused by 10% of the code
•=> Optimizing 10% of the code can potentially save 90% of execution
time

•Measure the execution time
•Time spent in each function, nb of function calls, call graph,
•% of the function’s time spent calling each descendant,
•% of the overall running time for each function…

•Ex. 3rd party profilers
•Vtune (Intel), Rational Quantify (IBM)

115

JIN – GAME PROGRAMMING

Memory-Tracking
•Stats
•Leak = out-of-memory

•Memory allocated but not freed

•Corruption = data written on wrong
memory location

•Other data overwritten
•Right location not updated

•Main cause = pointers
•Appropriate and contextual display

•Custom or 3rd-party tools
•Rational Purify (IBM),
Bounds Checker (CompuWare)

Uncharted 4

Uncharted 2

JIN – GAME PROGRAMMING

Unity

•IDE
•Console

•print(), Debug.Log(),
Debug.Draw()

•Debugger
•Profiler
•Unit tests
•UnityEngine.Assertions
•Version control
(integrated or external)

117

https://blogs.unity3d.com/2014/07/28/unit-testing-at-the-speed-of-light-with-unity-test-tools/
https://docs.unity3d.com/ScriptReference/Assertions.Assert.html
https://docs.unity3d.com/Manual/VersionControl.html

PHYSICS

118

JIN – GAME PROGRAMMING

Physics in a game

•Detect collisions between dynamic
objects and static world geometry

•Rigid body dynamics
•gravity, other forces…

•Ray and shape casts
•line of sight, bullet impacts…

•Trigger volumes
•objects enter, leave, or inside pre-defined regions

•Destructible structures

•Characters picking up rigid objects

•Spring-mass systems

•Complex machines (cranes, moving
platform puzzles…), Traps (such as an
avalanche of boulders)

•Vehicles

•Rag doll character deaths

•Hair, cloth, water surface, dangling props
simulations

•Audio propagation

•…

119

JIN – GAME PROGRAMMING

Integrating and Using Physics

•Not necessarily fun
•Chaotic behavior can disturb the experience
•Depends on many factors (interactions, genre…)

•Unpredictability
•Difficult tuning and control
•Unexpected features

•Ex: rocket-launcher jump trick in FPS

•Additional work for engineers and artists

120

JIN – GAME PROGRAMMING

Collision + Rigid Body Dynamics

•The physics system drives the collision system
•Dynamic rigid body associated with a collidable object

•Collision library
•Geometric (simple) shapes intersection tester
•Casts of ray, shapes, phantoms
•Layers

•Rigid Body Dynamics
•Simulate the motions of game objects over time
•Classical (newtonian) mechanics
•Solid and undeformable objects
•Ensure conformity to constraints: ex. non-penetration (collision response), joints…

121

JIN – GAME PROGRAMMING

Rigid Body Dynamics

•Equations of motion for linear dynamics
•𝒗 𝑡 = ൗ𝑑𝑝(𝑡)

𝑑𝑡 𝒂 𝑡 = ൗ𝑑𝒗(𝑡)
𝑑𝑡 𝑭 𝑡 = ൗ𝑑(𝑚𝒗 𝑡)

𝑑𝑡 = 𝑚𝒂(𝑡)

•Solving 𝑣(𝑡) and 𝑝(𝑡) given force 𝐹(𝑡) and previous pos. and velocity

•Analytical solutions almost impossible in games
•Numerical integration not exact but stable

•Time-stepped: finding 𝑝, 𝑣 et 𝐹 for 𝑡2 = 𝐹(𝑡1)

•Explicit euler
•𝑝(𝑡2) = 𝑝(𝑡1) + 𝑝(𝑡1). Δ𝑡

•𝒗 𝑡2 = 𝒗 𝑡1 + Τ𝑭 𝑡1
𝑚 . Δ𝑡 = ൗ𝑝 𝑡2 −𝑝(𝑡1)

∆𝑡

122

JIN – GAME PROGRAMMING

Unity

•Nvidia PhysX
•2D, 3D
•Components

•Collider: shape, center, scale…
•Rigidbody: gravity, kinematics,
static…

•Events/Callbacks
•OnCollisionEnter()…
•OnTriggerEnter()…

•Physics class
•Raycast, spherecast, forces,
velocity…

•Physics manager
•Collision layers…

123

GAME WORLD & FLOW MANAGEMENT

JIN – GAME PROGRAMMING

World Chunks

•"Levels, scenes, maps, stages, areas"…
•Game decomposed into discrete playable regions

•Linear progression
•Star topology

•Central hub area
•Access other areas at random from the hub (sometimes locked)

•Graph-like topology
•Areas connected to one another in arbitrary ways

•Illusion of a vast, open world

•Benefits
•Memory usage : usually only 1 loaded at a time
•Control the overall flow of the game
•Division-of-labor

125

JIN – GAME PROGRAMMING

High-Level Game Flow

•Sequence, tree, or graph of player
objectives

•Definition of success/failure conditions and
consequences
•Can include various in-game movies
•Ex: tasks, stages, levels, waves…

•Loose coupling chunks / objectives
•Flexibility of design
•Objectives grouped into sections of gameplay
("chapters", "acts")

126

Source: J. Gregory, Game Engine Architecture

JIN – GAME PROGRAMMING

Flow & Finite State Machines

•List of states and transitions triggered by conditions
•Each state links a single player objective or encounter and a particular
location
•When the player completes a task, the state machine advances to the
next state = new goals
•When the player fails to complete a task, the state machine advances to
the corresponding state

•Ex : send back to the beginning of the current state or to the main menu

•Rq: FSM can also be used for handling game objects' states

127

JIN – GAME PROGRAMMING

Loading and Streaming System

•Manage the loading of game world chunks and other assets
from disk into memory
•Manage the spawning and destruction of game objects during
the game = classes instantiation

•=> File I/O
•=> Allocation and deallocation of memory

128

JIN – GAME PROGRAMMING

Chunks Data

•Binary image of each object
•Trivial spawning
•Problematic storing
•Problematic for changes
•Suitable for stable data structures: mesh data, collision geometry…

•Serialized Game Object Descriptions
•Writing/reading stream of data that contains enough detail to permit the original
object to be reconstructed later
•Stored in a more-convenient and more-portable format (ex: XML or proprietary)
•Slow parsing
•Customized functions vs reflection and generic serialization system

129

JIN – GAME PROGRAMMING

Level Loading

•Simple level loading: allow one game world chunk loaded at a time
•Static or simply animated 2D loading screen

•Stack-based allocator

•Load-and-stay-resident (LSR) data, levels loaded on top

•No way to implement a vast, contiguous, seamless world

•No game world in memory during loading

•Air Locks
•Large block for a full world chunk

•Small block for a tiny one

•Full chunk can be unloaded and replaced when the
player is in the air lock and kept busy

130

Source: J. Gregory, Game Engine Architecture

JIN – GAME PROGRAMMING

Streaming

•Main goals
•Load and unload data as needed as the player progresses
•Manage the memory without fragmentation

•Divide every game asset into equally-sized blocks of data
•Use a pool-based memory allocation system to load and unload
resource data as needed and avoid memory fragmentation
•Which resources to load?

131

Source: J. Gregory, Game Engine Architecture

JIN – GAME PROGRAMMING

Object Spawning

•Off-line memory allocation
•No game objects can be created or destroyed after world chunks loading
•Game’s memory usage highly predictable
•Limits game design

•Dynamic memory management
•Can be slow
•Can cause memory fragmentation, leading to out-of-memory conditions
•Need efficient heap allocators

132

JIN – GAME PROGRAMMING

Spawners

•Lightweight, data-driven representation of an object to create
it at runtime

•Id of type => instantiate appropriate class or classes
•Table of key-value pairs => initialize attributes

•Benefits
•Simple data management
•Flexible approach
•Can be used for other objects, ex: important points (POI for AI
characters, coordinate axes for animations synchronization, location
for particle or audio effect)
•Configurable time of spawning

133

JIN – GAME PROGRAMMING

Saved Games

•Similar to the world level loading system: saved file store the current state of the
game objects
•No duplicate copy of any information that can be determined by reading the world
level data (static geometry, object without impact on gameplay)
•Emphasis on compression
•Check points = specific save points

•Some data are always exactly the same and needn’t be stored
•Store only the name of the last check point reached, some information about the current state of
the player character (health, number of lives remaining, inventory, weapons, ammo…)
•Or start the player off in a known state at each check point

•Save anywhere
•Current locations and internal states of every game object whose state is relevant to gameplay
•Omit irrelevant details (ex. Animations)

134

JIN – GAME PROGRAMMING

Unity

•Level Flow
•UnityEngine.SceneManagement
SceneManager

•LoadScene()
•GetActiveScene()

•Object.DontDestroyOnLoad

•Object Spawning
•Prefab + Instantiate()
•Destroy()
•Serialization C#
•Resources.Load/Unload

135

https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
https://docs.unity3d.com/ScriptReference/Object.html

JIN – GAME PROGRAMMING

•Scenes ?

136

SCHMUP !

GAME OBJECTS COMMUNICATION:

137

EVENTS SYSTEM

JIN – GAME PROGRAMMING

Components Communication

•Direct references between some components
•Simple and fast
•Coupling

•Shared state in the container object
•More complex container
•Possible unused information
•Communication implicit and order-dependent

•Messages/Events
•Components can send and receive to/from container
•Container can broadcast

138

JIN – GAME PROGRAMMING

Events and Communication

•Games are inherently event-driven
•Event = any interesting change in the state of the game or its
environment

•Ex. 1: Player hits monster
•-> monster's health component

•-> Monster death event -> …

•-> monster's animation
•-> UI (damages)
•-> sound
•…

•Ex. 2: Achievement system triggered by different aspects of gameplay

139

JIN – GAME PROGRAMMING

Event System

•Global management of all communications in the game
•Engine subsystems or game objects register their interest in
particular kinds of events
•Notified when the event occurs
•Handle and respond to the event

•Different types of game objects will respond in different ways
•= crucial aspect of their behavior

•Cf. Observer and Command patterns

142

http://gameprogrammingpatterns.com/observer.html
https://gameprogrammingpatterns.com/command.html

JIN – GAME PROGRAMMING

Event as Objects

•Event type
•Hierarchy possible
•Ex: explosion, friend injured, player spotted,
item picked up…

•Event arguments = data about the event
•Timestamp
•Linked list, dynamically allocated array, various data types…
•Ex: how much damages, which friend, where spotted, how much bonus…

144

struct Event {
const U32 MAX_ARGS = 8;
EventType m_type;
U32 m_numArgs;
EventArg m_aArgs[MAX_ARGS];

};

JIN – GAME PROGRAMMING

Event as Objects: Benefits

•Single event handler function
•Any number of different event types can be represented by an instance of a
single class
•Need one virtual function to handle all types of events

•ex. virtual void onEvent(event& event)

•Persistence
•Can be stored in a queue for later handling, copied and broadcast to multiple
receivers…

•Blind event forwarding
•Don’t have to “know” anything about the event to send it

145

JIN – GAME PROGRAMMING

Event Types

•Global enum: 1 integer by event
•Simple and efficient (integers)
•Knowledge of all events is centralized
•Hard-coded and Order-dependent
•#include in every system => global recompilation
•OK for small demos and prototypes

•GUIDs (globally unique identifiers) for each event + name
•Strings

•Flexibility and data-driven nature
•Name conflicts and typos -> user tools (database, user interface, documentation…)
•High memory requirements and comparing costs -> hashed string ids

146

enum EventType {
Event_Object_Moved,
Event_Object_Created,
Event_Object Destroyed,
Event_Guard_Picked_Nose,
// ...

};

JIN – GAME PROGRAMMING

Ex. of Common Events Types

147

JIN – GAME PROGRAMMING

Events Sending

•Each event is linked to a dynamic list of listeners
•List of delegates = function pointers that can be coupled with
an object pointer and used as a callback

•Send methods
•By trigger: the event will be sent immediately
•By queue: events in line and processed globally by the event
manager

•Ability to post events into the future, to assign priorities…

149

JIN – GAME PROGRAMMING

Event Handlers

•Single function capable of handling all types of events

•Suite of handler functions for each type of event
•Event Forwarding within a graph of objects

•= Chains of Responsibility pattern

150

virtual void SomeObject::OnEvent(Event& event){
switch (event.GetType()) {
case EVENT_ATTACK: RespondToAttack(event.GetAttackInfo()); break;
case EVENT_HEALTH_PACK: AddHealth(event.GetHealthPack().GetHealth()); break;

//...
default: break; // Unrecognized event

}
}

JIN – GAME PROGRAMMING

Data-Driven Event Systems: GUI

•Possibility to configure how objects
respond to certain events
•Risks/Benefits

•Ease of use, gradual learning curve, in-tool
help and tool tips
•Error-checking
•High cost to develop, debug, and maintain
•Additional complexity, which can lead to
bugs
•Designers sometimes limited

154

Kismet (Unreal Engine)

JIN – GAME PROGRAMMING

Unity

•Scripted Events/Messages
•http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
•http://docs.unity3d.com/Manual/ExecutionOrder.html
•http://wiki.unity3d.com/index.php?title=Event_Execution_Order
•http://www.richardfine.co.uk/2012/10/unity3d-monobehaviour-lifecycle/

155

http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://wiki.unity3d.com/index.php?title=Event_Execution_Order
http://www.richardfine.co.uk/2012/10/unity3d-monobehaviour-lifecycle/

JIN – GAME PROGRAMMING

Unity / C# Events: Method 1

•Sender: Simple custom delegate (= function pointer) and its
associated event

•Receiver: Subscription and simple handler

156

Delegate and Event
declaration

•public delegate void NewEvent(int eventId);

•public event NewEvent OnMyEvent;

Event raising
if (OnMyEvent != null){

OnMyEvent(i);
}

Subscription/
Unsub.

private void OnEnable(){
 OnMyEvent += MyCustomEventHandler;
}

private void OnDisable(){
 OnMyEvent -= MyCustomEventHandler;
}

Handler void MyCustomEventHandler(int eventID){ … }

JIN – GAME PROGRAMMING

Unity / C# Events: Method 2

•Sender: Event based on .NET System.EventHandler delegate (no
data except sender)

•Receiver: Same subscription and generic handler

157

Event declaration
•//public delegate void EventHandler(object sender, EventArgs e)

•public event EventHandler OnCleanup;

Event raising
if (OnCleanup != null){

OnCleanup(this); //no data except sender
}

Subscription
private void OnEnable(){
 OnCleanup += MyCleanupEventHandler;
}

Handler void MyCleanupEventHandler(object sender, EventArgs e){ … }

JIN – GAME PROGRAMMING

Unity / C# Events: Method 3 (1)

•Custom class specializing EventArgs
•Event based on generic .NET System.EventHandler
delegate (data)

158

Event Class

•public class MessageReceivedEventArgs : EventArgs {

• private string myMessage;

• public MessageReceivedEventArgs(string m){myMessage = m;}

•}

JIN – GAME PROGRAMMING

Unity / C# Events: Method 3 (2)

•Sender:

•Receiver:

159

Event
declaration

•//public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)
where TEventArgs : EventArgs

•public event EventHandler<MessageReceivedEventArgs> OnMessageReceived;

Event raising

if (OnMessageReceived != null){
OnMessageReceived(this, new MessageReceivedEventArgs("message"));

}

Subscription
private void OnEnable(){
 OnMessageReceived += MyMessageEventHandler;
}

Handler
void MyMessageEventHandler(object sender, MessageReceivedEventArgs e){
… }

JIN – GAME PROGRAMMING

Events?

160

SCHMUP !

LOW-LEVEL ENGINE FEATURES

161

JIN – GAME PROGRAMMING

Engine Configuration

•Load and save configuration options
•Text files: INI, XML
•Compressed binary files: for memory cards

•Windows registry

•Command line
•Environment variables

•Online user profiles

•Per-user options
•Slots, folders, registry…

162

JIN – GAME PROGRAMMING

Subsystem Start-Up and Shut-Down

•Major subsystems usually implemented as singleton
(“managers”)

•Start-up and shut-down functions

•Each subsystem must be configured and initialized in a specific
order defined by their interdependencies

•Shut-down typically in the reverse order

163

JIN – GAME PROGRAMMING

Memory Management

•Dynamic allocation is slow
•Fragmentation can occur

•Allocations may fail even when there are enough free bytes
•Allocated memory blocks must always be contiguous

•=> Avoid heap allocations
•=> Favor Pool/stack allocators

164

JIN – GAME PROGRAMMING

Cache coherency

•Processors have a high-speed memory cache
•If the requested data already exists in the cache => loaded directly in
registers => much faster than reading from RAM

•Practical solutions to avoid cache misses
•Organize data in contiguous blocks as small as possible and access
them sequentially
•Keep high-performance code as small as possible
•Avoid calling functions from within a performance-critical section of
code or place it as close as possible

165

JIN – GAME PROGRAMMING

Containers

•Types
•Array, dynamic array, linked list, stack (lifo), queue (fifo), double-ended queue, priority queue…
•Tree, binary search tree, binary heap
•Dictionary, hash table, set
•Graph, directed acyclic graph

•Operations
•Insert, remove, sequential access, random access, find, sort

•Iterators
•Custom classes vs. 3rd party SDK

•Control, optimization, customization, no external dependies vs.
•Rich set of features, robustness, generic algorithms

166

JIN – GAME PROGRAMMING

Strings

•Natural for objects and assets unique identifiers
•Expensive at runtime: comparison, copy…

=> profiling
•Storing

•Array of chars
•String class
•Hashed string ids (without collision): hashing at runtime or preprocessed

•Localization concerns
•File names and paths manipulation are complex

167

CONCLUSION

171

JIN – GAME PROGRAMMING

Takeaways

•Design, architecture, data structures...
•Deepen in search of solutions

•Theory and Practice
•Google: "Game programming/dev" rather than "unity"
•Focus on a problem and solve it completely

•Test and compare other engines

172

JIN – GAME PROGRAMMING

Further readings

•gameenginebook.com/
•gameprogrammingpatterns.com/
•Game Programming Gems 1 (2002) to 8 (2010), Charles River Media
•Game Engine Gems 1 and 2, 2010-2011
•gamedeveloper.com/ (ex. GamaSutra)
•Game Developer Conference

•gdconf.com/
•youtube.com/channel/UC0JB7TSe49lg56u6qH8y_MQ
•gamasutra.com/features/gdcarchive/

•gamedevs.org/ (list of various technical articles)
•gamemechanicexplorer.com/#
•redblobgames.com/
•pixelnest.io/tutorials/gamedev-resources/
•…

173

http://www.gameenginebook.com/
http://gameprogrammingpatterns.com/
https://www.gamedeveloper.com/
http://www.gdconf.com/
https://www.youtube.com/channel/UC0JB7TSe49lg56u6qH8y_MQ
http://www.gamasutra.com/features/gdcarchive/
http://gamedevs.org/
http://gamemechanicexplorer.com/
http://www.redblobgames.com/
http://pixelnest.io/tutorials/gamedev-resources/

PROJECT GAME DESIGN

174

Maxence Voleau - Game Designer @ Amplitude

SCHMUP !

JIN – GAME PROGRAMMING

Player avatar

•Simple movement
•Move up / down / left / right using directional arrows and ZSQD (for
any keyboard) *
•Moving at constant speed. No slowdown when changing direction.
Control must be fluid. *
•Shoot using space bar *

•Advanced movement
•Dodging at a distance < d pixels gives invulnerability for x seconds if
double tap in one direction (two inputs of the same input in less than y
seconds)

SCHMUP !

175

JIN – GAME PROGRAMMING

Shoot system

•Tab to change the type of shooting among 3
•continuous and straight *
•continuous and in both diagonals, at 45 °
•continuous and spiral

•The projectiles touch only the objects of the opposite camp *
•Shooting begins when the button is pressed, and ends when
released *

176

SCHMUP !

JIN – GAME PROGRAMMING

Camera

•Fixed*
•Avatar placed in a band representing 10% of the screen to the
left.

177

SCHMUP !

JIN – GAME PROGRAMMING

Energy

•Each moment spent shooting consumes energy *
•depending on the type of fire: energy and delta variable time

•The energy recharges x per second as long as the ship does
not shoot *
•If energy drops to zero, mandatory reload to 100% and reload
slowed by 25% *
•Using dodge consumes energy

178

SCHMUP !

JIN – GAME PROGRAMMING

Enemies

•2 types:
•Straight move and regular intervals shots *
•Zigzag move and regular intervals shots

•Speed and shot interval are random between two bounds
•Each enemy has little life: need a hit and an explosion at
minimum, at best a + x score at each death

179

SCHMUP !

JIN – GAME PROGRAMMING

Game and levels structure

•2 types of victory / defeat conditions
•Life and finite wave to beat
•No life just gaining score by killing and losing score if hit + combo
system if killed without being hit

•Main menu then level selection screen, a level is a series of
waves of enemies

180

SCHMUP !

JIN – GAME PROGRAMMING

Collectibles

•+ energy (current or max depending on the context)
•+ life or + combo depending on the condition of victory
•Unlock a new shooting type (3x this collectible to unlock the
next if avatar progression constraint)
•Generation of random collectibles, controlled by the evolution
of the game

•Go back to engine choice
•Go back to objects list
•Go back to game loop
•Go back to inputs
•Go back to objects model

181

SCHMUP !

	Diapositive 1 INTRODUCTION TO GAME PROGRAMMING & GAME ENGINES
	Diapositive 2 Objectives and schedule
	Diapositive 3 References
	Diapositive 4 Contents
	Diapositive 5 What if we programmed our own video game?
	Diapositive 6 Our game?
	Diapositive 7 PART 1:
	Diapositive 8 A VIDEO GAME?
	Diapositive 9 What is a video game?
	Diapositive 10 What is a video game?
	Diapositive 11 Our game
	Diapositive 12 TEAM / ROLES
	Diapositive 13 Typical Game Team
	Diapositive 14 Typical Game Team
	Diapositive 15 More job descriptions
	Diapositive 16 Our team
	Diapositive 17 GAME ENGINES
	Diapositive 18 Game Engine
	Diapositive 19 Game Engine Examples
	Diapositive 20 Engine Architecture
	Diapositive 21 Platform
	Diapositive 22 Engine Architecture
	Diapositive 23 Engine Architecture
	Diapositive 24 Engine Architecture
	Diapositive 25 Engine Architecture
	Diapositive 26 Engine Architecture
	Diapositive 27 Assets Management
	Diapositive 28 Assets Management
	Diapositive 29 Game World Editor
	Diapositive 30 Game World Editor
	Diapositive 31 Game Scripting
	Diapositive 32 Visual Scripting Editors
	Diapositive 33 Data-Driven
	Diapositive 34 CHOOSING AN ENGINE?
	Diapositive 35 Questions
	Diapositive 36 Choosing an engine for 1 person
	Diapositive 37 General/Optimal Trade-off
	Diapositive 38 Technical differences by genre
	Diapositive 39 Technical differences by genre
	Diapositive 40 Technical differences by genre
	Diapositive 41 Our game
	Diapositive 42 Classic Dominant Choice
	Diapositive 43 Reality: Market Fragmentation
	Diapositive 44 Unity
	Diapositive 45 PART 2
	Diapositive 46 AGENTS / GAME OBJECTS
	Diapositive 47 Game Objects: Components of the Game World
	Diapositive 48 Dynamic vs. Static Objects
	Diapositive 49 Game Objects: Types and Properties
	Diapositive 50 Game Objects?
	Diapositive 51 Assets?
	Diapositive 52 "Runtime" vs. "Tool-side" Game Objects
	Diapositive 53 Class Hierarchies
	Diapositive 54 Class Hierarchy ?
	Diapositive 55 Problems with Deep Hierarchies
	Diapositive 56 Class Hierarchy ?
	Diapositive 57 Components
	Diapositive 58 Generic Components
	Diapositive 59 Unity
	Diapositive 60 GAME LOOP
	Diapositive 61 Game Loop
	Diapositive 62 Theoretical Example: Pong
	Diapositive 63 Theoretical Example: PacMan
	Diapositive 64 Our game loop (theory)?
	Diapositive 65 TIME MANAGEMENT
	Diapositive 66 Frame rate
	Diapositive 67 Frame rate
	Diapositive 68 Real Time
	Diapositive 69 Game Logic Time
	Diapositive 70 Use delta time in update
	Diapositive 71 Use delta time in update
	Diapositive 72 Use delta time in update
	Diapositive 73 Running average
	Diapositive 74 Breakpoints issue
	Diapositive 75 Frame Rate Governing
	Diapositive 76 Frame Rate Governing
	Diapositive 77 GAME OBJECTS
	Diapositive 78 Game Objects Updating
	Diapositive 79 Game Objects Updating
	Diapositive 80 Simplistic Approach
	Diapositive 81 Simplistic Approach
	Diapositive 82 Batched Updates
	Diapositive 83 Batched Updates: Example
	Diapositive 84 Phased updates
	Diapositive 85 Bucketed updates
	Diapositive 86 Object State Inconsistencies - One-Frame-Off Lag
	Diapositive 87 IN PRACTICE
	Diapositive 88 Callback-Driven Frameworks
	Diapositive 89 Callback-Driven Frameworks
	Diapositive 90 Unity
	Diapositive 91 Unity
	Diapositive 92 INPUTS
	Diapositive 93 Inputs
	Diapositive 94 Unity
	Diapositive 95 Inputs ?
	Diapositive 96
	Diapositive 97
	Diapositive 98 Usual Development Tools
	Diapositive 99 Git
	Diapositive 100 Coding practices
	Diapositive 101 Project Setup
	Diapositive 102
	Diapositive 103
	Diapositive 104 Player (resp. Enemy)
	Diapositive 105 Inputs
	Diapositive 106 Movements
	Diapositive 107 Shoot
	Diapositive 108 Ex. of Class Diagram
	Diapositive 109 Ex. of Class Diagram
	Diapositive 110 PART 3
	Diapositive 111 DEBUGGING & PROFILING
	Diapositive 112 Errors
	Diapositive 113 Logging and Tracing
	Diapositive 114 Debug Facilities
	Diapositive 115 Profiling: “90/10 rule”
	Diapositive 116 Memory-Tracking
	Diapositive 117 Unity
	Diapositive 118 PHYSICS
	Diapositive 119 Physics in a game
	Diapositive 120 Integrating and Using Physics
	Diapositive 121 Collision + Rigid Body Dynamics
	Diapositive 122 Rigid Body Dynamics
	Diapositive 123 Unity
	Diapositive 124 GAME WORLD & FLOW MANAGEMENT
	Diapositive 125 World Chunks
	Diapositive 126 High-Level Game Flow
	Diapositive 127 Flow & Finite State Machines
	Diapositive 128 Loading and Streaming System
	Diapositive 129 Chunks Data
	Diapositive 130 Level Loading
	Diapositive 131 Streaming
	Diapositive 132 Object Spawning
	Diapositive 133 Spawners
	Diapositive 134 Saved Games
	Diapositive 135 Unity
	Diapositive 136
	Diapositive 137 GAME OBJECTS COMMUNICATION:
	Diapositive 138 Components Communication
	Diapositive 139 Events and Communication
	Diapositive 142 Event System
	Diapositive 144 Event as Objects
	Diapositive 145 Event as Objects: Benefits
	Diapositive 146 Event Types
	Diapositive 147 Ex. of Common Events Types
	Diapositive 149 Events Sending
	Diapositive 150 Event Handlers
	Diapositive 154 Data-Driven Event Systems: GUI
	Diapositive 155 Unity
	Diapositive 156 Unity / C# Events: Method 1
	Diapositive 157 Unity / C# Events: Method 2
	Diapositive 158 Unity / C# Events: Method 3 (1)
	Diapositive 159 Unity / C# Events: Method 3 (2)
	Diapositive 160 Events?
	Diapositive 161 LOW-LEVEL ENGINE FEATURES
	Diapositive 162 Engine Configuration
	Diapositive 163 Subsystem Start-Up and Shut-Down
	Diapositive 164 Memory Management
	Diapositive 165 Cache coherency
	Diapositive 166 Containers
	Diapositive 167 Strings
	Diapositive 171 CONCLUSION
	Diapositive 172 Takeaways
	Diapositive 173 Further readings
	Diapositive 174 PROJECT GAME DESIGN
	Diapositive 175 Player avatar
	Diapositive 176 Shoot system
	Diapositive 177 Camera
	Diapositive 178 Energy
	Diapositive 179 Enemies
	Diapositive 180 Game and levels structure
	Diapositive 181 Collectibles

