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Abstract. Deduction modulo consists in presenting a theory through
rewrite rules to support automatic and interactive proof search. It in-
duces proof search methods based on narrowing, such as the polarized
resolution modulo. We show how to combine this method with more tra-
ditional ordering restrictions. Interestingly, no compatibility between the
rewriting and the ordering is requested to ensure completeness. We also
show that some simplification rules, such as strict subsumption elimina-
tions and demodulations, preserve completeness. For this purpose, we use
a new framework based on a proof ordering. These results show that po-
larized resolution modulo can be integrated into existing provers, where
these restrictions and simplifications are present. We also discuss how
this integration can actually be done by diverting the main algorithm of
state-of-the-art provers.

Whatever their applications, proofs are rarely searched for without context:
mathematical proofs rely on set theory, or Euclidean geometry, or arithmetic,
etc.; proofs of program correctness are done using e.g. pointer arithmetic and/or
theories defining data structures (chained lists, trees, . . . ); concerning security,
theories are used for instance to model properties of encryption algorithms. It
is therefore essential to have theoretical foundations and practical methods that
handle theories conveniently and efficiently. For this purpose, there are two di-
rections: to develop methods that are really specific to a particular theory; or
to develop a generic framework that can handle all theories. The first option
is appealing for efficiency reasons: for instance, combining a SAT solver with
the Simplex method leads to very powerful SMT solvers for linear arithmetic.
However, developing methods for new theories is hard. Even the combination of
such specific methods is not trivial, although there have been a lot of interesting
results in that direction in the recent years. In this paper, we are more interested
in the second option: having a generic way to handle theories efficiently. A naive
way to do so would be to use an axiomatization of the theory, but in general,
this approach would be really inefficient for automated proving. Somehow, we
need to present the theory so as to take advantage of its properties.

A first idea is to use the consistency of the theory. When proving a goal in
a consistent theory by refutation, resolving the clauses of the theory is useless,
since it will not bring out a contradiction. This idea defines the set-of-support
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strategy for resolution [1], where clauses generated by resolution must have at
least one parent outside the theory. The completeness of this method can be
proved provided the theory is consistent. However, unless the theory is saturated,
this strategy is not compatible with other refinements of resolution, in particular
ordering-based restrictions, in the sense that their combination is not complete.
As state-of-the-art provers strongly rely on such restrictions to limit their search
space, we cannot use the set-of-support strategy to integrate theories into them.

Another way to handle theories is deduction modulo [2]. In deduction mod-
ulo, the theory is presented by means of a congruence over propositions, the
inference rules of existing proof systems being applied modulo this congruence.
In practice, this congruence is often defined by a rewrite system that can rewrite
not only terms into terms but also atomic propositions into general propositions.
Corresponding proof search methods are then obtained by combining an existing
method with narrowing1. Thus, there are proof-search procedures extending res-
olution, such as ENAR [2] or its more recent version called Polarized Resolution
Modulo [3]; or extending tableaux methods [4]. Examples of theories that can be
used in deduction modulo include arithmetic [5], Zermelo’s set theory [6], simple
type theory (a.k.a. higher-order logic) [7] or pure type systems [8, 9], and there
exists a procedure to present any first-order classical theory as a rewrite system
usable in deduction modulo [10].

Depending on the rewrite system presenting the theory, proof search methods
based on deduction modulo are not always complete. It can be proved that their
completeness is equivalent to the admissibility of the cut rule in the sequent
calculus modulo the rewrite system [11]. What can be seen as a drawback is
in fact their strength. Indeed, the completeness of these methods implies the
consistency of the theory represented by the rewrite system. Therefore, as a
consequence of Gödel’s incompleteness theorem (provided the theory is at least
as strong as arithmetic), completeness cannot be proved in that theory itself.
In particular, this shows that polarized resolution modulo is not an instance
of known refinements of resolution [12], whose completeness can be proved in
simple type theory. To prove the completeness of polarized resolution modulo,
we therefore proceed in two steps: we first prove completeness with regard to the
cut-free fragment of the sequent calculus modulo for any rewrite system. Then,
for some particular rewrite system, we prove that cut admissibility holds, that
is, the cut-free fragment corresponds to the whole. Due to Gödel’s theorem, this
proof has to be done in a stronger theory than the one defined by the rewrite
system. A bunch of techniques exists to prove cut admissibility in deduction
modulo [13–15] (in particular, they can be applied to the theories cited before,
for which proof search methods modulo are therefore complete) and a completion
procedure was designed to transform a rewrite system so that cut admissibility
holds [10].

Instead of implementing polarized resolution modulo from scratch, we would
like to embed it into existing provers. Two points need to be overcome: First,

1 Meta-variables may need to be instantiated before being rewritten, hence the use of
narrowing and not merely rewriting.
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existing provers are not based on general resolution, but on some refinement of
it. We therefore need to check if narrowing is compatible with these refinements.
In particular, we have to know if polarized resolution modulo with ordering-
based restrictions (as in ordered resolution) is still complete. In this paper, we
define Ordered Polarized Resolution Modulo, and we prove its completeness
relatively to the cut-free fragment. Quiet surprisingly, no compatibility between
the rewrite system and the ordering is requested to ensure this completeness. We
are also concerned with simplification rules, and we propose a general framework,
based on a proof ordering, to show that some simplification rules preserve the
completeness. We apply it to Strict Subsumption Elimination and Demodulation.
Second, we need to see how to proceed from an implementing point of view. It
turns out that seeing polarized resolution modulo as a combination of the set-of-
support strategy and literal selection makes it easy to incorporate into provers
based on a variant of the given-clause algorithm, as is the case for most of them.

The next section will present the minimal knowledge needed on deduction
modulo to make the paper self-contained. In Section 2 we define the Ordered Po-
larized Resolution Modulo and prove its completeness. Section 3 introduces the
ordering-based framework for completeness-preserving simplification rules, and
applies it to Strict Subsumption Elimination and Demodulation. In Section 4, we
discuss how the given-clause algorithm can be used to embed polarized resolution
modulo into a prover.

1 Deduction Modulo

We use standard definitions for terms, predicates, propositions (with connectors
¬,⇒,∧,∨ and quantifiers ∀,∃), sequents, substitutions, term rewrite rules and
term rewriting, as can be found in [16, 17]. V is the set of variables, the replace-
ment of a variable x by a term t in a term or a proposition A is denoted by
{t/x}A, the application of a substitution σ in a term or a proposition A by
σA. To ensure the existence of ground terms (terms without free variable), we
assume the existence of at least one constant. A term t can be narrowed into
s using substitution σ at position p (t

p,σ
 s) if σt can be rewritten to s using

substitution σ at position p. A literal is an atomic proposition or the negation
of an atomic proposition. A proposition is in clausal normal form if it is the uni-
versal quantification of a disjunction of literals ∀x1, . . . , xn. L1 ∨ . . . ∨ Lp where
x1, . . . , xn are the free variables of L1, . . . , Lp. A multiset of propositions is in
clausal normal form if all its elements are. In the following, we will often omit
to write the quantifications, and we will identify propositions in clausal normal
form with clauses (i.e. set of literals) as if ∨ was associative, commutative and
idempotent. Justifications for this will be given later. ut represents the empty
clause. The polarity of a position in a proposition can be defined as follow: the
root is positive, and the polarity switches when going under a ¬ or on the left
of a ⇒. x, y, z, u ranges over variables, s, t over terms, A,B over propositions,
C,D,E, F over clauses or propositions in clausal normal form, L,K over literals,
P,Q over atomic propositions and Γ,∆ over multisets of propositions.
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Fig. 1. Some inference rules of the Polarized Sequent Calculus Modulo R

In deduction modulo, term rewriting and narrowing is extended to proposi-
tions by congruence. In addition, there are also proposition rewrite rules whose
left hand side is an atomic proposition and whose right hand side can be any
proposition. Such rules can also be applied to non-atomic propositions by con-
gruence. It can be useful to distinguish whether a proposition rewrite rule can
be applied at a positive or a negative position. To do so, proposition rewrite
rules are tagged with a polarity; they are then called polarized rewrite rules.
A proposition A is rewritten positively into a proposition B (A−→+B) if it
is rewritten by a positive rule at a positive position or by a negative rule at a
negative position. It is rewritten negatively (A−→−B) if it is rewritten by a
positive rule at a negative position or by a negative rule at a positive position.
Term rewrite rules are considered as both positive and negative. ∗−→± is the
reflexive transitive closure of −→±.

In deduction modulo [2], the inference rules of an existing system such as the
sequent calculus are applied modulo the congruence associated with the rewrite
system (term rewrite rules and proposition rewrite rules). This leads for instance
to the sequent calculus modulo. In polarized deduction modulo [18], polarities of
rewrite rules are also taken into account. Some inference rules of the polarized
sequent calculus modulo are presented in Figure 1. We write Γ `R ∆ if the
sequent Γ − ∆ can be proved in the polarized sequent calculus modulo R, and
Γ `cfR ∆ if it can be proved without the cut rule ( −̂ ).

In the original version of (polarized) deduction modulo, term rewrite rules are
taken into account as an equational theory E . In the extension of the resolution
method based on deduction modulo, this is performed by using unification mod-
ulo E instead of syntactical unification, following the equational resolution [19]
where unification constraints are used instead of substitutions. In addition to this
Resolution rule, an Extended Narrowing rule permits to narrow propositions using
the proposition rewrite rules. The Polarized Resolution Modulo is presented in
Figure 2. Note that the polarized rewrite system R is assumed to be clausal,
that is, the right hand side of negative rewrite rules is a proposition in clausal
normal form, and the one of positive rules is the negation of a clausal normal
form. This ensures that narrowed propositions stay in clausal normal form. To
see some examples, in particular how higher-order logic is used in Polarized Res-
olution Modulo, see [3]. However, note that we do not rely on any result of [3]
in this paper.

As far as the author knows, no efficient first-order theorem prover uses such
constraints. It is indeed not trivial to implement them while avoiding clauses with
unsatisfiable constraints. Instead, term indexing is used to reduce the number
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P1 ∨ . . . ∨ Pn ∨ C · [C1] ¬Q1 ∨ . . . ∨ ¬Qp ∨D · [C2]
Resolution

C ∨D · [C1 ∪ C2 ∪ {P1 =?
E · · · =?

E Pn =?
E Q1 =?

E · · · =?
E Qp}]

P ∨ C · [C]
Ext. Narr. Q→ D is a negative rule in R

D ∨ C · [C ∪ {P =?
E Q}]

¬P ∨ C · [C]
Ext. Narr. Q→ ¬D is a positive rule in R

D ∨ C · [C ∪ {P =?
E Q}]

Fig. 2. Inference rules of the Polarized Resolution Modulo R, E (PRMR,E)

of clauses that are candidates for resolution. To get closer from the implementa-
tion, the idea would therefore be to adapt term indexing techniques to equational
unification. However, as far as the author knows, no generic term indexing mod-
ulo exists, only term indexing for some particular theories such as AC or HOL.
Instead, for want of a better solution, assuming that the equational theory is
presented as a set of term rewrite rules, we will apply Extended Narrowing using
these rules also:

L ∨ C
Ext. Narr. L

p,σ
 
E
L′, L|p 6∈ V

σ(L′ ∨ C)

2 Refining Polarized Resolution Modulo

Literal selections in clauses permit to restrict the application of Resolution. In
this section, we show that using an ordering-based literal selection preserves the
completeness of PRMR. We use an ordering � on literals which is well-founded
and stable by substitution, and we assume that � can be extended to an ordering
�g that is total on ground literals. Note that it is more general than starting
from an ordering on atoms and extending it to literals, that is, following the
terminology of [20], we use a L-ordering and not a A-ordering (furthermore, we
do not require that P 6� ¬P for all atoms P ). Rules of the Ordered Polarized
Resolution Modulo (OPRM�R) are presented in Figure 3. To stay nearer from the
existing implementations of resolution-based proved, we do not use constraints,
Resolution only uses one literal per clause and there is therefore a Factoring rule.
We write Γ 7→7→�R C when a clause C can be derived from the set of clauses Γ
using finitely many inference rules of OPRM�R.

We want to prove that any cut-free proof of the polarized sequent calculus
modulo R can be transformed into a derivation of the empty clause in OPRM�R.
[2, Lemma 4.1] shows that transforming a formula into its clausal normal form
does not change its refutability. The results from [11, Section 5] shows that the
order of the quantifiers and of the disjunctions is not relevant w.r.t. refutability,
so that we can consider propositions in clausal normal form as clauses. Therefore,
we can restrict ourselves to proof of sequents Γ − where Γ is in clausal normal
form. The theorem we want to prove is then the following:
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P ∨ C ¬Q ∨D
Resolution a,b,c

σ(C ∨D)

L ∨K ∨ CFactoring d

σ(L ∨ C)

P ∨ C
Ext. Narr. a,b, Q→− D

σ(D ∨ C)

¬Q ∨D
Ext. Narr. a,c, P →+ ¬C

σ(C ∨D)

L ∨ C
Ext. Narr. e, L

p,σ
 L′ by a term rewrite rule, L|p 6∈ V

σ(L′ ∨ C)

a σ = mgu(P,Q)
b P maximal in P ∨ C
c ¬Q maximal in ¬Q ∨D
d L and K maximal in L ∨K ∨ C, σ = mgu(L,K)
e L maximal in L ∨ C

Fig. 3. Inference rules of the OPRM�R

Theorem 1. Given a set of clauses Γ , if Γ `cfR then Γ 7→7→�R ut.

To get a less direct but more elegant proof, we use a couple of intermediary
calculi. First, as in [2, 3], we need an intermediary resolution calculus where
the instantiations are separated from the resolution and extended narrowing
rules. This calculus, which is essentially PEIR [3] but with ordering restrictions,
is called OPEIR�R for Ordered Polarized Extended Identical Resolution and is
presented in Figure 4. We write Γ ↪→�R C when a clause C can be derived from
the set of clauses Γ using finitely many inference rules of OPEIR�R.

P ∨ C ¬P ∨D
Identical Resolution a

C ∨D
C

Instantiation {t/x}C

P ∨ C
Reduction a, P −→−D

D ∨ C
¬P ∨D

Reduction a, P −→+¬C
C ∨D

L ∨ C
Reduction b, L−→L′ by a term rewrite rule

L′ ∨ C

a P maximal in P ∨ C (resp. ¬P in ¬P ∨D)
b L maximal in L ∨ C

Fig. 4. Inference rules of the OPEIR�R

We also need a sequent calculus modulo which is more adapted to our pur-
pose. Following the ideas of [10], we introduce the one-sided polarized unfolding
sequent calculus (short 1PUSCR) where all formulæ are put in the left-hand side
of the sequents, instantiations are ground, rewrite steps are explicit, and rewrit-
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_
−

Γ, P,¬P −
Γ,C,C −

∵−
Γ,C −

Γ,C − Γ,D −
∨−

Γ,C ∨D −
Γ, {t/x}C −

∀− t ground
Γ,∀x. C −

Γ,C −
↑−− P −→−C

Γ, P −
Γ,C −

↑+− P −→+¬C
Γ,¬P −

Fig. 5. Inference rules of the 1PUSCR

ing and axioms can be applied to literals only. Its inference rules are presented
in Figure 5. Note that there are no cut rule, so that 1PUSCR is restricted to the
cut-free fragment of deduction modulo R. We write Γ 1̀ R when a sequent Γ −
can be proved in 1PUSCR.

To prove Theorem 1, we proceed as follow: a cut-free proof in the Polarized
Sequent Calculus Modulo R is transformed into a proof in 1PUSCR, which is
transformed into an OPEIR�R derivation, which is transformed into an OPRM�R
derivation.

Proposition 2. For all set of clauses Γ , if Γ `cfR , then Γ 1̀ R.

Proof. We need to prove that weakening is admissible, that we can make the
rewriting explicits and that we can restrict _− , ↑−− and ↑+− to literals. The
proof is the same as for [10, Proposition 7], except that we are here in a one-
sided sequent calculus, which is not problematic since all negations are put down
on the literal level.

We also need to prove that all instantiations can be ground. By induction on
the proof structure. Recall that it is assumed that there exists some constant c,
so that ground terms exist. If a ∀− in the Polarized Sequent Calculus Modulo
instantiate a variable by a non-ground term t, then either the variables of this
term are not instantiate in the proof above, in which case replacing them with c
keeps the validity of the proof, or they are instantiated by some ∀−. By induction
hypothesis, they are instantiated by a ground term. One variable x may be
instantiated by different ground terms sx1 , . . . , s

x
n in the proof above, so we have

to apply ∵− before applying ∀− using each of the t where the variables x are
instantiated by one of the sxi . ut

Lemma 3. Starting from a set of clauses Γ (so without unbound variables),
if we have a proof of Γ − in 1PUSCR, then the sequents in this proof do not
contain unbound variables.

Proof. By simple induction on the proof structure, using the fact that we only
instantiate ground terms.

Lemma 4. For all set of clauses Γ , for all ground clauses C1, . . . , Cn and D
such that the literals of D are smaller or equal to the maximal literals of Ci for
�g, if Γ,C1, . . . , Cn ↪→�R ut and Γ,D ↪→�R ut then Γ,C1 ∨D, . . . , Cn ∨D ↪→�R ut.
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Proof. By lexicographic induction on the multiset extension of �g applied on D
and the number of derivation steps in Γ,C1, . . . , Cn ↪→�R ut. We rely on the fact
that �g is total on ground literals.

We try to reproduce the derivation Γ,C1, . . . , Cn ↪→�R ut but replacing the Ci
by Ci ∨D. Let C be the first clause produced in that derivation. There are two
cases:

– C is produced using other clauses than one of the Ci. We can therefore derive
C in Γ,C1 ∨D, . . . , Cn ∨D.
The derivation length of Γ,C,C1, . . . , Cn ↪→�R ut is strictly smaller than the
derivation length of Γ,C1, . . . , Cn ↪→�R ut. Of course Γ,C,D ↪→�R ut. By induc-
tion hypothesis, we therefore have Γ,C,C1 ∨D, . . . , Cn ∨D ↪→�R ut.
Hence, Γ,C1 ∨D, . . . , Cn ∨D ↪→�R ut.

– At least one of the parents of C is one Ci. As the literals of D are smaller or
equal to those of Ci for �g, the maximal elements for � of Ci are included
in those of Ci ∨D. We can therefore derive C ∨D in Γ,C1 ∨D, . . . , Cn ∨D.
There are two cases:
• The literals of D are less or equal to the maximal literals of C for �g.

The derivation length of Γ,C1, . . . , Cn, C ↪→�R ut is strictly smaller than
of Γ,C1, . . . , Cn ↪→�R ut, so that by induction hypothesis, we have
Γ,C1 ∨D, . . . , Cn ∨D,C ∨D ↪→�R ut. Hence Γ,C1∨D, . . . , Cn∨D ↪→�R ut.

• At least one of the literals in D is strictly greater than one of the maximal
literals of C. As �g is total on ground literals, the literals in C are strictly
smaller than the maximal literals of D.
The derivation length of Γ,C,C1, . . . , Cn ↪→�R ut is strictly smaller than
the derivation length of Γ,C1, . . . , Cn ↪→�R ut. Of course Γ,C,D ↪→�R ut. By
induction hypothesis, we therefore have Γ,C,C1 ∨D, . . . , Cn ∨D ↪→�R ut.
We have Γ,C1∨D, . . . , Cn∨D,D ↪→�R ut and Γ,C1∨D, . . . , Cn∨D,C ↪→�R ut,
and C is strictly less than D for the multiset extension of �, so that by
induction hypothesis we have Γ,C1 ∨D, . . . , Cn ∨D,D ∨ C ↪→�R ut.
Hence Γ,C1 ∨D, . . . , Cn ∨D ↪→�R ut. ut

Note 5. The lemma does not use any compatibility between the polarized rewrite
rules and the ordering �. Indeed, polarized rewrite rules may increase the max-
imal literals in the clauses, but this does not break the completeness.

Proposition 6. A proof of Γ − in 1PUSCR can be transformed into a deriva-
tion Γ ↪→�R ut.

Proof. By induction on the structure of the proof.
If the last rule is

_−
Γ, P,¬P − then we apply Identical Resolution on P

and ¬P to derive the empty clause.

If the last rule is
Γ,C,C −

∵−
Γ,C −

then by induction hypothesis we have a

derivation Γ,C,C ↪→�R ut, which is also a derivation Γ,C ↪→�R ut.

If the last rule is
Γ,C − Γ,D −

∨−
Γ,C ∨D −

then by induction hypothesis we

have Γ,C ↪→�R ut and Γ,D ↪→�R ut. By Lemma 3, C and D are ground. Without
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loss of generality, we can assume that all the atoms in D are less or equal to the
maximal atoms in C for �g (else, exchange C and D since �g is total on ground
literals), so that we can apply Lemma 4 to obtain a derivation of Γ,C∨D ↪→�R ut.

If the last rule is
Γ, {t/x}C −

∀−
Γ,∀x. C −

then by induction hypothesis we obtain

a derivation Γ, {t/x}C ↪→�R ut. Using Instantiation we can derive {t/x}C from
∀x. C (recall that we identify clauses and propositions in clausal normal form).
We therefore have a derivation of Γ,∀x. C ↪→�R ut.

If the last rule is
Γ,C −

↑−− P
−−→CΓ, P −

then by induction hypothesis we

have a derivation Γ,C ↪→�R ut. Using Reduction, we can derive C from P and get
a derivation Γ, P ↪→�R ut. The case of ↑+− is dual. ut

We now want to transform an OPEIR�R derivation into an OPRM�R one. The
principal difficulty is that we may have instantiated literals to much before apply-
ing Identical Resolution, so that we cannot translate it directly into a Resolution
with the appropriate mgu. Note that the Instantiations can be regrouped into a
more general derived rule C

Instantiation
σC

for a substitution σ. We can also

cut substitutions to transform C
Instantiation

σθC
into

C
Instantiation

θC
Instantiation

σθC
.

Lemma 7. If σL is maximal in σ(L ∨ C) then L is maximal in L ∨ C.

Proof. As � is stable by substitution, suppose that L is not maximal in L ∨ C,
then it means that some literal K of C is greater than L, but this implies that
σK is greater than σL in σ(L ∨ C). ut

Note 8. This lemma is no longer true if the selection of literals in a clause is not
stable by substitution. Such a stability condition is also required in [21].

Proposition 9. If Γ ↪→�R ut then Γ 7→7→�R ut.

Proof. We prove a stronger result: if Γ ↪→�R C then there exist a clause C ′ and
a substitution θ such that Γ 7→7→�R C ′ and C = θC ′.

By induction on the derivation Γ ↪→�R C. If the last step is Instantiation, the
result is immediate by induction hypothesis.

If the last step is P ∨ C1 ¬P ∨ C2
Identical Resolution

C1 ∨ C2
then by in-

duction hypothesis there exists C ′1, P 1
1 , . . . , P

n
1 , θ1 and C ′2, P 1

2 , . . . , P
m
2 , θ2 such

that θ1C ′1 = C1, θ1P i1 = P and Γ 7→7→�R P 1
1 ∨ · · · ∨ Pn1 ∨ C ′1, and θ2C

′
2 = C2,

θ2P
i
2 = P and Γ 7→7→�R ¬P 1

2 ∨ · · · ∨ ¬Pm2 ∨C ′2. All P i1 are unifiable, since they all
can be instantiated to P . Let σ1

1 = mgu(P 1
1 , P

2
1 ). As P is maximal in P ∨ C1,

by Lemma 7, P 1
1 and P 2

1 are maximal in P 1
1 ∨ · · · ∨ Pn1 ∨ C ′1. We can therefore

apply Factoring to get σ1
1(P 1

1 ∨P 3
1 ∨ · · · ∨Pn1 ∨C ′1). Again, by Lemma 7, σ1

1P
1
1 is

maximal in σ1
1(P 1

1 ∨P 3
1 ∨ · · · ∨Pn1 ∨C ′1). By repeating this process, we therefore

obtain σ1(P 1
1 ∨ C ′1) with σ1 = mgu(P 1

1 , . . . , P
n
1 ). All the same, we can derive

σ2(¬P 1
2 ∨ C ′2) in OPRM�R with σ2 = mgu(P 1

2 , . . . , P
n
2 ).
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σ1P
1
1 and σ2P

1
2 are unifiable since they can be instanciated to P . Let σ =

mgu(σ1P
1
1 , σ2P

1
2 ). σ1P

1
1 (resp. σ2¬P 1

2 ) is maximal in σ1(P 1
1 ∨ C ′1) (resp, in

σ2(¬P 1
2 ∨ C ′2)) due to Lemma 7. We can therefore apply Resolution to ob-

tain a derivation of σ(σ1C1 ∨ σ2C2) in OPRM�R. By definition of the mgu,
there exists some θ′1 and θ′2 such that θ1 = θ′1σσ1 and θ2 = θ′2σσ2. Con-
sidering as usual that C and D contains distinct variables, we therefore have
C ∨D = θ1θ2(σ(σ1C1 ∨ σ2C2)).

The proof is similar if the last step is a Reduction step, using Factoring and
Ext. Narr. We just need to take care when the subterm that is narrowed is a
variable, in which case we do not need narrowing and we can use instantiation
instead. ut

Proof (of Theorem 1). By successively using Propositions 2, 6 and 9. ut

Note 10. In [21], a syntactic proof of the completeness of several refinement of
resolution, including ordered resolution, is given. This is done by seeing resolu-
tion derivations as proofs using only cuts, and by permuting cuts. Due to the
incompleteness of Polarized Resolution Modulo when cuts cannot be eliminated,
it is not clear whether this method could be extended to deal with Extended
Narrowing. Furthermore, we prefer to show that a cut-free sequent calculus proof
can be transformed directly into a derivation satisfying the ordering restrictions.

3 Clause simplifications

Clause simplifications reduce the search space by eliminating redundancies or
by putting clauses in some normal form. Not all simplifications preserving the
completeness of ordered resolution can be used in OPRM�R. For instance, the
elimination of tautologies, i.e. clauses of the form C ∨ P ∨ ¬P , makes OPRM�R
no longer complete.

Example 11. Consider the rewrite system R : P →+ ¬Q,P →− ¬Q, and the
ordering ¬Q � Q � ¬P � P . It can be proved that cut admissibility holds in the
sequent calculus moduloR. Hence OPRM�R is complete. In particular, the empty
clause can be derived from the set of clauses ¬Q∨P,Q∨¬P . However, the only
clause that can be generated from these is P ∨¬P , which is then narrowed into
P ∨Q, but which would be eliminated as a tautology. OPRM�R with tautology
deletion is therefore not complete.

We give here a general framework, and we show that it can be applied to
usual simplifications such as subsumption elimination or demodulation.

3.1 >-valid simplification rules

A simplification rule is a schema of the form
C1 · · · Cn
D1 · · · Dm

that must be inter-

preted by: If there are clauses of the form C1, . . . , Cn, they are replaced by the
corresponding clauses D1, . . . , Dm. In other terms, a set of clauses Γ,C1, . . . , Cn
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can be transformed don’t-care non-deterministically into Γ,D1, . . . , Dm in a
derivation. To show that OPEIR�R remains complete when adding some set of
simplification rules, we will rely on some ordering on 1PUSCR proofs:

Definition 12. An ordering > over 1PUSCR proofs is said completeness-preserving

– if it is compatible with subproofs, i.e. if p is a subproof of q then q > p;
– and it is well-founded.

A simplification rule
C1 · · · Cn
D1 · · · Dm

is said valid according to > if for all

its instances and for all set of clauses Γ ,

1. if Γ,D1, . . . , Dm 1̀ R then Γ,C1, . . . , Cn 1̀ R;
2. if Γ,C1, . . . , Cn 1̀ R then Γ,D1, . . . , Dm 1̀ R with a strictly smaller proof

with respect to >;

3. the rule is stable by substitution, that is, for all substitution θ,
θC1 · · · θCn
θD1 · · · θDm

is also an instance.

Condition 1 is needed to prove the soundness of the calculus with the simplifica-
tion rules. Condition 2 implies its completeness. Condition 3 permits to extend
completeness from OPEIR�R to OPRM�R.

Proposition 13. Given a completeness-preserving ordering > and a set of sim-
plification rules valid according to that ordering, a proof of Γ − in 1PUSCR can
be transformed into a derivation Γ ↪→�R ut using the simplification rules.

Proof. We prove this by induction on >. If Γ can be simplified into Γ ′, then using
Condition 2, we can find a smaller proof of Γ ′ − w.r.t. >, on which we can apply
the induction hypothesis. If Γ cannot be simplified, we use the same arguments
than in the proof of Proposition 6, relying on the fact that > is compatible with
subproofs. ut

Proposition 14. Given a completeness-preserving ordering > and a set of sim-
plification rules valid according to that ordering, a derivation Γ ↪→�R ut using the
simplification rules can be transformed into a derivation Γ 7→7→�R ut using the
simplification rules.

Proof. We use the same proof as for Proposition 9, with this supplementary ar-
gument: if a simplification rule can be applied to the clauses derived in OPRM�R,
then stability by substitution (Condition 3) tells us that the simplification rule
can be applied on the corresponding instances in OPEIR�R. ut

3.2 Application

In this section, we assume that the term rewrite system that we are working
modulo is terminating and confluent, and that polarized rewrite rules and term
rewrite rules commute: if P −→±(¬)C in one step and P

∗−→Q with the term
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rewrite system, then there exists D such that Q−→±(¬)D in one step and
C
∗−→D with the term rewrite system. The usual rewrite systems used in de-

duction modulo, such as the encoding of higher-order logic, have this property.
We want to prove that the following usual simplification rules are complete:

– Strict Subsumption Elimination:
C (σC) ∨D

C
, D not empty;

– Demodulation:
C

D
if C −→D by the term rewrite system.

Repetitively applying Demodulation permits to obtain the normal form w.r.t.
the term rewrite system.

We use the following ordering over 1PUSCR proofs. The skeleton of a proof is
the tree corresponding to the proof where nodes are couples of the inference rule
and the principal formula. We define the following ordering B over inference
rules: ∨−B ∀−B∵− and _− B ↑

±−B∵−, and we order formulæ with the term
rewrite system (which is assumed to be terminating). We define a precedence
(also noted B ) as the lexical combination of this two orderings. This precedence
is therefore well-founded. We define as > the lexicographic combination of the
RPO based on this precedence applied on the skeleton of the proof and of the
subset relation applied to the conclusion of the proof.

Lemma 15. > is a completeness-preserving ordering.

Proof. As the precedence is well-founded, so is the RPO [22], therefore > is well-
founded. Furthermore, since a RPO is a simplification ordering, subproofs are
indeed smaller according to >. ut

Proposition 16. Strict Subsumption Elimination and Clause Normalization
are compatible with >.

Proof. It is not hard to check that Condition 3 holds for these two rules.
Strict Subsumption Elimination: Condition 1 is a consequence of weaken-

ing as for Tautology Deletion. For Condition 2, we need to be more precise on
the free variables of C and (σC) ∨D. Let x1, . . . , xn be the free variables of C
that are in the support of σ, and z1, . . . , zl the others free variables of C. Let
y1, . . . , ym be the variables in the image of σ. Let u1, . . . , uk be the free vari-
ables of D not in z1, . . . , zl, y1, . . . , ym. We therefore want to prove that a proof
p of Γ,∀x1, . . . , xn, z1, . . . , zl. C,∀y1, . . . , ym, z1, . . . , zl, u1, . . . , uk. σ(C ∨ D) −
can be transformed into a smaller proof of Γ,∀x1, . . . , xn, z1, . . . , zl. C −. The
idea is to follow the skeleton of p, except that we do not apply the instantia-
tions of y1, . . . , ym and u1, . . . , uk, and we replace the applications of ∨− such as

π1

Γ ′, θσC −
π2

Γ ′, θD −
∨−

Γ ′, θσC ∨ θD −
by

π1

Γ ′, θσC −
∀−

Γ ′, θC −
where we instantiate the

xi by θσxi. We obtain this way a proof of Γ,∀x1, . . . , xn, z1, . . . , zl. C, ∀x1, . . . , xn, z1, . . . , zl. C −
on which we apply ∵−. As ∨−B ∀−B∵− and ↑±−B∵−, we can verify that the
skeleton of the proof that we obtain is strictly smaller than the one of the original
proof (or (σC)∨D is not used, and there are less propositions in the conclusion).
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Clause Normalization: For Condition 1, we need to add the term rewriting
into the proof. Since ↑±− can only be applied to literals, we have to postpone
the rewriting to the places where we use literals, which is not problematic. For
Condition 2, we prove the stronger result that if C ∗−→D with the term rewrite
system and Γ,C 1̀ R, then we can find a smaller proof of Γ,D −. We proceed by
induction on −→ applied to C (recall that the term rewrite system is supposed
terminating), and on the proof structure. The most interesting cases are for _−
and ↑±−. For _− , suppose that we have

_−
Γ,¬C,C − . Then to get a proof

of Γ,¬C,D −, we first need to apply (possibly several times) ↑+− on ¬C to
obtain ¬D, which is possible since term rewrite rules have no polarity. After
that we can apply _− . As (_− , C) B (_− , D) and _− B ↑

+−, we can check that the
skeleton of the resulting proof is indeed smaller. For ↑±−, suppose that we have

π
Γ,E −

↑−−
Γ,C −

with C −−→D. If it is a polarized rewrite rule that is used, we use

the fact that polarized rules and term rewrite rules commute to obtain some F
such that D−→−F ∗←−E. By induction hypothesis, we can obtain a proof π′ of

Γ, F − smaller than π. Then,
π′

Γ, F −
↑−−

Γ,D −
is smaller than the first proof. If it

is a term rewrite rule that is used, we can proceed similarly using the confluence
of the term rewrite system instead of the commutation. D may need several ↑−−
steps to be rewritten into F , but these steps will be smaller for B than the step
for C −→E, therefore the resulting proof will be smaller. ut

Corollary 17. OPRM�R with Strict Subsumption Elimination and Demodula-
tion is complete, provided cut admissibility holds for R.

Note that we cannot hope to have completeness of full subsumption (that is,
with D possibly empty) in OPEIR�R since it would make Instantiation useless.
It is not clear whether it is complete or not to eliminate full subsumptions in
OPRM�R.

Note 18. In [23], an ordering is also used to give a syntactic proof of the com-
pleteness of ordered resolution with some simplification rules. However, this or-
dering has to be defined on propositions and is then extended to proofs (which
are in that case resolution derivations), and the same ordering is used for the
literal selection and for the validity of the simplification rules. In our framework,
� and > can be completely independent.

4 Implementation Issues

We have seen that polarized resolution modulo is compatible with the ordering
restrictions and some simplification rules present in the calculi on which auto-
mated provers are based. In this section, we look at how, in practice, polarized
resolution modulo could be integrated in them.
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The given-clause algorithm is used to organize which clauses must be used by
inference rules in a automated prover. It is originally based on the set-of-support
strategy for the resolution [1]. Depending on which clauses are simplified, there
exists (at least) two variants of this algorithm, the Otter and the Discount loops,
named after the prover in which they appeared. Most of today’s automated
provers are based on one of these variants. To keep it simple, we will only present
the basic given-clause algorithm, without simplification rules.

The proof space is separate into two sets of clauses: the first one contains
the set-of-support clauses, also called passive clauses, also called unprocessed
clauses; the other one in the set of usable clauses, also called active clauses. At
each step of the loop, a clause, called the given clause, is extracted from the set
of passive clauses and put into the set of active clauses. All inferences between
the given clause and one of the active clauses (comprising the given clause itself)
are performed, the generated clauses being put into the set of passive clauses.
At the beginning, the set of active clauses is therefore empty, and the clauses
we want to refute or prove satisfiable are put into the set of passive clauses.
Given a fair choice of the given clause, completeness of such an algorithm is not
hard to prove. This algorithm has been proved quite successful because the set
of active clauses can be organized in order to restrict the clauses where to apply
the inference rules. In particular, active clauses are put into a term index, often
based on discrimination trees, to make the retrieval of clauses containing literals
potentially unifiable with the complement of some literal more efficient.

When no literal selection is used and we know that some subset of the input
clauses is consistent, we can put directly this subset of clauses into the set of ac-
tive clauses. Completeness is ensured by the completeness of the set-of-support
strategy. However, set of support is no longer complete when using literal se-
lection, even for selection based on some ordering. Actually, it can be proved
that the completeness of set of support with selection requires a stronger prop-
erty than the consistency of the theory, namely the admissibility of the cut rule
in the sequent calculus modulo the theory. Indeed, Dowek [3] has shown that
polarized rewrite rules can be seen as special clauses, that he called one-way
clauses, in which one literal only is selected, and which cannot be resolved one
with the other. More precisely, a positive rule P →+ ¬C corresponds to the
clause P ∨ C, and a negative rule P →− C to the clause ¬P ∨ C (selected lit-
erals are underlined). Then, using Resolution with one of these one-way clauses
correspond exactly to using Extended Narrowing with the associated polarized
rewrite rule, and this way, one-way clauses are not resolved between themselves.
To simulate Extended Narrowing into a prover, the idea is therefore to add the
one-way clauses corresponding to the polarized rewrite rules directly into the set
of active clauses, with their selected literal, and to put the input clauses as usual
in the set of passive clauses.

We have applied these ideas to integrate polarized resolution modulo into the
resolution prover included in iprover [24]. It would have been harder to integrate
them into a prover based on superposition, because in these provers, selection
is not symmetrical between positive and negative literals. We tested it using
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the encoding in deduction modulo of the problems of higher-order logic of the
TPTP [25]. As can be expected, performances compared to the provers dedicated
to higher-order logic such as TPS (http://gtps.math.cmu.edu/tps.html) is
quite poor, but they are promising (about a third of the problems solved by
TPS can be solved by the modified iprover). We need to fine-tune the prover
(for instance by choosing convenient orderings) to adapt it to HOL, and to look
at other theories.

5 Conclusion and Discussion

We have shown how polarized deduction modulo can be embedded into an exist-
ing resolution-based prover and we have proved that ordered polarized resolution
modulo with strict subsumption elimination and demodulation is complete. For
this, we have defined an ordering-based criterion that ensures that simplification
rules preserve completeness. Note that this criterion can also be used for stan-
dard resolution. These results are the first which lead to an actual and useful
implementation of deduction modulo, and can be used to get automated theo-
rem provers adapted to many theories, including arithmetic, Zermelo’s set theory
and higher-order logic. We are currently investigating whether using these re-
finements induces decision procedures for some classes of propositions, as it is
the case for standard resolution [26].

Also, the treatment of equality in deduction modulo may be improved, be-
cause deduction modulo is originally based on proof systems without equality.
Theoretically, this is not a problem, because the equality predicate can be en-
coded using a rewrite system representing Leibniz’s axiom schema x = y ⇒
A(x) ⇒ A(y). However, in practice, this encoding is not well suited, because
the proposition A has to be guessed using narrowing steps. A solution would be
to have a proof-search procedure modulo for first-order logic with equality, for
instance by adding Extended Narrowing in the superposition calculus. It remains
to be proved that the restrictions on the inference rules and the redundancy
eliminations of superposition can be mixed with Extended Narrowing without
breaking completeness. The usual proof of completeness of superposition relies
on saturation up to redundancies w.r.t. � [27, 28]. If we want to adapt this proof
directly, we have to require that the one-way clauses corresponding to the rewrite
rules are saturated for �. On the contrary of what is done here, this creates a
dependency between the rewrite system and �. It can be proved that this as-
sumption implies the cut admissibility [13], which explains why we would have
full completeness in that case. However, we would like to drop this assumption
for at least two reasons: First, some rewrite systems are not compatible with any
well-founded, stable by substitution ordering, although cut admissibility holds
for them. We therefore conjecture that superposition modulo is fully complete
for those systems too. Second, even if a rewrite system is compatible with some
ordering, the results of this paper show that another ordering can be used while
remaining complete, thus offering new perspectives on combining orderings.
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