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Énsiie/Cédric, 1 square de la résistance, 91025 Évry cedex, France
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Abstract. Deduction modulo is a generic framework to describe proofs
in a theory better than using raw axioms. This is done by presenting
the theory through rules rewriting terms and propositions. In CSL 2010,
LNCS 6247, p.155–169, we gave theoretical justifications why it is possi-
ble to embed a proof search method based on deduction modulo, namely
Ordered Polarized Resolution Modulo, into an existing prover. Here, we
describe the implementation of these ideas, starting from iProver. We test
it by confronting Ordered Polarized Resolution Modulo and other proof-
search calculi, using benchmarks extracted from the TPTP Library. For
the integration of rewriting, we also compare several implementation
techniques, based for instance on discrimination trees or on compilation.
These results reveal that deduction modulo is a promising approach to
handle proof search in theories in a generic but efficient way.

Since proofs are rarely searched for without context, there is a strong need to
be able to handle theories efficiently in theorem provers. For instance, proofs of
software correction often need some flavor of arithmetic, or theories defining the
data structures of the program such as chained lists. Several approaches exist
to go in this direction. The first one is to design a procedure dedicated to the
theory in which the proof is searched for. This would provide provers that are
really adapted to the theory, but it would have the drawbacks of not exploiting
the fact that theories are often built upon well-understood logics, and of being
difficult to extend. In particular, combination of provers built independently
for different theories would be virtually impossible. On the opposite, a second
approach would be to present the theory using axioms, and to use a general-
purpose theorem prover. While this method is very flexible, it is in most of the
cases not efficient enough to be applied. Therefore, provers searching in theories
use an in-between approach: existing general-purpose provers are combined with
methods specific to the theory. SMT provers are based on this modus operandi:
a prover for propositional logic (a SAT solver) is combined with a procedure
specific to the theory, for instance the simplex method for linear arithmetic.
SMT provers are really efficient, and are used at industrial level. Nevertheless,
they suffer from the following weaknesses: they cannot prove general results,
since they are restricted to ground inputs (some of them use heuristics for non-
ground inputs, and there are attempts to combine first-order prover with decision
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procedures, but they are often restricted to linear arithmetic); as they handle
each theory in a specific way, it is difficult to combine different theories in them,
although progress has been done in that direction in the latter years, in particular
thanks to the application of the Nelson-Oppen method. A solution to overcome
these drawbacks is to design a framework that can be adapted to any kind of
deductive system, and that handle all theories in a uniform and yet effective way.
Deduction modulo [10] can be seen as such a framework. It consists in presenting
a theory as a congruence over propositions, and in applying the inference rules of
deductive systems modulo this congruence. The congruence is often defined by
means of a rewriting system over terms and propositions. Proof-search methods
derived from deduction modulo consists roughly in adding narrowing (not merely
rewriting) to an existing method such as resolution or tableaux.

The study of deduction modulo has lead to strong theoretical results: any
first-order theory can be presented as a rewriting system [6]; in particular, there
are presentations of Peano’s arithmetic [12] and Zermelo’s set theory [11] with
good proof-theoretical properties; it is also possible to encode higher-order sys-
tems such as Church’s simple type theory or functional pure type systems as
first-order theories modulo a rewriting system [9, 7]; arbitrary proof-length re-
ductions can be achieved by working modulo a rewriting system instead of using
an axiomatic presentation [5]. Nevertheless, there was no experimental results
supporting the claim that deduction modulo improves indeed proof search. This
was due to the fact that no implementation of proof-search methods based on
deduction modulo had been developed. In [4], we have shown that integrating
a resolution method based on deduction modulo into an actual prover based
on ordered resolution is sound and complete, and that the given-clause algo-
rithm, which is in most of the cases the main loop of such a prover, can be
used to ease the integration. We have applied the ideas of this paper into the
prover called iProver, developed by Korovin at the University of Manchester [14].
The implementation is available as a patch to iProver v.0.7 on the webpage
http://www.ensiie.fr/~guillaume.burel/empty_tools.html.en. Here, we
give the details of our implementation, and we show that using deduction mod-
ulo improves indeed proof search compared to using axioms. To do so, we choose
as benchmarks problems of the TPTP library [17] that use axiom sets. Since we
have to design by hand a rewriting system with good properties for each of the
axiom sets, this has been done only for five of them. We also compared different
ways of implementing the rewriting system. Since rewriting rules are known in
advance, compiling them proved to be more efficient as soon as big terms needs
to be normalized. An easy but efficient way to compile the rewriting rules is to
translate them as an OCaml program that is dynamically linked to the prover.

In the next section, we present deduction modulo, and in particular the
resolution calculus that has been integrated into iProver. We then detail all
the technicalities of this integration in Section 2. The results of the benchmarks
used to test the implementation, given in Section 3, show that deduction modulo
improves the search for proofs in theories, and open perspectives given in the
conclusion.
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1 Deduction Modulo

1.1 Extending Deductive Systems with Rewriting

We use standard definitions for terms, predicates, propositions (with connectives
¬,⇒,∧,∨ and quantifiers ∀,∃), substitutions, term rewriting rules and term
rewriting. In deduction modulo, term rewriting and narrowing is extended to
propositions by congruence on the proposition structure. In addition, there are
also proposition rewriting rules whose left hand side is an atomic proposition and
whose right hand side can be any proposition. Such rules can also be applied to
non-atomic propositions by congruence on the proposition structure. It can be
useful to distinguish whether a proposition rewriting rule can be applied at a
positive position or a negative one. To this end, proposition rewriting rules are
tagged with a polarity and then called polarized rewriting rules. A proposition
A is rewritten positively into a proposition B (A−→+B) if it is rewritten by a
positive rule at a positive position or by a negative rule at a negative position. It
is rewritten negatively (A−→−B) if it is rewritten by a positive rule at a negative
position or by a negative rule at a positive position. Term rewriting rules are
considered as both positive and negative.

∗−→± is the reflexive transitive closure

of−→±. s
p,σ
 t denotes that s can be narrowed to t at position p with substitution

σ, i.e. there exists a rewriting rule l→ r such that σ(s|p) = σl and t = σ(s[r]p).
In deduction modulo [10], the inference rules of an existing system such as

the sequent calculus are applied modulo the congruence associated with the
rewriting system (term rewriting rules and proposition rewriting rules). This
leads for instance to the sequent calculus modulo. In polarized deduction modulo,
polarities of rewriting rules are also considered. For instance, the left and right
rules for the implication in the sequent calculus become

Γ − A,∆ Γ,B − ∆
⇒− C

∗−→−A⇒ B
Γ,C − ∆

Γ,A − B,∆
−⇒ C

∗−→+A⇒ B
Γ − C,∆

Proof-search methods can be derived from deduction modulo. Since variables
may need to be instantiated before being rewritten, we need to perform narrow-
ing instead of merely rewriting. In other words, we need unification instead
of pattern matching. There are basically two families of proof-search methods
based on deduction modulo, one extending the resolution method (ENAR [10],
PRM [8]), and one extending the tableau method (TaMed [3]). In each case, the
idea is to add a narrowing inference rule to the existing method.

1.2 Ordered Polarized Resolution Modulo

In [4], we show that it is easily possible to integrate deduction modulo into a
resolution-based prover. To do so, we designed a calculus, called Ordered Po-
larized Resolution Modulo (OPRM�R), and recalled in Fig. 1. Note that the
ordering � does not need to be compatible with the rewriting system R. We
proved that OPRM�R is complete whenever the rewriting system fulfils a crite-
rion, namely the admissibility of the cut rule in the sequent calculus modulo.
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P ∨ C ¬Q ∨D
Resolution a,b,c

σ(C ∨D)

L ∨K ∨ CFactoring d

σ(L ∨ C)

P ∨ C
Ext. Narr.− a,b, Q→− D

σ(D ∨ C)

¬Q ∨D
Ext. Narr.+ a,c, P →+ ¬C

σ(C ∨D)

L ∨ C
Ext. Narr.t L maximal in L ∨ C, L

p,σ
 L′ by a term rewriting rule, L|p 6∈ V

σ(L′ ∨ C)

a σ = mgu(P,Q) b P maximal in P ∨ C c ¬Q maximal in ¬Q ∨D
d L and K maximal in L ∨K ∨ C, σ = mgu(L,K)

Fig. 1. Inference rules of the OPRM�R

We also proved that adding some simplification rules does not break this com-
pleteness. In particular, it is possible to eliminate strict subsumptions, and to
normalize the clauses w.r.t. the term rewriting system. On the contrary, we gave
a counter-example showing that removing tautology clauses can break the com-
pleteness. In the following, we assume that all considered rewriting systems have
this cut-admissibility property. This implies in particular the confluence of the
term rewriting systems.

This calculus can be easily integrated into a prover based on resolution with
selection and on the given-clause algorithm by using the following remark of
Dowek [8]: having a polarized rewriting rule P →− C, where C is in clausal
normal form, is the same as adding a clause ¬P ∨C where ¬P is selected, apart
from the fact that this clause should not be narrowed itself. Similarly, P →+ ¬C
behave the same as P∨C. These clauses corresponding to the polarized rewriting
rules are called one-way clauses by Dowek. To prevent such clauses to be resolved
one by each other, they can be directly put into the set of active clauses in the
given-clause algorithm.

2 Technical Details

2.1 iProver

iProver [14] is a first-order theorem prover developed by Korovin. It is mainly
based on the Inst-Gen method: to prove that a set of clauses is satisfiable, they
are made ground by instantiating all their variables with a dummy constant
and passed to a SAT-solver. If the SAT-solver answers that the ground clauses
are unsatisfiable, so are the original ones. If not, new instances of clauses are
generated using some inference rule called Inst-Gen. In this paper, we are not
really concerned with this method, although it would be interesting to study
its combination with the deduction modulo framework. However, in iProver, the
Inst-Gen method is combined with a resolution-based prover. We have integrated
the OPRM�R into this part of iProver.
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Since we do not use the Inst-Gen method, the choice of iProver may seem
rather strange. It results from the following points:
– The most efficient provers today (Vampire [15], E [16], Spass [18], . . . ) are
based on superposition, not only on resolution with selection. Of course, one
may argue that superposition is an extension of ordered resolution with selec-
tion. Designing a calculus combining superposition and deduction modulo should
not be difficult, starting from the OPRM�R. However, proving the completeness
of such a calculus seems rather difficult. Indeed, as for resolution modulo, this
completeness will not hold without the cut admissibility of the rewriting system.
However, the standard technique to prove the completeness of superposition,
namely by saturation, does not appear to be linked with cut-free proofs. The
question whether one can combine the restriction of superposition with narrow-
ing without losing completeness is therefore still open.
There is also a more technical difficulty concerning superposition-based provers.
The treatment of literals by superposition is not symmetric w.r.t. their polarity:
inference rules for negative literals are not the same as for positive ones, and
selected literals in a clause must contain at least a negative literal if they are
different from the maximal literals of the clause. Implementations of superposi-
tion exploit this asymmetry. However, we want to add one-way clauses into the
prover. In these clauses, a positive literal can be selected, and it needs not to
be the maximal literal w.r.t. some ordering. Just selecting this positive literal
and putting the clause directly into the set of active clauses made the prover
incomplete in the experimentation that we made using E, probably due to the
reasons cited above.
– In the CASC-J5 competition, the first prover not based on superposition is
iProver. Of course, its efficiency is largely due to the Inst-Gen method and the
call to an efficient SAT-solver (namely MiniSat). Nevertheless, the data struc-
tures developed in iProver, for instance its discrimination trees, contribute to
its performance, and these structures are used both by the Inst-Gen and by the
resolution prover.
– iProver is written in a functional language with pattern matching, namely
OCaml. Although some may argue that it can therefore not achieve the same
level of performance as a prover hacked in a low-level language like C, it reveals
itself to be useful in our case. Indeed, it is really easy to reflect rewriting rules
into a language with pattern matching. It is therefore possible to automatically
transform the input rewriting system into a program that normalizes the clauses
w.r.t. it, to compile that program and to load it to normalize clauses. As we will
see thereafter, since rewriting is compiled, this leads to real improvement in the
proofs in which heavy computation is needed.

2.2 Input files

In practice, we do not want to write a specific parser for the polarized rewriting
rules. Instead, we choose to change the semantics of the TPTP format whenever
the new --modulo command-line argument is set to true. In that case, any
formula whose role is axiom is understood as a rewriting rule. (It is still possible
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to have raw axioms by using e.g. the hypothesis role.) If the clause consists only
of one positive literal whose main symbol is an equality, this is understood as a
term rewriting rule. For instance, cnf(plus_def_o, axiom, plus(X,o) = X).

is interpreted as the term rewriting rule plus(X, o)→ X. If the literal is negative,
or its main symbol is not the equality, or there are more than one literal, the
clause is understood as a one-way clause whose first literal is the selected one.
For example,

cnf(all_m, axiom, ~ e(lappl(all,X)) | e(lappl(X,Y)) ).

cnf(all_p, axiom, e(lappl(all,X)) | ~ e(lappl(X,h(X))) ).

are interpreted as the one-way clauses ¬ε(∀̇@X) ∨ ε(X @Y ) and

ε(∀̇@X) ∨ ¬ε(X @h(X)) which correspond to the polarized rewriting rules

ε(∀̇@X) →− ∀Y. ε(X @Y ) and ε(∀̇@X) →+ ¬¬ε(X @h(X)) (see [8]). The
special case of the reflexivity axiom X = X is also treated as a one-way clause
and not as a rewriting rule.

2.3 Clause Generation by Narrowing

To perform the Ext. Narr.− (resp. Ext. Narr.+) inference rule, we add a rewriting
rule P →− C (resp. P →+ ¬C) as a one-way clause ¬P ∨C (resp. P ∨C). To this
end, we need to select ¬P (resp. P ) in the clause, and put the clause directly into
the set of active clauses, before the main loop of the given-clause algorithm is
performed. Then, applying Resolution with one of these one-way clauses simulates
Ext. Narr.±. In iProver, selected literals in a clause are just a list of literals that
is attached to the clause. Selecting a literal in a clause consists therefore simply
in calling assign_res_sel_lits with the singleton list containing the left-hand
side of the rule. Inserting the clause in the active set is done as it would be for
a normal clause: adding the clause into the unification index (using the selected
literal) and tagging the clause as active.

Implementing the Ext. Narr.t in iProver is more difficult. Indeed, iProver does
not have a special inference rule such as paramodulation to handle equality. If
equalities are present, iProver only add the axioms that define equality in the
current signature. Therefore, we need to add a paramodulation inference rule
ourselves. Fortunately, some data structures to do so were already present for
the resolution inference rule. For instance, active clauses are indexed using a non-
perfect discrimination tree [13]. To add narrowing by a term rewriting rule, we
add a new index, rewrite_index_ref. Only term rewriting rules are added into
this index. Given a term t, the index will provide all candidate rewriting rules,
i.e., only rules whose left-hand side can possibly be unified with t. Then, for all
candidates l → r, one tries to unify l with t, and if it is the case, one returns
σ(r) where σ is the substitution computed during the unification. However, this
is not sufficient, since term narrowing should perform at any depth in the term
t. Therefore, we implemented a data structure for contexts, allowing one to go
inside terms, and if a term cannot be narrowed at one position p, narrowing is
tried on all position directly below p. Note that by doing so, all clauses that
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could be generated by Ext. Narr.t are not, since we do not go below a position if
narrowing was successful. However, we generally assume that the term rewriting
system is sufficiently well-formed (in particular, as stated above, it is assumed
to be confluent) so that it does not break the completeness of the prover.

2.4 Simplifications

As recalled before, some simplifications that are compatible with standard or-
dered resolution break the completeness of OPRM�R. For instance, tautolo-
gies cannot be eliminated. Because they break the completeness, or we do not
know if they preserve it, we have to switch off the following options of iProver:
--instantiation flag, --schedule, --prep prop sim, --ground splitting,
--res to prop solver, --res orphan elimination; --res lit sel is set to
kbo_max. There is no flag in iProver to turn off tautology elimination, so we
changed the source code to prevent their elimination whenever the new --modulo

flag is set to true.
In OPRM�R, clauses can be narrowed using the term rewriting system, hence

generating new clauses, but we have shown that they can also be normalized, i.e,
replaced by their normal form. Indeed, adding the demodulation simplification
rule (C is simplified to D if C −→D by the term rewriting system) does not
break the completeness, and repeatedly applying this simplification eventually
leads to a normal form of the term, assuming it exists.

There are several way to perform the normalization of the clauses. We com-
pared the following ones, that can be selected using the --normalization_type

parameter:

none No simplification is performed, clauses have to be rewritten using Ext.
Narr.t, generating new clauses.

interp Rewriting rules are translated into OCaml closures performing the pat-
tern matching: by structural induction on the left-hand side of the rule, a
function is built that matches its arguments w.r.t. the left-hand side and
returns a substitution:

let rec term_to_subst = function

| Term.Fun(f, f_args, _) -> (function

Term.Fun(g, g_args, _) when f = g ->

List.fold_left2

(fun sub t1 t2 -> merge_subst (term_to_subst t1 t2) sub)

(Subst.create ()) f_args g_args

| _ -> raise No_match)

| Term.Var(var,_) ->

let sub = Subst.create () in

fun t -> Subst.add var t sub

If this function is successful, the obtained substitution is applied to the right-
hand side. If not, one tries another rewriting rule. If no rewriting rules can
be applied at that position, one tries the same method below in the term.
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dtree Thanks to the implementation of Ext.Narr.t, there is already a data struc-
ture that helps in retrieving rewriting rules whose left-hand side can be uni-
fied with some term. Since pattern-matching is stronger than unification (if
a term matches a pattern, then the term and the pattern can be unified),
the same structure can be used to get candidates for matching. Here also,
one needs to test rewriting deeply in the term.

pipe Rewriting rules are known statically once the input file is parsed, since
OPRM�R does not generate new rewriting rules. Therefore, they can be com-
piled to improve their efficiency. A simple way to compile them is to translate
them into a OCaml program using pattern matching. For instance, the rules
f(X, g(X))→ h(X) and f(h(X), Y )→ Y are translated into the code

let match_term = function

Fun("f",[x0; Fun("g",[x1])]) when x0 = x1 -> Fun("h",[x0])

| Fun("f",[Fun("h",[x0]); y0]) -> y0

| _ -> raise No_match

This translation is fully automated. Then, there is no need to implement
an efficient pattern-matching algorithm, since it is the one of OCaml that
will be used. This match_term function is added into an OCaml source file
pipe_iprover.ml. There, it is called by a tree-traversal that tries to ap-
ply it at each position of the term. Note that it is easy for the user to
change the rewriting strategy, since one only has to change the traversal in
pipe_iprover.ml before launching iProver. The file contains a main loop
that does the following: it waits a term on the standard input, normalizes it
and put the result on the standard output. This file is then compiled, and the
resulting program is run. iProver then communicates with it through UNIX
pipes. Terms are expected to be passed using the marshalling function of
OCaml. This implies that the version of OCaml used for compiling iProver
must be the same as the one for compiling pipe_iprover.ml.

plugin As for pipe, an OCaml program is compiled, but it is loaded using the
dynamic loading library Dynlink of OCaml, which is available for native
compilation since version 3.11 for most platforms: the match_term function
is added into a file plugin_iprover.ml which is compiled as a dynamic
library and loaded. The main function of the compiled plug-in changes only
a reference to a normalization function, pointing it to the function that
does the normalization using match_term. iProver has just to use the new
reference to get the normalization function. Here again, the normalization
strategy can be easily modified by the user by changing plugin_iprover.ml.

size based Compilation costs time. It is therefore not clear that the two pre-
vious options are more efficient, in particular when only small terms are
rewritten. This last normalization method decides to launch the compilation
(plugin style) only when a term whose size reaches some threshold needs to
be normalized. For smaller term, the dtree method is used. The threshold
can be changed using the --normalization_size command-line parameter.
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3 Benchmarks

3.1 Comparison with Other Calculi

We first test whether OPRM�R really improves proof search compared to stan-
dard ordered resolution with selection using “normal” axioms. As we need to
switch off some simplifications in order OPRM�R to be complete, we compare it
to the following calculi:

Ordered resolution, same restrictions as OPRM: in this case, the same
options are given to iProver as when OPRM�R is tried, the only difference is
that the --modulo flag is switched off, the axioms being therefore considered
as normal clauses instead of rewriting rules.

Ordered resolution, default options of iProver: in this case, the default
options of iProver are used; only the Inst-Gen prover is turned off.

Full iProver iProver is launched with its default options; in particular, the
Inst-Gen prover is combined with the resolution prover.

We may also have compared it to another prover, in particular a prover based
on superposition such as SPASS or E. Notwithstanding, this seems unfair, since
the resolution prover of iProver is written in OCaml whereas other provers are
written in C, and contain a lot of low-level optimizations, leading to more efficient
executables.

To perform a benchmark, we need a set of problems to test. We therefore
need some theories, and some problems related to these theories. The TPTP
library [17] provides a number of axiom sets, each of them used in several prob-
lems. We could have tried to consider each of these axiom sets as a theory. The
main difficulty is that for each of them, we have to define an equivalent rewriting
system for which cut admissibility holds, in order to guarantee the completeness
of OPRM�R. There exists a procedure that transforms a set of axioms into a
rewriting system with this property [6]. However, first, this procedure may not
terminate, and second, it never was implemented, although we did write some
prototype which showed us that the procedure produces systems that are too
big to be usable. We therefore had to design rewriting systems and prove their
cut admissibility by hand. Consequently, we only tried five theories, named af-
ter their TPTP v4.0.0 axiom-set files. We tested all the problems of the TPTP
library that use these axiom sets. The rewriting systems we designed to present
these theories are given at http://www.ensiie.fr/~guillaume.burel/empty_
tools.html.en. We considered ANA001, axioms defining the analysis (limits)
for continuous functions, BOO001, axioms defining a ternary boolean alge-
bra (boolean algebra with a ternary multiplication function), FLD001, axioms
defining ordered fields, SET001 and SET002, axioms defining a weak set the-
ory using resp. predicates or function symbols to define unions, intersections,
differences and complements. We ran each problem with a time-out of 60 s: first
using the rewriting system in OPRM�R, second using the axiom set of the TPTP
in resolution with the same restriction as OPRM�R, third in resolution with de-
fault options and fourth using iProver in its whole. All tests were performed
under Linux 2.6 on a four-core Intel R© CoreTM i3 CPU M330 at 2.13GHz.
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Table 1. Comparison of Different Calculi on Problems Extracted from the TPTP
Library. #: number of solved problems; %: percentage in the problem set corresponding
to the theory; t: average time to find a proof for the solved problems.

ANA001 BOO001 FLD001 SET001 SET002 Total
# (%) t # ( %) t # (%) t # ( %) t # ( %) t # (%) t

OPRM 3 (75) 11.41 3 (100) 0.01 40 (29) 0.95 15 (100) 0.01 8 (100) 0.01 69 (42) 1.05
restricted
resolution 0 ( 0) NA 0 ( 0) NA 23 (17) 2.85 15 (100) 4.05 5 ( 63) 8.06 43 (26) 3.88
default

resolution 1 (25) 25.34 1 ( 33) 25.46 40 (29) 13.55 15 (100) 0.96 7 ( 88) 22.99 64 (39) 12.00
full

iProver 1 (25) 0.18 1 ( 33) 0.42 42 (31) 4.69 15 (100) 0.17 7 ( 88) 7.11 66 (40) 3.79
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Fig. 2. Comparison of Different Calculi on Problems Extracted from the TPTP Library.
The x-axis gives the time taken by OPRM�R, the y-axis by the other calculus.

The results are summarized in Table 1 and represented graphically in Fig-
ure 2. The time taken for a given problem by OPRM�R is compared to the time
taken by the other calculi. Since the scale is logarithmic, for all points above the
dashed line, OPRM�R is 10 times faster than the other calculus, and for all points
above the dotted line, 100 times faster. As we can see, OPRM�R is always at least
as efficient as restricted or default resolution, and in most of the cases at least
10 times better. This was expected, because having proved the cut admissibility
for the considered rewriting system implies that the theory is consistent, and
the prover does not try to find a contradiction in the theory. A more surprising
result is that using iProver in its whole is only rarely much better than using
OPRM�R. This means that the gain of using OPRM�R relative to using ordered
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resolution is comparable to the gain obtained by combining it with the Inst-Gen
method (including the use of an efficient SAT-solver).

3.2 Comparison of Rewriting Implementations

In this section, we want to compare the different techniques that can be used
to perform the normalization of the clauses w.r.t. the term rewriting system. To
have a better control of the required amount of normalization, we do not rely
on “real” problems of the TPTP, but on three families of problems crafted by
hand. We first use tests requiring only normalization. The first one consists of

proving that n+n = 2×n in Peano’s arithmetic, i.e., given n
def
= sn(o), we have

to prove n+ n = s(s(o))× n modulo the rewriting system

s(X) + Y → s(X + Y ) o+ Y → Y X = X →+ ¬⊥
s(X)× Y → (X × Y ) + Y o× Y → o

The second one consists in proving the same theorems, but using Church’s inte-
gers in a λ-calculus with explicit substitutions. This calculus, similar to λυ [1],
is defined using binary operators for application (·@ ·) and substitution (·[·]),
unary operators for lambda abstraction (λ), unit substitution (/) and substi-
tution lifting (⇑), De Bruijn indexes represented by 1 and sc, and the shifting

substitution ↑. Then, given n
def
= λ(λ(sc(1) @(· · · (sc(1) @ 1)))), we have to prove

(+ @n) @n = (×@ 2) @n modulo the rewriting system

λ(A) @B → A[/B] (A@B)[S]→ A[S] @B[S] 1[/A]→ A

(λ(A))[S]→ λ(A[⇑ S]) sc(N)[/A]→ N 1[⇑ S]→ 1

sc(N)[⇑ S]→ N [S][↑] sc(N)[↑]→ sc(sc(N)) 1[↑]→ sc(1)

X = X →+ ¬⊥ × → λ(λ(sc(1) @ 1))

+→ λ(λ(λ(λ((sc(sc(sc(1))) @(sc(sc(1)) @ sc(1)) @ 1)))))

Arguably, these tests do not reflect reals proofs, since they consists only
of normalization, and no inference is performed. To have a test mixing both
normalization and inference, we used an encoding of instances of the Syracuse
conjecture, i.e., given an n, we tried to prove that by dividing n by 2 if n is even,
and multiplying it by 3 and adding 1 if it is odd, and reiterating the process, 1
is reached eventually. This was encoded by proving syracuse(n) modulo:

syracuse(X)→+ ¬¬syracuse′(X, parity(X)) parity(s(o))→ false

syracuse(s(o))→+ ¬⊥ parity(o)→ true

syracuse′(X, true)→+ ¬¬syracuse( 1
2 (X)) 1

2 (s(s(X)))→ s( 1
2 (X))

syracuse′(X, false)→+ ¬¬syracuse(×3 + 1(X)) 1
2 (s(o))→ o

parity(s(s(X)))→ parity(X) 1
2 (o)→ o

×3 + 1(s(X))→ s(s(s(×3 + 1(X)))) ×3 + 1(o)→ s(o)
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Fig. 3. Comparison of different techniques for implementing normalization: Proving
that n+ n = 2× n in Peano’s arithmetic. Values of n from 10 to 4000, and zoom from
10 to 100.
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Fig. 4. Comparison of different techniques for implementing normalization: Proving
that n+ n = 2× n with Church’s integers.
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Fig. 5. Comparison of different techniques for implementing normalization: Instances
of the Syracuse conjecture.
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The results are represented in Figures 3 to 5. As expected, compilation of the
rewriting rules leads to much better results when heavy computation is needed.
We also note that using Unix pipes degrades performance for large terms, com-
pared to using a plug-in. The invocation of the OCaml compiler costs time. There
is a threshold of approximately 0.07 s in Peano’s arithmetic and for the Syracuse
problem. Using the size based method seems a fair choice, since it behaves, as
expected, like dtree on small inputs and like plugin on large ones. However, the
term-size threshold for launching compilation depends on the problem: it should
be set greater for Peano’s arithmetic, and smaller for Church’s integers. This is
due to the fact that normalizing a term of a given size requires more applications
of the rewriting system for Church’s integers than in Peano’s arithmetic, so that
the gain obtained by compiling the rules is greater for the formers. The rewriting
systems of these tests are not meant to be good at reasoning about arithmetic,
their purpose is to compare the different normalization techniques; the difference
that were enlightened for these tests should occur for any rewriting system.

Conclusion

The benchmarks presented in the previous section demonstrate that using a
rewriting system instead of axioms improves proof search, and that compiling
the rewriting system is efficient as soon as big terms are rewritten. One could
argue that one should not have used raw axioms, but a saturated set of clauses
instead. There are two remarks to be made: A saturated set of clauses, if viewed
as one-way clauses, can be seen as a rewriting system with cut admissibility.
Conversely, the one-way clauses corresponding to a rewriting system with the
cut admissibility does not need to be saturated w.r.t. the inference rules of the
system to guarantee the completeness; they are therefore less numerous, and the
completeness does not depend on the clause ordering.

A point that strongly needs to be studied is the automatic transformation of
an axiomatic presentation into an equivalent rewriting system with cut admis-
sibility. As mentioned above, a procedure exists, but its implementation showed
that it would be impractical. A way to improve it would be to work on the re-
mark above, namely that saturated set of clauses can be seen as cut-admitting
rewriting systems. Note that once the set is saturated w.r.t. some ordering, it
can be used with another ordering without breaking the completeness.

Another issue is to study whether extending superposition with narrowing
preserves completeness. If not, we should search extra criteria that would imply
it. This is crucial since we plan to integrate deduction modulo into today’s most
efficient first-order provers such as Vampire, E, or SPASS.

Last, compiling rewriting rules to improve first-order provers is not a new
idea, but it was put aside because the compilation time is too long when the
compiler needs to be called for each new rewriting rule generated by the system.
Here, such a problem is not present, since rewriting rules are known in advance,
i.e. once the input has been read. Moreover, our approach for the compilation
of the rewriting rules is reminiscent of the normalization by evaluation tech-
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nique [2]. To really have NbE, we should translate not only the rewriting rules
into OCaml programs, but also the terms to be normalized themselves. It is not
clear whether this would really improve proof search, but it should be tested.
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