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Abstract
Deduction modulo is a generic framework to describe proofs in a theory better than using raw
axioms. This is done by presenting the theory through a congruence over propositions that is
most often defined by means of rules rewriting terms and propositions. It has been shown that
such representations of theories preserve good properties of axiom-free deductive systems, can
lead to theoretical proof-length speed-ups and actually improve automated proof search. In this
paper, we positively answer the theoretical question whether all first-order theories can be repre-
sented by such rewriting systems, while preserving a crucial proof-theoretical property, namely
cut admissibility, equivalent to the completeness of proof search. We also perform experiments
to compare several techniques to orient axioms into rewriting systems, some of them being com-
plete, some being based on heuristics. These experiments confirm the practical interest of using
rewriting rules instead of axioms.

Keywords and phrases automated deduction, proof theory, theory reasoning, rewriting, refine-
ments of resolution

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Proofs are rarely built without context: mathematical theorems are proved for instance in
set theory, or in arithmetic; program correctness may use pointer arithmetic or the theories
associated to the data structures of the program (chained lists, arrays, etc.); theories can
also model characteristics of encryption functions to prove security properties. Some proving
contexts can also be seen as theories. For instance, the Sledgehammer tactic of Isabelle sends
to automated provers the goal to be proved with a number of related lemmas that can be
used as axioms, and that form therefore a specific theory in which the goal must be proved.
Therefore, it is essential to develop methods that are adapted to search for proofs in theories.
For instance, SMT provers provide efficient tools. Nevertheless, they are restricted to some
particular theories, such as linear arithmetic or arrays. We would like to have a generic and
automated way of obtaining efficient methods for a given theory, provided it is consistent.
A naive idea is to use an axiomatic presentation of the theory, but it is now folklore that
this is not efficient enough. The theory should therefore be presented in a more effective
manner. One solution is, starting from the axiomatic presentation, to automatically design a
deductive system that is adapted to the theory. In [27], Negri and von Plato turn variable-free
axioms into non-logical deduction rules that are added to a sequent calculus. Similarly, [12]
transforms a large class of axioms into inference rules in sequent and hypersequent calculi.
Deduction modulo [18] is a bit different: it presents the theory as computation, by means of a
rewriting system, and the inference rules of an existing deductive system (natural deduction,
sequent calculus, etc.) are applied modulo the congruence associated with this rewriting
system. Deduction modulo can theoretically lead to unbounded proof-length speed-ups [7],
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and we have shown in [8] that presenting theories as rewriting systems improves indeed the
search for proofs in those theory.

If one wants these presentations to behave well, they should have the following proof-
theoretical property: the cut rule must be admissible. Indeed, in the usual setting, cut
admissibility implies the consistency of the theory, the subformula property (to find a proof,
one can restrict oneself to the subformulas of the formula to be proved), the existence of
proof normal forms, etc. Furthermore, in deduction modulo, this property is equivalent
to the completeness of the various derived proof-search methods [18, 4, 16, 6]. For all
systems produced by [27, 12], because of restrictions on the form of the theories, the cut
admissibility holds. However, in deduction modulo, it depends on the considered rewriting
system. The questions are: knowing that the theory is consistent, is it possible to present
it as a rewriting system such that cut admissibility holds in deduction modulo? And can
this transformation into a rewriting system be automated? A presentation as a rewriting
system with cut admissibility was designed specially for particular theories, such as Peano
arithmetic [20], simple type theory [17], and Zermelo set theory [19]. When we experimented
with our integration of a proof search method based on deduction modulo into an existing
prover [8], we had to design such a rewriting system by hand for each theory we considered,
which led us to restrict ourselves to only five theories. Dowek designed a systematic way of
transforming a consistent propositional theory into such a rewriting system, using a model of
the theory. In [11], we gave a semi-algorithm that can handle any first-order theory: first,
it produces a rewriting system that corresponds to the theory; second, it completes the
rewriting system to ensure cut admissibility. It is the second part that may not terminate. In
this paper, we show for the first time how any first-order theory can always be presented as
a rewriting system with cut admissibility. This is done by developing a characterization [10]
of an extension of the resolution method based on deduction modulo as a combination of the
set-of-support strategy [32] and selection of literals.

The method that we introduce is a theoretical answer to the question of presenting
first-order theories as rewriting systems with cut admissibility. However, in practice, the
resulting rewriting system could be not much better than the use of axioms, in particular
because it contains too many rules. We compare several ways to orient axioms into rewriting
rules. Some of them are based on the theoretical work that we introduce here, and are
therefore complete, in the sense that resolution modulo the resulting resulting rewrite systems
is complete. Some others are based on heuristics. We have performed an experiment to
compare them, using our integration of deduction modulo in iProver on problems from the
TPTP database [30].

In the two next sections, we briefly present deduction modulo and refinements of resolution.
Section 4 describes how a theory can be presented as a rewriting system, and why cut
admissibility is implied by the consistency of the theory. We then describe in Section 5 the
different practical algorithms that can be used to perform this task, and we perform an
experiment to compare them. We conclude by discussing further works.

2 Deduction Modulo

We use standard definitions for terms, predicates, propositions (with connectives ¬,⇒,∧,∨
and quantifiers ∀,∃), sequents, substitutions, term rewriting rules and term rewriting, as can
be found in [1, 21] . The substitution of a variable x by a term t in a term or a proposition
A is denoted by {t/x}A, and more generally the application of a substitution σ in a term or
a proposition A by σA. A term t can be narrowed into s using substitution σ at position
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p (t p,σ s) if σt can be rewritten into s using substitution σ at position p. A literal is an
atomic proposition or the negation of an atomic proposition. A proposition is in clausal
form if it is the universal quantification of a disjunction of literals ∀x1, . . . , xn. L1 ∨ . . . ∨ Lp
where x1, . . . , xn are the free variables of L1, . . . , Lp. In the following, we will often omit
the quantifications, and we will identify propositions in clausal form with clauses (i.e. set of
literals) as if ∨ were associative, commutative and idempotent. The symbol ut represents the
empty clause. The polarity of a position in a proposition can be defined as follows: the root
is positive, and the polarity switches when going under a ¬ or on the left of a ⇒.

In deduction modulo, term rewriting and narrowing is extended to propositions by
congruence on the proposition structure. In addition, there are also proposition rewriting
rules whose left-hand side is an atomic proposition and whose right-hand side can be any
proposition. Such rules can also be applied to non-atomic propositions by congruence on the
proposition structure. We call a rewriting system the combination of a term rewriting system
and a proposition rewriting system. Given a rewriting system R, we denote by A−→

R
B the

fact that A is rewritten in one step into B, either by a term rewriting rule or by a proposition
rewriting rule, and by A 

R
B the fact that A is narrowed to B. ∗−→

R
is the reflexive transitive

closure of −→
R

. Deduction modulo consists in applying the inference rules of an existing proof
system modulo such a rewriting system. This leads for instance to the asymmetric sequent
calculus modulo [15], some of whose rules are presented in Figure 1.

I Example 1. Consider the rewriting rule A ⊆ B → ∀x. x ∈ A⇒ x ∈ B. We can build the
following proof of the transitivity of the inclusion in the asymmetric sequent calculus modulo
this rule:

_−
x ∈ C − x ∈ C

_−
x ∈ B − x ∈ B⇒−

x ∈ B ⇒ x ∈ C, x ∈ B − x ∈ C
∀−

B ⊆ C, x ∈ B − x ∈ C
_−

x ∈ A − x ∈ A
⇒−

x ∈ A⇒ x ∈ B,B ⊆ C, x ∈ A − x ∈ C
∀−

A ⊆ B,B ⊆ C, x ∈ A − x ∈ C
−⇒

A ⊆ B,B ⊆ C − x ∈ A⇒ x ∈ C
−∀

A ⊆ B,B ⊆ C − A ⊆ C

Rewriting rules can be applied indifferently to the left- or the right-hand side of a sequent.
Consequently, they can be considered semantically as an equivalence between their left-
and right-hand sides. To be able to consider implications, a polarized version of deduction
modulo was introduced [14]. Proposition rewriting rules are tagged with a polarity + or −;
they are then called polarized rewriting rules. A proposition A is rewritten positively into a
proposition B (A−→+B) if it is rewritten by a positive rule at a positive position or by a
negative rule at a negative position. It is rewritten negatively (A−→−B) if it is rewritten by
a positive rule at a negative position or by a negative rule at a positive position. Intuitively, a
positive rule A→+ B (resp. a negative rule B →− A) corresponds to an implication B ⇒ A.
Term rewriting rules (but not proposition rewriting rules) are considered as both positive and
negative. ∗−→± is the reflexive transitive closure of −→±. This gives the polarized sequent
calculus modulo, some of whose rules are presented in Figure 2.

I Example 2. Consider the polarized rewriting system

A ⊆ B →− ∀x. x ∈ A⇒ x ∈ B
A ⊆ B →+ ¬diff (A,B) ∈ A
A ⊆ B →+ diff (A,B) ∈ B
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_− A
∗−→
R

C
∗←−
R

B

Γ, A − B,∆
Γ, A − ∆ Γ − B,∆−̂ A

∗←−
R

C
∗−→
R

B

Γ − ∆

Γ, B − ∆ Γ − A,∆
⇒− C

∗−→
R

A⇒ B

Γ, C − ∆
Γ, A − B,∆

−⇒ C
∗−→
R

A⇒ B

Γ − C,∆

Γ, {t/x}A − ∆
∀− B

∗−→
R
∀x. A

Γ, B − ∆
Γ − A,∆

−∀
B
∗−→
R
∀x. A

x not free in Γ,∆Γ − B,∆

Figure 1 Some inference rules of the Asymmetric Sequent Calculus Modulo R

_− A
∗−→
R

−C + ∗←−
R

B

Γ, A − B,∆
Γ, A − ∆ Γ − B,∆−̂ A −

∗←−
R

C
∗−→
R

+B

Γ − ∆

Γ, B − ∆ Γ − A,∆
⇒− C

∗−→
R

−A⇒ B

Γ, C − ∆
Γ, A − ∆

−¬ B
∗−→
R

+¬A
Γ − B,∆

Γ, {t/x}A − ∆
∀− B

∗−→
R

−∀x. A
Γ, B − ∆

Γ − A,B,∆
−∵

C
∗−→
R

+A

C
∗−→
R

+BΓ − C,∆

Figure 2 Some inference rules of the Polarized Sequent Calculus Modulo R

(diff can be seen as the Skolem symbol introduced by the CNF transformation of the definition
of the subset relation.) We can build the following proof of the transitivity of the inclusion
in the polarized sequent calculus modulo this system:

_− diff (A,C) ∈ C − A ⊆ C
_− diff (A,C) ∈ B − diff (A,C) ∈ B

⇒−
diff (A,C) ∈ B ⇒ diff (A,C) ∈ C, diff (A,C) ∈ B − A ⊆ C

∀−
B ⊆ C, diff (A,C) ∈ B − A ⊆ C

_− diff (A,C)∈A−diff (A,C)∈A
⇒−

diff (A,C) ∈ A⇒ diff (A,C) ∈ B,B ⊆ C, diff (A,C) ∈ A − A ⊆ C
∀−

A ⊆ B,B ⊆ C, diff (A,C) ∈ A − A ⊆ C
−¬

A ⊆ B,B ⊆ C − A ⊆ C,A ⊆ C
−∵

A ⊆ B,B ⊆ C − A ⊆ C

To a rewriting system R corresponds a theory, which is the set of formulas that can be
proved in the sequent calculus modulo R. It was proved that this theory can always be
presented by a traditional set of axioms, which is then called a compatible presentation [18].
In this paper, we are concerned with the converse direction: is it possible to present any
axiomatic first-order theory by a rewriting system? In [11, Corollary 25], we answered
positively: it is possible to transform any first-order theory into a rewriting system. However,
this rewriting system may not have all the good properties that ensure that deduction modulo
behaves well, in particular the admissibility of the cut rule.

The cut rule is admissible in the sequent calculus modulo R if, whenever a sequent can be
proved in it, then it can be proved without using the cut rule ( −̂ in Figure 1 and 2). Abusing
terminology, we say that a rewriting system R admits cut if the cut rule is admissible in the
sequent calculus modulo R. The admissibility of the cut rule has a strong proof-theoretical
as well as practical importance: it involves that normal forms exist for proofs; it implies
the consistency of the theory associated to R; it is equivalent to the completeness of the
proof search procedures based on deduction modulo R (such as ENAR [18], extending the
resolution method, and TaMed [4], extending the tableau method); etc. Cut admissibility can
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also be seen as the completeness of the cut-free sequent calculus w.r.t. the sequent calculus
with cuts. In [11], to ensure the cut admissibility, we designed a procedure that completes
the rewriting system. However, this procedure may not terminate (and produces too many
rules in practice). In this paper, we propose another method to transform an axiomatic
presentation of a theory into a cut-admitting rewriting system, that works for any finitely
presented and consistent first-order theory.

3 Resolution Calculi

We briefly recall the resolution calculus and two refinements, namely the set-of-support
strategy and ordered resolution with selection, before presenting the extension of resolution
with deduction modulo. A derivation in resolution [28] tries to refute a set of clauses by
inferring new clauses by means of the two following inference rules (where P and Q are
atoms, whereas L and K are literals), until the empty clause is derived.

P ∨ C ¬Q ∨D
Resolution σ = mgu(P,Q)

σ(C ∨D)
L ∨K ∨ CFactoring σ = mgu(L,K)
σ(L ∨ C)

3.1 Set-of-Support Strategy

The set-of-support strategy for resolution [32] consists in restricting the clauses on which
resolution can be applied. The input set of clauses is separated into a theory Γ and a set
of support ∆. At least one of the clauses on which resolution is applied must be in the
set of support, and the generated clause is put into the set of support. If the theory Γ is
assumed to be consistent, this strategy is complete: if Γ,∆ is a unsatisfiable set of clauses,
the empty clause can be derived from it using the set-of-support strategy. The set-of-support
strategy can therefore be seen as proving a formula ¬∆ in a theory Γ without trying to find
a contradiction in Γ because Γ is assumed to be consistent. In the following, we say that
a set of clause ∆ is refuted by the set-of-support strategy for Γ if the empty clause can be
derived from the set Γ,∆ with initial set of support ∆ and theory Γ.

3.2 Ordered Resolution with Selection

Ordered resolution with selection [3] (ORS(�, S)) is another refinement of resolution
parametrized by an Noetherian ordering � on atoms which is stable under substitution and
total on ground atoms, and by a selection function S that associates to each clause a subset
of the negative literals of this clause. It consists in restricting the literals on which resolution
can be applied: if S(C) is not empty, then only the literals in S(C) can be used; otherwise,
only the maximal literals w.r.t. � can be used. We will therefore say that a literal is selected
in a clause C if it is in S(C) or if S(C) is empty and the literal is maximal in C. Ordered
resolution with selection is refutationally complete whatever ordering or selection function
are used.

3.3 ([Ordered] Polarized) Resolution Modulo

An extension of resolution based on deduction modulo, named Extended Narrowing and
Resolution (ENAR), was defined in [18]. ENAR is a family of resolution calculi, each
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parametrized by a rewriting system R.1 It consists in adding a new inference rule, called
Extended Narrowing, which produces the clauses obtained by narrowing a clause by R. Since
narrowing a clause with a proposition rewriting rule can produce a formula which is not
in clausal normal form, the latter has to be computed to find the generated clauses. The
Extended Narrowing rule is therefore:

CExt. Narr. C 
R
A, D ∈ C`(A)

D

where C`(A) is the set of clauses of the clausal normal form of A.
We say that ENAR for R is complete if, whenever − A can be proved in the sequent

calculus modulo R, the empty clause can be derived from C`(¬A) in ENAR for R. Her-
mant [23] proved that the empty clause can be derived from C`(¬A) in ENAR for R if and
only if − A can be proved without cut in the sequent calculus modulo R. This implies that
ENAR for a rewriting system R is complete if and only if the sequent calculus modulo R
admits cut.

In ENAR, formulas have to be put in clausal normal form dynamically, which may require
fresh Skolem symbols each time. To avoid this, Dowek introduced the Polarized Resolution
Modulo (PRM) [16]. As ENAR, this is a family of resolution calculi parametrized by a
rewriting system, but this system is assumed to be polarized, and clausal, i.e., each negative
rule is of the form P →− C, and each positive rule is of the form P →+ ¬C, where C is in
clausal form. In that case, the Extended Narrowing rule becomes:

P ∨ CExt. Narr.− σ = mgu(P,Q), Q→− D ∈ R
σ(D ∨ C)

¬Q ∨D
Ext. Narr.+ σ = mgu(P,Q), P →+ ¬C ∈ R

σ(C ∨D)

Gao proved that any rewriting system admitting cut can be transformed into an equivalent
polarized and clausal one [22], so that PRM can be applied whenever ENAR can.

3.4 Polarized Rewriting Rules and One-Way Clauses
To each polarized clausal rewriting rule can be associated a clause in which one literal
is selected. This clause is called a one-way clause [16]. For instance, to P →− C is
associated ¬P ∨C, and to P →+ ¬C is associated P ∨C (the selected literals are underlined).
Conversely, to a clause and a literal occurrence in this clause can be associated a polarized
clausal rewriting rule: to P ∨C is associated P →+ ¬C, and to ¬P ∨C is associated P →− C.
It is worth remarking that applying Extended Narrowing on a clause C with a polarized
clausal rule R leads to the same clause as applying Resolution on C and the one-way clause
corresponding to R. Thus, polarized rewriting rules can be seen as special clauses with the
following properties:

only the selected literal can be used to resolve a one-way clause;
two one-way clauses cannot be resolved together.

The results of this paper exploit this isomorphism between polarized clausal rewriting rules
and one-way clauses.

1 ENAR is originally parametrized by a rewriting system R and an equational theory E , and the unification
in the Resolution, Factoring and Extended Narrowing rules is performed modulo the equational theory E .
To keep it simple, we choose not to consider equational theories in this paper.
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4 Cut-Admitting Presentations of Theories

4.1 Simulating set of support
We suppose that the theory is presented by means of a set of clauses. If not, it has to be
transformed into clausal normal form using standard techniques.

I Definition 3. Given a set of clauses Γ, we define the polarized rewriting system RΓ
consisting of, for each clause C in Γ and each literal L in C,

if L = P is positive, a positive rewriting rule P →+ ¬∀x1, . . . , xn. L1 ∨ · · · ∨ Lm where
x1, . . . , xn are the free variables of C that are not free in P and L1, . . . , Lm are the literals
of C different from P ;
if L = ¬P is negative, a negative rewriting rule P →− ∀x1, . . . , xn. L1 ∨ · · · ∨ Lm where
x1, . . . , xn are the free variables of C that are not free in P and L1, . . . , Lm are the literals
of C different from ¬P .

I Example 4. Let Γ be the set of clauses corresponding to the definition of the inclusion:
¬A ⊆ B ∨ ¬(X ∈ A) ∨X ∈ B
A ⊆ B ∨ diff (A,B) ∈ A

A ⊆ B ∨ ¬(diff (A,B) ∈ B)

Then RΓ is A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
X ∈ A→− ∀b. ¬A ⊆ b ∨X ∈ b
X ∈ B →+ ¬∀a. ¬a ⊆ B ∨X ∈ a
A ⊆ B →+ ¬diff (A,B) ∈ A

diff (A,B) ∈ A→+ ¬A ⊆ B
A ⊆ B →+ ¬¬diff (A,B) ∈ B

diff (A,B) ∈ B →− A ⊆ B

I Remark. The number of rewriting rules in RΓ is equal to the number of literal occurrences
in Γ.

We then prove that the rewriting systems obtained as above enjoy cut admissibility. We
follow three steps. The first one is the completeness of the set-of-support strategy:

I Lemma 5. The consistency of a finite set of clauses Γ implies the completeness of the
set-of-support strategy for Γ.

Proof. This is the main theorem of [32]. J

The second step is to simulate the set-of-support strategy for Γ using PRM for RΓ:

I Lemma 6. A derivation of the empty clause from a set of clauses ∆ with the set-of-support
strategy for Γ can be transformed into a derivation of the empty clause from a set of clauses
∆ in PRM for RΓ.

Proof. By induction on the length of the derivation. Note that Γ remains the same during
the derivation, only the set of support ∆ changes. Factoring steps are trivial, since they
only involve clauses of ∆ that can be factored also in PRM. If the first step resolves two
clauses from the set of support (i.e. two clauses not in Γ), the same resolution step can be
performed in PRM. If the first step is C ∨ P D ∨ ¬Q

Resolution σ = mgu(P,Q)
σ(C ∨D)

where
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D ∨ ¬Q is in Γ, we know that there is a rule Q →− ∀x1, . . . , xn. D in RΓ. Therefore, we
have the following derivation in PRM: C ∨ PExt. Narr.+ σ = mgu(P,Q)

σ(C ∨D) .

If the first step is C ∨ ¬P D ∨Q
Resolution σ = mgu(P,Q)

σ(C ∨D)
where D ∨Q is in Γ, we

know that there is a rule Q →+ ¬∀x1, . . . , xn. D in RΓ. Therefore, we have the following
derivation in PRM: C ∨ ¬PExt. Narr.− σ = mgu(P,Q)

σ(C ∨D) . J

I Corollary 7. The completeness of the set-of-support strategy for Γ implies the completeness
of PRM for RΓ.

The third step adapts an existing result on the equivalence of cut admissibility and
completeness of standard resolution modulo to polarized resolution modulo.

I Lemma 8. The completeness of PRM for RΓ implies the admissibility of the cut rule in
the polarized sequent calculus modulo RΓ.

Proof. Either direct proof by adapting Hermant’s one for unpolarized deduction modulo
[23], or combination of the following lemmas. J

As in [11], Section 2.2, from the polarized rewriting system RΓ we define the unpolarized
rewriting system R∓Γ consisting of:

a rule Q→ Q ∨ ¬C for each positive rule Q→+ ¬C in RΓ;
a rule Q→ Q ∧ C for each negative rule Q→− C in RΓ.

The intuition behind the form of these unpolarized rules is the following: if the translation
of a negative rule is applied at a positive position, then instead of Q we have to prove Q∧C.
Since Q ∧ C is stronger than Q, the application of the rewriting rule at a position of the
“wrong” polarity is useless. On the contrary, at a negative position, instead of proving ¬Q we
have to prove ¬(Q ∧ C) which is implied by ¬C. So it is as if we had rewritten ¬Q to ¬C.

I Lemma 9. A derivation of the empty clause from a set of clauses ∆ in PRM for RΓ can
be transformed into a derivation of the empty clause from a set of clauses ∆ in ENAR for
R∓Γ .

Proof. By induction on the derivation length, the only interesting case is Extended Narrowing.
Suppose that we have P ∨ CExt. Narr.− σ = mgu(P,Q), Q →− D

σ(D ∨ C) . To Q →− D

corresponds the unpolarized rule Q→ Q∧D. Hence, P ∨C can be narrowed to σ((Q∧D)∨C),
whose clausal normal form is (σ(Q ∨ C)) ∧ (σ(D ∨ C)). Hence, the Extended Narrowing rule
of ENAR can infer the clause σ(D ∨ C).

Suppose that we have ¬P ∨ CExt. Narr.+ σ = mgu(P,Q), Q →+ ¬D
σ(D ∨ C) To Q →+ ¬D

corresponds the unpolarized rule Q → Q ∨ ¬D. Hence, ¬P ∨ C can be narrowed to
σ(¬(Q ∨ ¬D) ∨ C), whose clausal normal form is (σ(¬Q ∨ C)) ∧ (σ(D ∨ C)). Hence, the
Extended Narrowing rule of ENAR can infer the clause σ(D ∨ C). J

I Corollary 10. The completeness of PRM for RΓ implies the completeness of ENAR for
R∓Γ .

I Lemma 11. The completeness of ENAR for R∓Γ implies the admissibility of the cut rule
in the asymmetric sequent calculus modulo R∓Γ .

Proof. This is a corollary of Theorems 1 and 2 of [23]. J
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I Lemma 12. The admissibility of the cut rule in the asymmetric sequent calculus modulo
R∓Γ implies the admissibility of the cut rule in the polarized sequent calculus modulo RΓ.

Proof. This is a direct consequence of the equivalence theorem between the polarized sequent
calculus modulo RΓ and the asymmetric sequent calculus modulo R∓Γ (Corollary 10 of [11]):
a sequent is provable (resp. provable without cut) in the polarized sequent calculus modulo
a polarized proposition rewriting system R iff it is provable (resp. provable without cut) in
the asymmetric sequent calculus modulo the rewriting system R∓. J

By combining Lemma 5, Corollary 7, and Lemma 8, we obtain:

I Theorem 13. The consistency of a finite set of clauses Γ implies the admissibility of the
cut rule in the polarized sequent calculus modulo RΓ.

4.2 Cut admissibility through saturation
To reduce the number of rules, it is possible to associate a polarized rewriting system to a
set of clauses for ordered resolution with selection by considering as left-hand sides only the
literals that are selected in a clause. Thus, we would not produce a rule for each literal but
only for those that are in S(C) or that are maximal if S(C) is empty.

I Example 14. We consider the example of the inclusion again, with an ordering such that
literals with ⊆ are greater than literals with ∈. The resulting rewriting system is reduced to

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff (A,B) ∈ A
A ⊆ B →+ ¬¬diff (A,B) ∈ B

However, ordered resolution with selection is not compatible with the set-of-support
strategy, in the sense that their combination jeopardizes completeness. Therefore, we cannot
reuse the proof above and indeed, the rewriting system corresponding to the clauses may not
admit cut. Nevertheless, a sufficient condition to ensure the completeness is the saturation of
the set of clauses used as complement of the set of support (i.e. the theory): the clauses that
can be inferred from it must either be in it or be redundant (i.e. they must be semantically
implied by smaller clauses). We can redo the proof above, replacing consistency by saturation
and using the set-of-support strategy for ORS(�, S) instead of resolution. Lemma 5 becomes:

I Lemma 15. The saturation of a finite set of clauses Γ w.r.t. ORS(�, S) implies the
completeness of the set-of-support strategy for Γ in ORS(�, S′), where S′ is S on clauses of
Γ and maps the empty set to other clauses.

Proof. Since Γ is saturated, no relevant inference can be done among its clauses. Since
ORS(�, S′) is complete, so is the set-of-support strategy for it, since it only prevents inferences
among clauses of Γ. J

Then, Corollary 7 is replaced by:

I Lemma 16. The completeness of the set-of-support strategy for Γ in ORS(�, S′) implies
the completeness of PRM for R′Γ where R′Γ is RΓ restricted to the rules whose left-hand side
is selected in the corresponding clause for ORS(�, S′).

Proof. As in proof of Lemma 6, a derivation of the empty clause in ORS(�, S′) with the
set-of-support strategy for Γ can be simulated by a derivation in PRM for R′Γ. J
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Combining Lemmas 15, 16 and 8, we obtain:

I Theorem 17. The saturation of a finite set of clauses Γ w.r.t. ORS(�, S) implies the
admissibility of the cut rule in the polarized sequent calculus modulo the rewrite system RΓ
restricted to rules whose left-hand side is selected (or maximal if none are selected) w.r.t. S
and �.

Saturating a set of clauses is undecidable, but it can be semi-automated. First-order
automated theorem provers like SPASS [31] actually work by trying to saturate the input set
of clauses, unless the empty clause is derived. Running SPASS on the example above (with
precedence ⊆ > ∈ > diff and ⊆ and ∈ dominant predicates), the saturation generates two
new clauses

¬X ∈ A ∨ diff (A,B) ∈ A ∨X ∈ B
¬diff (A,B) ∈ B ∨ ¬X ∈ A ∨X ∈ B

The following rewriting system therefore admits cuts:

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff (A,B) ∈ A
A ⊆ B →+ ¬¬diff (A,B) ∈ B
X ∈ A→− ∀x. diff (A,B) ∈ A ∨ x ∈ B

diff (A,B) ∈ B →− ∀x. ¬X ∈ A ∨X ∈ B

5 Experimental Comparison of Orientation Techniques

We have compared several techniques that transform a set of axioms into a rewriting system.
Two of them, being based on Theorems 13 and 17, are therefore proved to be complete, in the
sense that the resulting rewriting system admits cut. The other ones are merely heuristics.

5.1 Description of the different techniques
We compared six different ways of transforming a set of axioms into a rewriting system.

ClausalAll: The set of axioms is put in clausal normal form (using E [29]), and it is
transformed into a rewriting system as described in Definition 3.

Sat: The set of axioms is saturated using E, and it is then transformed into a rewriting
system restricted to the selected literals, as in Theorem 17. Of course, the saturation may
not terminate, so this technique does not always succeed.

Equiv(ClausalAll): Depending on their shape, axioms are transformed into rewriting rules:

Axioms of the form are translated into Axioms of the form are translated into
∀x1, . . . , xn. (P ⇔ A) P →± A ∀x1, . . . , xn. (¬P ⇔ A) P →± ¬A
∀x1, . . . , xn. (A ⇔ P ) P →± A ∀x1, . . . , xn. (A ⇔ ¬P ) P →± ¬A
∀x1, . . . , xn. (P ⇒ A) P →− A ∀x1, . . . , xn. (¬P ⇒ A) P →+ ¬A
∀x1, . . . , xn. (A ⇒ P ) P →+ ¬¬A ∀x1, . . . , xn. (A ⇒ ¬P ) P →− ¬A
∀x1, . . . , xn. P P →+ ¬⊥ ∀x1, . . . , xn. ¬P P →− ⊥
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where P is atomic. Then, these potentially non-clausal rewriting rules are transformed into a
clausal rewriting system using Gao’s approach [22]. Intuitively, their right-hand sides are put
in CNF (one rule can therefore leads to several rules), using E. Axioms not of these shapes
are transformed using the ClausalAll technique above.

Presat(ClausalAll): Since saturation may not terminate, we can decide to stop it after a
certain amount of clauses have been generated. In this technique, we saturate the set of axioms
using E until 1000 clauses have been processed. These processed clauses are transformed
into a rewriting system restricted to the selected literals as in Sat. The unprocessed clauses
generated during the saturation are transformed using the ClausalAll technique.

Presat(Id): This is the same technique as Presat(ClausallAll), except that unprocessed
clauses are not transformed into rewrite rules and are used as normal clauses.

Presat(Nil): This is the same technique as Presat(ClausallAll), except that unprocessed
clauses are thrown away.

We have implemented a tool that automatically transforms the set of axioms of a
problem into a rewriting system using one of these techniques. It is available on http:
//www.ensiie.fr/~guillaume.burel/empty_autotheo.html.en.

5.2 Experiment
We compared these techniques on the set of FOF problems of last-year CASC (http:
//www.cs.miami.edu/~tptp/CASC/J6/), consisting of 450 problems in first-order logic. For
each problem, we first transformed the set of axioms of the problem (the formulas whose
TPTP role is indicated as axiom) into a rewriting system thanks to each of the techniques
above, with a timeout of 30s. We then used iProver modulo, our integration of PRM into
iProver [8], to search for proofs, with a timeout of 300s. Since completeness is not ensured
for some of the techniques, in some cases iProver modulo terminates without finding a proof.
Because rewriting rules only affect the resolution calculus of iProver Modulo, and not the
Inst-Gen calculus of iProver [26], we turned the latter one off to better quantify the effect of
the rewriting systems. We therefore compared our results to the original iProver with the
Inst-Gen calculus turned off, but also to iProver (v0.7, the same as in iProver modulo) with
default options (therefore with Inst-Gen turned on) and to E v1.4, to have state-of-the-art
results. Experiments were performed on an Intel Core i3 CPU @ 2.13GHz with 3GB of RAM.

The results are summarized in Table 1. “Transformed theories” indicates the number
of problems whose axioms could be transformed into a rewriting system within the given
timeout. “Theorem” indicates the number of problems for which a proof was found; “No
proof” to the problems where the prover terminated without finding a proof; “Unknown”
to the problems for which the prover could not find a proof with the given resources
(timeout or memory limit outreached). Note that even for complete techniques, iProver
modulo may terminate without finding a proof, because of the way it handles equalities.
Indeed, on a problem with equalities, iProver Modulo adds a set of rewriting rules that
define the equality predicate in the current signature, but that may not be compatible
with the other rewriting rules. “Average time” is the average CPU time over all solved
problems. “SOTAC” (state-of-the-art contribution) is the average SOTAC over all solved
problems, where the SOTAC of a problem is the inverse of the number of systems that
solved the problem in last CASC plus one. Of course, since the settings are different, this

http://www.ensiie.fr/~guillaume.burel/empty_autotheo.html.en
http://www.ensiie.fr/~guillaume.burel/empty_autotheo.html.en
http://www.cs.miami.edu/~tptp/CASC/J6/
http://www.cs.miami.edu/~tptp/CASC/J6/
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Table 1 Comparison of transformation techniques

Transformed Result Average
theories Theorem No proof Unknown time SOTAC

ClausalAll 419 142 11 266 17.28 0.0917
Sat 71 37 6 28 18.24 0.0877

Equiv(ClausalAll) 419 127 38 254 17.26 0.1053
Presat(ClausalAll) 374 109 12 253 19.12 0.0921

Presat(Id) 417 113 7 297 28.41 0.0912
Presat(Nil) 417 39 241 137 15.69 0.0924

iProver w/o IG n.r. 129 0 321 9.41 0.0895
iProver n.r. 228 0 222 20.15 0.1043

E n.r. 339 0 111 23.00 0.1156

SOTAC cannot be compared with the SOTAC of last CASC, but it gives an indication to
compare the techniques among themselves. Detailed results for all problems can be found on
http://www.ensiie.fr/~guillaume.burel/empty_autotheo.html.en.

As expected, the orientation of the axioms using the Sat technique only succeeded
in a few cases (16%). However, proofs for half of the problems were found thereafter.
Presat(ClausalAll) also failed more than the other techniques, because processing 1000
clauses can generate a lot of unprocessed clauses, and ClausalAll produces a clause for each
literal of these clauses, so that the time limit was reached before each was achieved. Problems
that could not be oriented by any of the techniques were problems with too many axioms
to be processed within the time limit, typically problems including file CSR003+2.ax which
contains 55592 axioms.

The technique giving the best results is ClausalAll, mostly because the other techniques
terminate more often without finding a proof because of their incompleteness; this is the case
in particular for Presat(Nil), which was expected because a lot of information can be lost
when the unprocessed clauses are dropped. Compared to iProver without Inst-Gen restricted
on problems whose orientation succeeded, mainly ClausalAll and Equiv(ClausalAll) really
perform better. In particular, the results for ClausalAll implies that it is better to do no
selection at all on the clauses of the theory and to use the set-of-support strategy, than to
select literals and to have to abandon this strategy to guarantee completeness.

An interesting result is the SOTAC of Equiv(ClausalAll), which is higher than the one
of iProver (which is biased against iProver, since it participated in CASC, and is therefore
counted twice). Equiv(ClausalAll) permits in particular to solve some problems that where
not solved by E with the same conditions. Notably, this technique allows iProver modulo
to prove many problems among SCT???+?.p and SWW???+?.p which are, according to their
header, most likely generated by Sledgehammer. This can be explained by the fact that
Sledgehammer adds a lot of related lemmas as axioms of the goal to be solved. These lemmas,
often of the form ∀x1, . . . , xn. Atomic_hypothesis⇒ A, can in most cases be oriented. There
are two advantages: First, lemmas are not resolved with one another, what probably avoids
to generate clauses that are not relevant for the given goal. Second, a lemma is only triggered
when the Atomic_hypothesis above can be unified with a literal of a given clause, what
possibly prevents a lot of pointless lemmas to be used. This suggests that orienting axioms
into rewriting systems can be of real help in the context of tools such as Sledgehammer that
links a goal to be proved with (maybe) relevant lemmas: not only is the choice of lemmas

http://www.ensiie.fr/~guillaume.burel/empty_autotheo.html.en
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critical, but also the way they are handled thereafter to search for the proof.

6 Conclusion and Further Work

In this paper, we have given two methods to present any first-order theory as a rewriting
system admitting cut. We have presented the results of experiments comparing several
techniques derived from these methods. They show that even if the first technique can
lead to big rewriting systems, it is nonetheless better to employ it than to use axioms
and to rely on ordered selection to reduce the search space. All the more, it allows to
prove problems not solved by state-of-the-art provers. This work therefore constitutes a
strong basis to the automatic transformation of theories into rewriting systems that can
be used in tools based on deduction modulo, such as the integration of PRM into iProver
(http://www.ensiie.fr/~guillaume.burel/empty_iProverModulo.html.en) or Dedukti,
a proof checker for deduction modulo (https://www.rocq.inria.fr/deducteam/Dedukti/).
It therefore constitutes an important step towards the automatic production of provers
adapted to a specific theory. The experiments show that it is notably the case for theories
represented by a set of lemmas chosen to search for a proof in a larger theory, as done
by Sledgehammer. This work also strengthens the use of deduction modulo as a universal
framework to handle proofs. Indeed, since simple type theory and pure type systems can be
presented in deduction modulo, Dedukti can be used to check proofs produced by different
proof assistant such as HOL and Coq. This paper shows that it can also be used for proofs
built within a theory. All this opens many questions that we are now considering.

Logical Strength. In this paper, we show that the consistency of a theory implies the cut
admissibility of (a presentation of) it. Since cut admissibility also implies consistency, Gödel’s
second incompleteness theorem implies that cut admissibility cannot be proved in the theory
itself. But we may wonder whether it can be proved in the theory plus the assumption of its
consistency. To this purpose, we have to investigate the proof of Section 4.1. We conjecture
that “consistency implies cut admissibility” can be proved in first-order arithmetic, that is,
that cut admissibility is not logically stronger than consistency.

Equality. In this paper, we only considered theories of first-order logic without equality.
However, theories are often presented in first-order logic with equality. Adding the axioms
for equality (reflexivity, symmetry, transitivity and congruence w.r.t. the function symbols
and the predicates) and transforming them as presented in this paper is a theoretical way to
obtain presentations of such theories. However, it does not take into account the specificity
of equality, and the way it can be integrated into a deduction system thanks to deduction
modulo. A first improvement is to put the equational axioms into an equational theory
modulo which rewriting and unification is performed (see footnote page 6). Nevertheless,
existing provers perform unification and rewriting modulo only for specific equational theories,
such as commutativity of a function symbol. Only such axioms should therefore be presented
this way. The other equational axioms should be transformed into term rewriting rules. It
remains to be proved that using term rewriting rules for equational axioms and proposition
rewriting rules as obtained as in this paper for the other axioms is complete. We conjecture
that it is the case as long as the term rewriting system is confluent and commutes with the
proposition rewriting system. The confluence of the term rewriting system can be ensured
by the standard completion of Knuth and Bendix [25].

http://www.ensiie.fr/~guillaume.burel/empty_iProverModulo.html.en
https://www.rocq.inria.fr/deducteam/Dedukti/
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The next step is to design proof-search procedures based on deduction modulo for first-
order logic with equality. A good candidate would be an extension of the superposition
calculus [2] with an Extended Narrowing rule, but we currently do not know if cut admissibility
is enough to prove its completeness. In particular, we do not know how to take this assumption
into account in a completeness proof based on saturation, the kind of proof usually used for
the completeness of superposition.

Axiom Schemata. This paper only considers finite theories, but usual theories, such as for
instance arithmetic, use axiom schemata. A way to handle such theories is to consider the
work of Kirchner [24] who transforms an axiom schema into a finite number of axioms, most
of them being directly orientable into rewriting rules.

Combination with other kinds of presentations. In this paper, we have shown how to
present any first-order theories as rewriting systems. However, for some specific theories,
rewriting is probably not the best way to present them. For instance, to search for proofs
in linear arithmetic, it is probably more efficient to use a combination with the simplex
method than to use a rewriting system for linear arithmetic. Therefore, we would like to
investigate how it could be possible to combine deduction modulo with other ways to present
theories. A first lead would be to study canonized rewriting [13], where (ground) rewriting is
combined with Shostak theories to get SMT solvers modulo AC. Then, we would need a way
to recognize theories during proof search to trigger the most appropriate method [9].

Termination. Cut admissibility is not the only property of interest for a rewriting system.
Termination is another good requirement, since it implies for instance the decidability of proof
checking in the case of deduction modulo. However, note that even if rewriting terminates,
narrowing may not, so that it seems less important for proof search. The systems produced
by this paper’s method may not terminate in general. We have to investigate if we can
restrict the number of rules to ensure the termination of the rewriting system as well as its
cut admissibility. In the same line of work, we should investigate whether we can obtain
rewriting systems that provide decision procedures for some theories.

Intuitionistic Logic. Since it is based on resolution, the method described in this paper
only works for classical logic. In intuitionistic logic, it is known that some theories cannot
be transformed into a rewriting system with cut admissibility. In [5], we have proposed a
procedure inspired from our work in [11] that is able to transform a large class of intuitionistic
theories into a rewriting system admitting cuts. Since it is undecidable if such a transformation
is possible, the procedure is of course non-terminating. We need to investigate whether the
method proposed here can improve the transformation of intuitionistic theories, but it does
not seem plausible.
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