



#### The CALCULEMUS Research Training Network (HPRN-CT-2000-00102)

**Christoph Benzmüller** 

Saarland University, Saarbrücken, Germany

CALCULEMUS Symposium, Rome, Italy, September, 2003



Interest Group since mid 90s www.calculemus.org

> EU Research Training Network 09/2000 - 09/2004 www.eurice.de/calculemus/

#### Funded in EU Fifth Framework



Assume ...



a research freshman unexperienced in logic and TP Wants to solve a hard mathematical problem to get a PhD and become a famous mathematician

# What options?





Good old pen and paper mathematics

... heard about the success story of EQP in solving Robbins problem ... shall I try to employ such a push button technology for my problem?





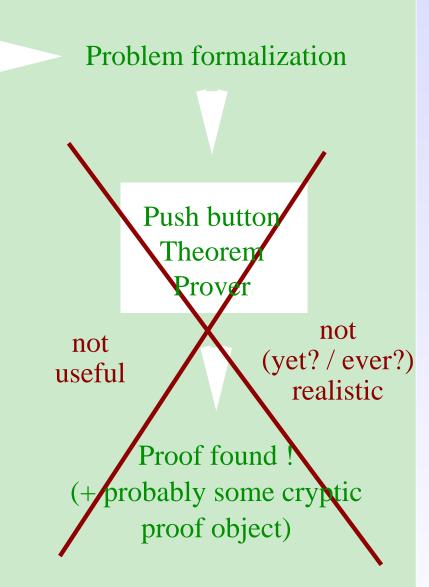


#### Non-Expert!




Assume 'Proof found'

What then? What can I do with it?


1. How can I convince myself that the answer is correct? 2. What do I learn from the proof? 3. How can I convince my colleagues that I indeed solved a big problem? 4. How can I publish my result? What do I have to publish? 5. Where can I publish the result? Who will accept my paper? 6. How can I maintain and store my proof? How can I reuse its main ideas for similar problems? 7. Will I finally be satisfied with my work?





Push button theorem proving technology only useful as part of something bigger!

In this context: maths assistant environments



#### **Scientific Motivation**



Better (mathematical) assistant systems

#### **Scientific Motivation**



Better (mathematical) assistant systems

Integration of symbolic reasoning and symbolic computation

#### Applications in mathematics, maths education, formal methods

© CALCULEMUS Symposium, Rome, Italy, September, 2003.



Better (mathematical) assistant systems

- Integration of symbolic reasoning and symbolic computation
- Interoperability with mathematical knowledge bases
- Integration of specialist reasoners

Open system architectures and mathematical services

Applications in mathematics, maths education, formal methods



Better (mathematical) assistant systems

- Integration of symbolic reasoning and symbolic computation
- Interoperability with mathematical knowledge bases
- Knowledge exploration, maintenance, management of change
- Integration of specialist reasoners
- Expressive representations; human-oriented user interfaces
- Support for representation transformations
- Open system architectures and mathematical services
- Preparation and validation of mathematical texts and publications
- Applications in mathematics, maths education, formal methods



Early stage training of young researchers



Early stage training of young researchers

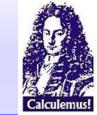
#### Measures:

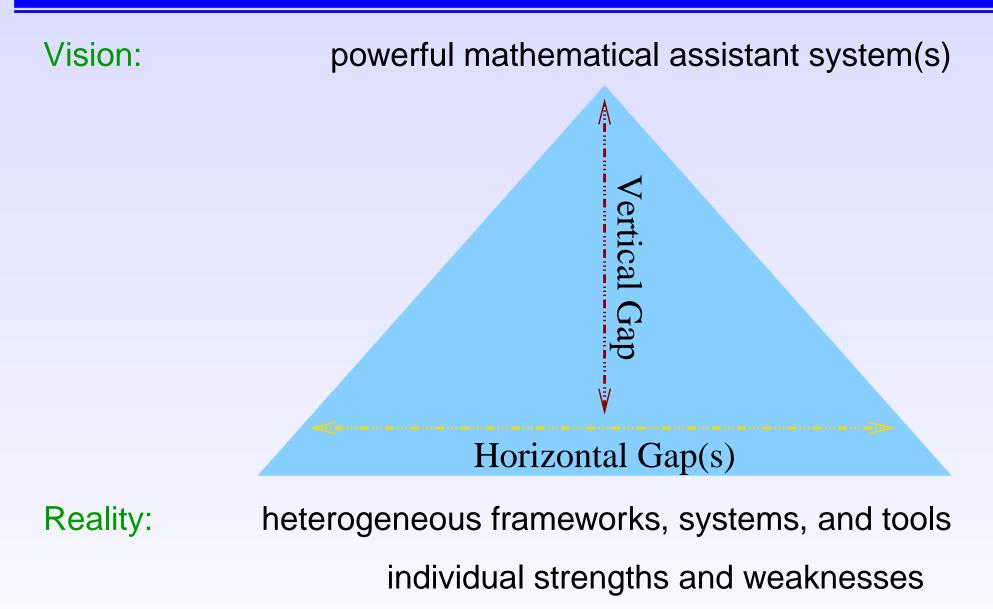
- The CALCULEMUS Autumn School 2002
- CALCULEMUS Symposia and Network Meetings
- Training at an Individual Level at the Network Nodes
- Local Courses, Workshops, Talks, and Seminars
- Exchange of YVRs between Network Nodes
- Industry Internships

#### **Network Partners**

X

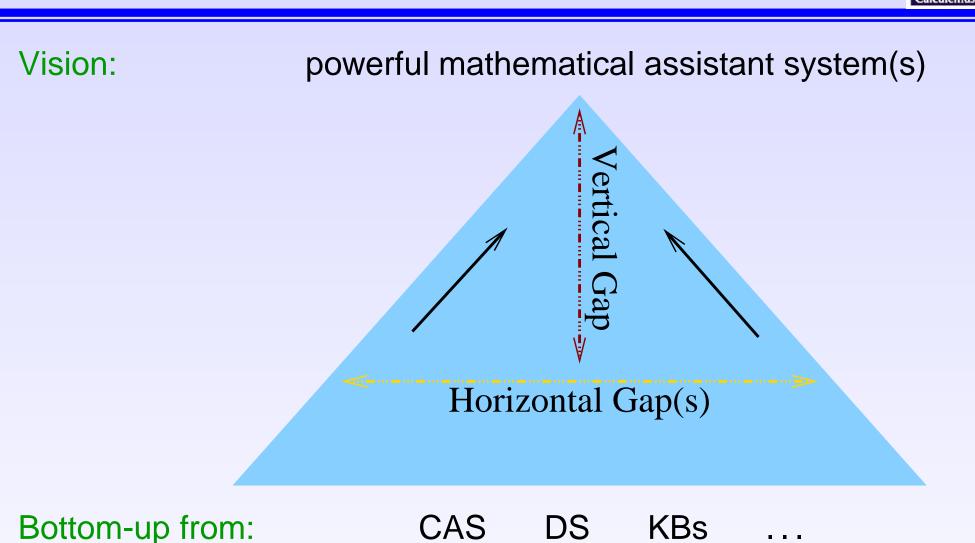
THE UNIVERSITY OF BIRMINGHAM





| USAAR | Jörg Siekmann, Christoph Benzmüller, Serge Autexier |
|-------|-----------------------------------------------------|
|-------|-----------------------------------------------------|

- UED Alan Bundy, Ewen MacLean
- **UKA** Jacques Calmet, Regine Endsuleit
- **RISC** Bruno Buchberger, Wolfgang Windsteiger, Tudor Jebelean
- TU/e TUE Arjeh Cohen, Henk Barendregt, Herman Geuvers Freek Wiedejk
  - **ITC-IRST** Fausto Giunchiglia, Roberto Sebastiani, Alessandro Cimatti, Marco Bozzano
  - **UWB** Andrzej Trybulec, Czeslaw Bylinski, Grzegorz Bancerek
    - **UGE** Alessandro Armando, Enrico Giunchiglia

**UBIR** Manfred Kerber, Volker Sorge


#### CALCULEMUS Methodology





© CALCULEMUS Symposium, Rome, Italy, September, 2003.

#### CALCULEMUS Methodology



When to integrate modules and when to re-implement?

© CALCULEMUS Symposium, Rome, Italy, September, 2003.

### CAS & DS: The Map



| DS ⊆ CAS: | <ul> <li>■ - ТНЕОRЕМА ⊆ Mathematica</li> <li>■ - HR uses OTTER for MAPLE</li> </ul>                                                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS ⊆ DS: | <ul> <li>(tight coupling:         <ul> <li>T-unification, constraint resolution, T-resolution)</li> </ul> </li> <li>loose coupling:         <ul> <li>reflection approach as used in Coq</li> <li>proof planning (λClam, ΩMEGA)</li> </ul> </li> </ul> |
| CAS ≡ DS: | <ul> <li>protocol, e.g. á la Calmet</li> <li>common interface:         <ul> <li>top down: OMRS, MathWeb-SB, LBA, MathBroker</li> <li>bottom up: CCR, MathSat</li> </ul> </li> </ul>                                                                   |





Bad news:

no single predominant approach for CAS & DS

© CALCULEMUS Symposium, Rome, Italy, September, 2003.



Bad news:

no single predominant approach for CAS & DS

Good news:

- heterogeneity is not necessarily bad
- challenge is to support heterogeneity
- new line of research: frameworks for integration at systems level ( $CAS \equiv DS$ )

### Publications (after 08/2000)

Defensed Demense



#### Joint Publications All Publications

| Refereed Papers     |    |      |  |  |  |
|---------------------|----|------|--|--|--|
| - Journals          | 7  | > 22 |  |  |  |
| - Proceedings/Books | 33 | > 54 |  |  |  |
| Technical Reports   | 4  | > 13 |  |  |  |
| PhD Thesis          |    | > 3  |  |  |  |
| Others              |    | > 4  |  |  |  |
| Total               | 44 | > 96 |  |  |  |

#### Source: The CALCULEMUS Midterm Report

## **Joint Systems and Applications**



| System, Language, Software | Developed/used at the following nodes |
|----------------------------|---------------------------------------|
| OMDoc                      | USAAR,UBIR,UED,UWB                    |
| MathWeb                    | USAAR,UBIR,UGE,UED                    |
| $\Omega$ MEGA              | USAAR,UBIR                            |
| MIZAR                      | UWB,TUE                               |
| MathSat                    | ITC-IRST,UWB                          |

| Application                          | performed by the following nodes |
|--------------------------------------|----------------------------------|
| Irrationality of $\sqrt{2}$          | TUE,USAAR,UWB,RISC               |
| Exploration of Residue Classes       | USAAR,UBIR,UED                   |
| Permutation Groups                   | USAAR,UBIR,TUE                   |
| Zariski Spaces                       | UBIR,UED                         |
| Hybrid Systems                       | USAAR,UGE,UED                    |
| Correct Functions in MAPLE           | UKA,UED,UGE                      |
| Security Protocols                   | UED,UGE,ITC-IRST                 |
| Model Checking for Real-Time Systems | ITC-IRST,UWB                     |

### **Funded Young Researchers**



Andrew Adams USAAR **ITC-IRST** Gilles Audemard Jesus M. Aransay Azofra UKA Adrian Craciun RISC USAAR, UKA Simon Colton **UED, UKA** Luca Compagna UWB, USAAR Hazel Duncan UED Armin Fiedler Pierre Ganty UGE Mariusz Giero TUF USAAR, UED Corrado Giromini **Camelia Kocsis** RISC Laura Kovacs RISC Artur Kornilowicz **ITC-IRST** Vincent Lefevre UKA

| Pasquale De Lucia   | USAAR        |
|---------------------|--------------|
| Martin Pollet       | UBIR         |
| Andreas Meier       | UBIR         |
| Markus Moschner     | USAAR,UWB    |
| Julien Musset       | UKA,UED      |
| Scott Murray        | TUE          |
| Silvio Ranise       | USAAR        |
| Markus Rosenkranz   | TUE          |
| Stefan Schulz RISC, | UED,ITC-IRST |
| Daniel Sheridan     | ITC-IRST     |
| Sorin Stratulat     | UGE          |
| Dimitra Tsovaltzis  | USAAR        |
| Josef Urban         | UWB          |
| Jürgen Zimmer       | UGE, UED     |
|                     |              |

#### **Dissemination of Results**



Proceedings of CALCULEMUS Symposia

- M. Kerber and M. Kohlhase, editors. CALCULEMUS-2000. AK Peters
- S. Linton and R. Sebastiani, editors. CALCULEMUS-2001.
- J. Calmet, et al. CALCULEMUS-2002, LNAI 2385. Springer
- O. Caprotti and V. Sorge, editors. CALCULEMUS-2002-Work-in-Progress.
- T. Hardin and R. Rioboo, editors. CALCULEMUS-2003

Special Issues in Journal of Symbolic Logic:

- T. Recio and M. Kerber, editors. JSC 32(1/2), 2001.
- A. Armando and T. Jebelean, editors, JSC 32(4), 2001
- S. Linton and R. Sebastiani, editors. JSC 34(4), 2002.

Proceedings of CALCULEMUS Autumn School

- C. Benzmüller and R. Endsuleit, editors. Autumn School 2002: Course Notes (Part I-III)
  - J. Zimmer and C. Benzmüller, editors. Autumn School 2002: Student Poster Abstracts

Proceedings of Workshops

S. Colton and V. Sorge, editors. FLOC-2002 Workshop.



MONET: Mathematics on the Net

offering mathematical algorithms through web services

- MOWGLI: Mathematics on the Web: Get it by Logics and Interfaces from machine-readable to machine-understandable representations of mathematical information
- OpenMath:

standard for representing mathematical objects with their semantics

MKMNet: Mathematical Knowledge Management Network from paper-oriented and presentation-oriented view to a semantics-oriented view of mathematical knowledge

many conferences in DS and CAS

#### Outlook



Further strengthen cooperation, communication, tool exchange

- within CALCULEMUS community
- with related research projects and conferences in DS & CAS
- with QPQ project at SRI?

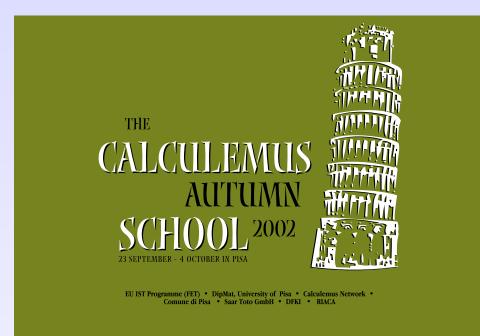
www.qpq.org

#### Outlook



Further strengthen cooperation, communication, tool exchange

- within CALCULEMUS community
- with related research projects and conferences in DS & CAS
- with QPQ project at SRI?


www.qpq.org

Proposal for CALCULEMUS-II in EU FP6

- strengthen the CAS side in the network
- scientific focus:
  - Integration of DS & CAS
  - New: support for theory and proof exploration
- yearly / two-yearly CALCULEMUS Autumn School?!

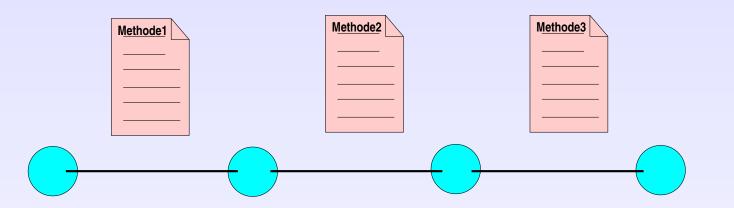
## The CALCULEMUS Autumn School





The first training event with the main experts from the involved fields

- 75 participants (approx. 30 from Network): Undergrads, PreDocs, PostDocs, Researchers, Lecturers
- 26 lecturers

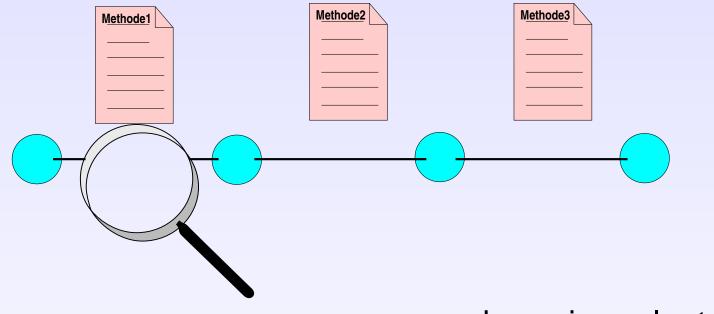

- Introductory and Overview Courses
- Advanced Topics
- Evening Talks
- Student Sessions
- System Demonstration
- Experimentation with Systems





Proof Planning (as an example for  $CAS \subseteq DS$ ):

domain specific, heuristic reasoning at abstract layer

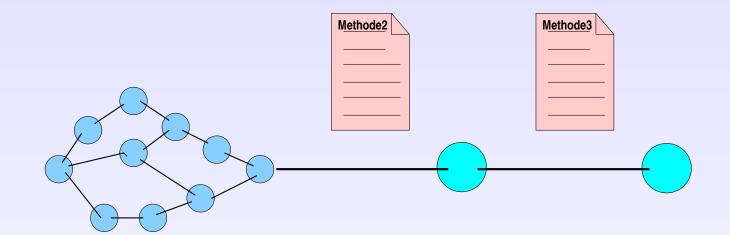



Integration of Specialist Reasoners (CASs and ATPs):

- at method layer
- at the heuristic meta-reasoning layer







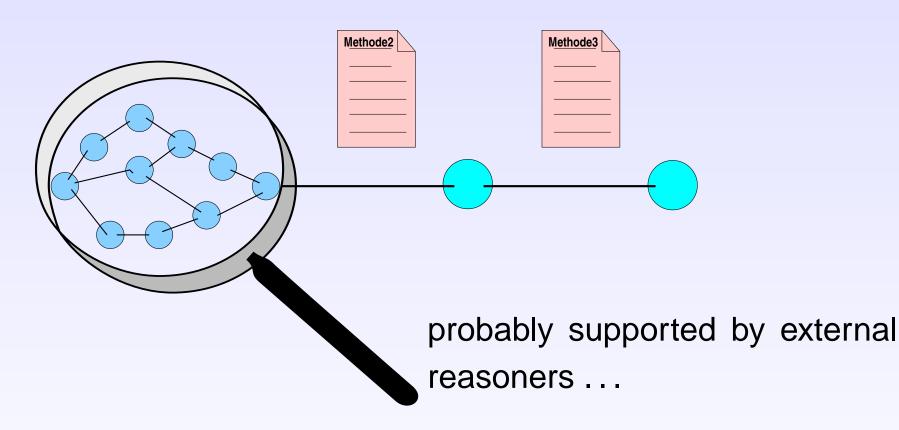

#### soundness is evaluated by ...

© CALCULEMUS Symposium, Rome, Italy, September, 2003.








. . .

# refi nement (expansion) over several layers

© CALCULEMUS Symposium, Rome, Italy, September, 2003.

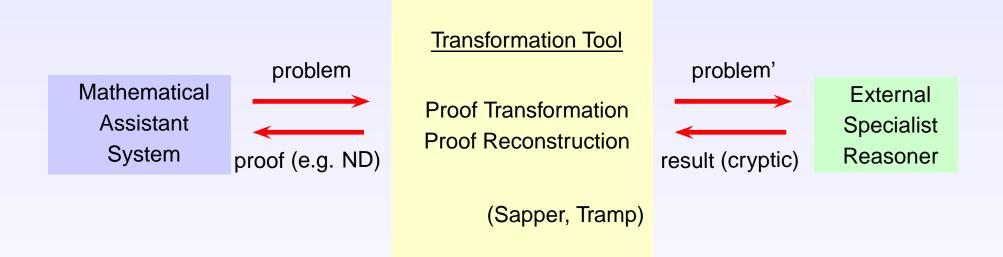

















Required/Useful for  $CAS \subseteq DS$ :

- white box integration of external specialist reasoners
- tools for extraction and transformation of results

