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The Goal

We need to query mathematical digital libraries to retrieve definitions, axioms

and proved statements.

Query-by-name : totally unreliable and not useful ; very quick

Query-by-keyword+dc : it used to be the only practical way those old times

when documents where unstructured ; not precise, but very quick

Query-by-matching : it works for formal mathematics and for structured

mathematics (content level) ; super-linear in the size of the library ; still not

precise :

vs

Query-up-to-* : requires a decidable equivalence relation ; super-linear in the

size of the library ; it may interact badly with the underlying conversion rules

(e.g. extensional equality vs intensional equality)
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The Problem
� In practice we need to combine all of the above methods.

Some of them are super-linear in the size of the library.

The libraries are supposed to be huge (e.g. Coq library is about 40.000

objects and it holds only a very few mathematical notions).

Huge libraries are supposed to be distributed.

WE CAN NOT ITERATE OVER THE LIBRARY

One solution in the literature : Term Indexing Techniques

store all the terms in a data-structure that maximizes sharing

naturally exploit the sharing to speed-up unification and matching
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The Solution

We can adopt a two-phases approach : filtering + matching
� data-mining on data : [BATCH] We extract from every matchable type a set

of metadata which are related to the kind of match we are interested in.

data-mining on the pattern : We extract from the pattern an incomplete set of

constraints on the computed metadata.

filtering : We compute the set of objects in the library whose metadata satisfy

the above constraints.

matching : We iterate the matching operation only on the computed set of

candidates.

If the filtering operation is both quick and correct and the set of candidates is

small we achieve both accuracy and performance.
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Use Case 1 : Lemma That Can Be Applied (1/5)

We want to know which theorems can be applied to prove a given goal.

We restrict ourselves to the case of first order matching (i.e. just one equation

has metavariables in it and all the terms are rigid).

Example : matches

Example : does not match

We identify the following set of metadata (both on the data and on the

patterns) :

The constant in head position in the conclusion (if any)

The list of constants in other positions in the conclusion

_ _
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Use Case 1 : Lemma That Can Be Applied (2/5)
� The query “give me all the theorems whose metadata are a subset of the

constraints” is complete but not effective (to check the condition we have to

iterate over the whole library)

We trade completeness for efficiency introducing two sets of constraints :

“Only” Constraints : they are the constraints seen before. We look for

theorems whose metadata are subsets of the “only” constraints.

“Must” Constraints : they are a subset of the “only” constraints. We look

for theorems whose metadata are a superset of the “must” constraints.

Their computation is very efficient.
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Use Case 1 : Lemma That Can Be Applied (3/5)
� Example :� � � � � � 
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No match (OK) :
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No match (ERROR) :
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Use Case 1 : Lemma That Can Be Applied (4/5)

The (simplified) query generated for :

Must : � � Only : � � � � �

let S =

select every t in the library such that

t.head = ’ � ’ and ’ � ’ occurs in t.in_conclusion

in

select every t in S such that

t.in_conclusion subset of { � , � � � � � � � }

The first select requires a query to the DB for each constraint in the must list.

(Cheap)

The second select requires a query to the DB for each object in the result of the

first query. (Expensive if the “must” constraints are not tight.)
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Use Case 2 : Elimination Principles (1/4)

We want to know which are the elimination principles available for a given

datatype/proposition inductively defined.

We restrict ourselves to those elimination principles on whose shape is :

Example (induction principle) :

Example (even-odd complementarity) :
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Use Case 2 : Elimination Principles (2/4)
� We extract from the pattern the following set of constraints :

� The exact sort of the property we are interested in.

The fact that it must occur in the head position of an hypothesis which is a

product of length 1.

The fact that the type must occur in the head position of an hypothesis

which is a product of length 0 and and also in another hypothesis (not in

main position).

The fact that the head of the conclusion must be an occurrence of a bound

variable (a Rel).

nat, Prop(1), nat(0), Rel(_) “must” constraints

Since any other constant can appear in the statement (e.g. Even/Odd), we do

not impose any “only” constraints.
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The (very simplified) query generated for :

Must : nat, Prop(1), nat(0), Rel(_)
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The number of queries to the underling DB is fixed (thus the query is cheap).
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The General Case (1/3)

We start from a pattern and we identify the following set of constraints :
� For each occurrence of a constant, its position

�

�

MainConclusion, InConclusion, MainHypothesis, InHypothesis

�

and its

URI

For each occurrence of a bound variable, its position

MainConclusion, MainHypothesis

For each occurrence of a sort, its position MainConclusion,

MainHypothesis and its type Prop, Set, Type

For each occurrence

MainConclusion, MainHypothesis we also record its depth, i.e. the

number of products in the type/hypothesis

Set(0), Prop(1), Rel(3), reflexive(3)
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The General Case (2/3)
� A. The wanted objects must have a reference to a given object R (or to a

given primitive constant S or to a bound variable) in a given position P with a

given depth index D.

� B. The wanted objects may have a reference to an object (or to a primitive

constant or to a bound variable) only if its position is not included in a given

set U of positions, or if it concerns a given object R (or a primitive constant

S, or a bound variable) in a given position P with a given depth index D.

The parameters R, S, P, D, U are optional.



The General Case (3/3)

We always generate the query in a uniform way. Different results are obtained

imposing different subsets of the constraints :

� Use Case 1 : Searching for a lemma. We impose “must” and “only”

constraints only on constants and only on the conclusion.

Use Case 2 : Searching for an induction principle. We impose only the

“must” constraints. We relax the constraint on the depth of the Rel in

MainConclusion to any depth.

Use Case 3 : Searching for relations or functions. Demo

Use Case 4 : General concepts. Demo

Use Case 5 : Other queries ?

There are several other queries that are not instantiation of this general pattern,

but that can be expressed in the underlying query language.
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Comparison With Term Indexing Techniques
� e.g. discrimination trees, substitution trees, coded context trees

� Not incompatible : they are the limit case of our approach

Term Indexing Techniques :

More sharing less storage space required

Unification : speed-up of one order of magnitude

Complex data-structures require ad-hoc implementations

Approach based on Metadata :

A very light approximation in a standard format (RDF triples) we can

adopt standard DB technology (relational DB)

Transparent distribution achievable via distributed DBs

Does not support unification only : an open model to independently add

new metadata, spiders and clients (e.g. query up-to-isomorphisms)

Unification is often too strict ; false matches may be interesting
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