System Description

Analytica 2

joint work with

Edmund Clarke, Joël Ouaknine, Klaus Sutner

MICHAEL KOHLHASE School of Engineering & Science International University Bremen, Germany

http://www.cs.cmu.edu/~kohlhase

©: Michael Kohlhase

ANALYTICA (recap)

- ANALYTICA is a theorem proving system for 19^{th} century mathematics
 - summation formulae
 (Ramanujan's notebooks)
 - calculus (e.g. Bernstein approximation theorem)
- $\bullet\,$ written on top of the ${\rm MATHEMATICA}\,$ computer algebra system
 - developed in the early 1990's by Xudong Zhao and Edmund Clarke
 - has since been dormant.
- under the hood:
 - sequent tableau calculus
 (Proof transcripts as side-effects)
 - strong simplification (MATHEMATICA simplifier + domain-specific rules)
 - algebraic simplification during unification (completeness?)
- Summary: brilliant tour de force

(what can we learn from this?)

ANALYTICA and MATHEMATICA (recap)

- Market leading Computer Algebra System (CAS) (proprietary: Wolfram Inc.)
 - Kernel: Symbolic math routines + Programming Language
 - Notebook Front-End: Formula editor + folding + interaction
 - External Systems Interface: $\rm JLINK$ runs $\rm JAVA$, exports CAS functions
 - Native $\mathbf{X}\mathbf{M}\mathbf{L}$ interface: interprets $\mathbf{X}\mathbf{M}\mathbf{L}$ trees as symbolic expressions
- MATHEMATICA programming language: Higher-Order Conditional Rewriting

Imply[seq[h_, or[c1___, and[a_, b__], c2___]]] :=
 (print["and split"];
 SequentialTry[seq[h, or[c1, a, c2]],
 seq[and[h, simple[a]],
 or[c1, and[b], c2]]]);

- like logic programming in style
- sequence variables: __ (non-empty) and ___ (possibly empty)
- ANALYTICA was originally developed for MATHEMATICA 1.2

©: Michael Kohlhase

Porting Analytica to Mathematica $\boldsymbol{5}$

- transform the ~ 50 source files into two notebooks (prover and knowledge)
 - document the prover code in special $\operatorname{SOURCE}\,\operatorname{STYLE}$

(literate programming)

- generate program + $\rm MATHEMATICA$ help files from that
- Example: Weak simplification

```
SimplifyRules := Join[OperatorRules, AbsRule, ExpressionRules,
MaxMinRules, EquationRules, InequalityRules];
```

```
WeakSimplify[f_] :=
   Simplify[f //. SimplifyRules] /.
   RulesFromGiven /. RulesForRelations;
```

Weak Simplification in the Notebook

	slit Cell Format Input Kernel Find Window	He		
Unif	ication]]		
Sim	plification]		
🗆 Weal	Simplify	ןנ		
Funct:	ion	E		
	WeakSimplify[form] is used to simplify a formula and is used in particular in StrongSimplify.	_]		
	Uses the built-in function Simplify for standard algebraic simplification.] [
	Depends on rules defined in SimplifyRules. These rules are applied till a fixed point is reached.	3		
	Depends on rules defined in RulesFromGiven and RulesForRelations. These rules are applied only once.]		
	See also Simplify, StrongSimplify, RulesFromGiven, RulesForRelations.	E		
Exa	nples	_]]		
Cod	e	_]]		
n[244]:=	SimplifyRules := Dispatch[Join[OperatorRules, AbsRule, ExpressionRules, MaxMinRules, EquationRules, InequalityRules]];	F		
ł	WeakSimplify[A_] := (Simplify[A//.SimplifyRules]/.RulesFromGiven)/.RulesForRelations;			
■ SimplifyMethods				
■ TrySimplifyMethods				

JI

The corresponding Entry in the Help browser

🖥 Help Browser						
File Edit Cell Format Input	Kernel Find Window				Help	
Built-in Functions Add-ons	The Mathematica Book					
Getting Started/Demos Other Informa	tion Master Index			-		
Go To: Weak Simplify			0.00	<< Go Back	Hide Categories	
Extras Analytica Automata Network Programming Testing NB20MDoc	A Prover Knowledge DB Modules Redefinitions	Miscellany Terms and Variables Logical Operators Quantifiers and Skolemization Unification Simplification	Strong Simplify Subst Equation Substitute Try Simplify Methods Using Context Weak Simplify			
WeakSimplify Function	7					
WeakSimplify[for	m] is used to simplify a formul	a and is used in particular in Strong	Simplify.			
Depends on miles defined in Circuit is formula a These miles are emplied till a fixed point is perchad						
Depends on rules defined in SimplifyRules. These rules are applied till a fixed point is reached.						
Depends on rules defined in RulesFromGiven and RulesForRelations. These rules are applied only once.						
See also <u>Simplify</u> , <u>StrongSimplify</u> , <u>RulesFromGiven</u> , <u>RulesForRelations</u> .						
✓ Examples A typical use of Weak latest	Simplify[] using rule	es for inequalities.				
m[52]:= weaksimplii	YLTUDIO < X, X ^{,3} >	011				
4					N N	
					1	

©: Michael Kohlhase

Separating Mathematical Knowledge from Code

• Not all ANALYTICA code is computational

• mathematical equivalent

#	formalization	the absolute value function
1	$ orall a, b. a \cdot b = a \cdot b $	commutes with multiplication
2	$\forall a, n. a^n = a ^n$	commutes with exponentiation
3	$\forall a.a \ge 0 \Rightarrow a = a$	is the identity on ${ m I\!R}^+$
4	$\forall a.a \le 0 \Rightarrow a = -a$	is the negative identity on ${f I\!R}^-$

Separating Mathematical Knowledge from Code (Howto)

- ANALYTICA knowledge: symbol declarations + rewriting rules
 - used directly by the $\operatorname{MATHEMATICA}$ simplifier
 - used in Weak simplification procedure discussed above (second block)
- $\bullet~$ The soundness of $\ensuremath{\mathrm{ANALYTICA}}$ depends on hundreds of such rules
- Problem: how to make this explicit and manage it.
- Idea: use a mathematical knowledge representation system
- OMDOC: Open Mathematical Documents
 - convert using the nb2omdoc utility ([Sutner '03], using MATHEMATICA's native XML integration)
 - document as mathematical theorems in vernacular and logic
 - split into relevant mathematical theories
 - store in mathematical knowledge base system $\rm MBASE.$

([Kohlhase '99-'03])

(first block)

OMDOC in a Nutshell (three levels of modeling)				
 Formula level: OPENMATH/C-MATHML Objects as logical formulae semantics by ref. to theory level 	<pre><oma> <oms cd="arith1" name="plus"></oms> <oms cd="nat" name="zero"></oms> <omv name="N"></omv> </oma></pre>			
 Statement level: Definition, Theorem, Proof, Example semantics explicit forms and refs. 	<pre><defn for="plus" type="rec"> <cmp>rec. eq. for plus</cmp> <fmp>X+0 = 0</fmp> <fmp>X+s(Y) = s(X+Y)</fmp> </defn></pre>			
 Theory level: Development Graph inheritance via symbol-mapping theory-inclusion by proof-obligations local (one-step) vs. global links 	Nat-List cons, nil 0, s, Nat, <, Actualization List cons, nil Elem, < imports imports imports Nat 0, s, Nat, <			

 $\mathbf{IU}^{\mathbf{B}}$

Problems with the translation

- Idiosyncrasies of the representation
- Sequence Variables, polyadic functions

Continuous[f_[a__], x_, x0_] :=
Apply[and, Map[Function[z, Continuous[z, x, x0]], List[a]]] /; ContFunction[f];

(\rightsquigarrow massage away!)

(what is the logic? [Kutsia '02])

• Idea: treat sequence variables as arbitrary variables and represent this as

 $\forall f, a, x, x_0.\mathbb{C}(f(a), x, x_0) \Leftrightarrow \mathbb{C}^0(f) \land apply(\land, map(\lambda z \mathbb{C}(z, x, x_0))), list(a)$

- Problem: How to communicate with other theorem provers?
- Idea: use higher-order logic with Currying (e.g. for TPS) $\forall F, A, x, x_0.\mathbb{C}((FA), x, x_0) \Leftrightarrow \mathbb{C}(F, x, x_0) \land \mathbb{C}(A, x, x_0)$ and $\forall F, x, x_0.\mathbb{C}(F, x, x_0) \Leftarrow \mathbb{C}^0(F).$
- Example: prove $\mathbb{C}(x^2 + x, x, 1)$ (trace ANALYTICA computation) $\mathbb{C}^0(+) \rightsquigarrow \mathbb{C}(+, x, 1)$ and $\mathbb{C}(x, x, x_0) \rightsquigarrow \mathbb{C}(x^2, x, x_0)$, thus $\mathbb{C}(+x^2, x, x_0)$, and finally $\mathbb{C}(x^2 + x, x, 1)$

A MATHWEB Interface for ANALYTICA

- \bullet equip ANALYTICA with an XML-RPC interface via JLINK
- $\bullet\,$ use native $\rm OMDoc\,$ transformation for communication with other services

Communicating with $\rm MBASE$ via $\rm XML\text{-}RPC$

<methodCall><methodName>Broker.getService</methodName>
 <params><param><value><string>MBase</string></value></param></params>
 </methodCall>

<methodResponse><methodBody>http://mbase.mathweb.org:12345</methodBody></methodResponse>

```
<methodCall><methodName>provide.theory.trans</methodName>
<param><struct>
  <member><name>1</name><value><string>contfunc</string></value></member>
   <member><name>format</name><value><string>OMDoc</string></value></member>
  </struct></param></params>
</methodCall>
<methodResponse><methodBody>
  <theory id="contfunc">
    <imports id="i0" from="integer"/>
    <symbol id="continuous">
      <CMP> C(f(a), x, x_0) is True when f is continuous at point x_0.</CMP>
    </symbol>
    <assertion id="CNTF1"><CMP>The identity function is continuous.</CMP></assertion>
    <code id="c2" pto="Mathematica" pto-version="4.2" for="CNTF1">
      <data><![CDATA[EVALUATE[Continuous[x_, x_, z_] := True; ]]]></data>
    </code>
</methodBody></methodResponse>
                                (c): Michael Kohlhase
     12
```

Implementing a $\rm MATHWEB$ interface $\rightsquigarrow JLINK$

- Implementing a MATHWEB client (accessing MBASE from ANALYTICA)
 - call standard JAVA XML-RPC package via JLINK (apache.org)
 - import result into $\operatorname{Mathematica}$ as symbolic XmL

(CAS terms for XML tree)

(if you have the theories)

(work in progress)

- manipulate with CAS functions (extract MATHEMATICAcode, evaluate)
- implementation in one afternoon
- Implementing an ANALYTICA server
 - run standard $\rm XML\text{-}RPC$ package in $\rm JAVA$ process
 - upon request, start MATHEMATICA kernel via JLINK (niced, timeout,...)
 - provide request to $\ensuremath{\operatorname{ANALYTICA}}$ as symbolic $\ensuremath{\operatorname{XML}}$

(need OMDoc parser [Sutner '02])

- load necessary background theories from $\rm MBASE$
- return $\rm OMDoc/XmL$ proof to $\rm JAVA$, which answers $\rm XmL\text{-}RPC$ request

Conclusions and Further Work

- ANALYTICA 2: still a theorem prover for 19^{th} mathematics
 - implemented in $\operatorname{Mathematica}$ like $\operatorname{Theorema}$
 - ultra-tight interaction of CAS and Ded
 - new technologies under the hood (Notebooks and XML)

(correctness?)

(CMU or IUB)

- Status: Ongoing experiment to resurrect (and understand) ANALYTICA
 - unusual software platform, symbiosis with CAS, symbolic periphery
- Future: start extending the system
 - Proof objects, (extract them; flag oracles, theory dependencies)
 - more Math(ematica) (use the extra power in M5: e.g. Gosper's alg.)
 - MATHWEB service (have client (MBASE))
 - ADV: looking for Ph.D students for this