
Integrating Computational
Properties at the Term Level

Volker Sorge

University of Birmingham, UK

joint work with
Martin Pollet, University of Saarbrücken, Germany

c

�

Sorge, 2003, Calculemus, Rome – p.1



Motivation

As soon as you formalise a concrete mathematical object
it is often hard to see what it was

concrete object formal construction

Treat some objects as the constants they actually are

Abstract from the construction of objects

c

�

Sorge, 2003, Calculemus, Rome – p.2



Motivation

As soon as you formalise a concrete mathematical object
it is often hard to see what it was

concrete object formal construction

� � � � � � � � � � � �� �� � � � � �

Treat some objects as the constants they actually are

Abstract from the construction of objects

c

�

Sorge, 2003, Calculemus, Rome – p.2



Motivation

As soon as you formalise a concrete mathematical object
it is often hard to see what it was

concrete object formal construction

� �� � � � � � � � � � � �� �� � � � � �

Treat some objects as the constants they actually are

Abstract from the construction of objects

c

�

Sorge, 2003, Calculemus, Rome – p.2



Motivation

As soon as you formalise a concrete mathematical object
it is often hard to see what it was

concrete object formal construction

� �� � � � � � � � � � � �� �� � � � � �

Treat some objects as the constants they actually are

Abstract from the construction of objects

c

�

Sorge, 2003, Calculemus, Rome – p.2



Examples

Object Construction

Numbers

� � � � � � � � � � � �� �� � � � � �

Lists

� � 	 
 � 
� � � � �� 
� � � � 	
� 
� � � � 
� � � � � � �

Sets

� � �
	
� 
 � ��� �

� � � � � � � 	 � � � 
 �

Tuples

� � �
�
� � � � � � � � � � � � � � � �
� � � �

c

�

Sorge, 2003, Calculemus, Rome – p.3



Annotated Constants (Idea)

Pragmatic approach to

Identify computational objects as constants

Attach relevant information on the object to the constants

� Ease communication (with CAS)

� Have special display representation

� Abstract from simple properties (via built-in equality, . . . )

c

�

Sorge, 2003, Calculemus, Rome – p.4



Annotated Constants (Defin.)

Triple

��
�

�
� � � with

constant

�

of the signature of formal language

term

� � : the formal definition of
�

annotation �: arbitrary data-structure
representing

�

�

can be identified given �

�

can be generated given �

c

�

Sorge, 2003, Calculemus, Rome – p.5



Annotated Constants for Sets

Annotation: data-structure of sets with terms in

�

���
� �� � � with ��

��
� � � �

Constant: identifier generated from a duplicate free ordering
of the elements

	�
� � � � � �
� �

Definition: term generated from ordered set

��� �
� � � � � � �� � � � � � � �

c

�

Sorge, 2003, Calculemus, Rome – p.6



Annotated Constants for Sets

Annotation: data-structure of sets with terms in

�

���
� �� � � with ��

��
� � � �

Constant: identifier generated from a duplicate free ordering
of the elements

	�
� � � � � �
� �

Definition: term generated from ordered set

��� �
� � � � � � �� � � � � � � �

� � ���
� �� � � � � ��

�
� � �

c

�

Sorge, 2003, Calculemus, Rome – p.6



Annotated Constants for Cycles

Annotation: duplicate-free list with integers in

�

�� � � �

with

�
�

�
�

� � �

Constant: identifier generated from normalised cycle

	�� � � � � � �

Definition: term generated from normalised cycle

�� 	 � � �
� �� 	 � � �
� �� 	 � ��
� 	 
 � � � � � �

Ensure duplicate-freeness when creating annotation

. . . numbers, lists, tuples, and their composition

c

�

Sorge, 2003, Calculemus, Rome – p.7



Annotated Constants for Cycles

Annotation: duplicate-free list with integers in

�

�� � � �

with

�
�

�
�

� � �

Constant: identifier generated from normalised cycle

	�� � � � � � �

Definition: term generated from normalised cycle

�� 	 � � �
� �� 	 � � �
� �� 	 � ��
� 	 
 � � � � � �

� � �� � � � � � � � � �

� �Ensure duplicate-freeness when creating annotation

. . . numbers, lists, tuples, and their composition

c

�

Sorge, 2003, Calculemus, Rome – p.7



Implementation in Omega

Extension of the data-structures for terms

Annotated constant treated as logical constant

Definition expansion dynamically created from
annotation

Additional reader/pretty-printing function for
each kind of annotation

Check of additional properties during parsing

c

�

Sorge, 2003, Calculemus, Rome – p.8



Manipulation

Specialised tactics implement computations

Operate directly on annotation

Employ efficient algorithms
within the prover OR apply external CAS

Choice of implementing annotations as
efficient data-structure OR input syntax for CAS

c

�

Sorge, 2003, Calculemus, Rome – p.9



Correctness

Correctness of tactics checked by expansion to calculus
level

Annotated constants replaced by formal definition

Verification of properties explicit during tactic expansion

Example:
defn-expand

� � � � � � �

� � �� � �
	 � � � � � � �

is-cycle

c

�

Sorge, 2003, Calculemus, Rome – p.10



Correctness

Correctness of tactics checked by expansion to calculus
level

Annotated constants replaced by formal definition

Verification of properties explicit during tactic expansion

Example:
defn-expand

� � � � � � �

� � �� � �
	 � � � � � � �

defn-expand

� � � � � � �

� � �� � �
	 � �� �� � ��
� �� �� � �
� �� �� � �
� � � � � � � �

defn-expand � � � �
	 � �

� � � ��� 	 �
�

� 
 � �� � �
	 � �� �� � �
� �� �� � �
� � � � � � � �

-I

�� �
���

...

c

�

Sorge, 2003, Calculemus, Rome – p.10



Case Study

Certifying solutions to permutation group problems
[with A. Cohen, S. Murray, CADE-19]

Permutations are sets of disjoint cycles
Example:

� ���
�

� � � �
�

� � ���
�

�� � ��
�

� � � �

Annotation similar to input syntax of GAP

Specialised tactics employ GAP

c

�

Sorge, 2003, Calculemus, Rome – p.11



Assessment

Nice things

Recognisable computational objects

Easier to handle by prover and external CAS

Eases input and display of objects

Conservative extension

Not so nice things

New objects require implementation of new constants
type plus tactics and equality methods

Cannot handle free variables in objects

Conservative extension

c

�

Sorge, 2003, Calculemus, Rome – p.12



Assessment

Nice things

Recognisable computational objects

Easier to handle by prover and external CAS

Eases input and display of objects

Conservative extension

Not so nice things

New objects require implementation of new constants
type plus tactics and equality methods

Cannot handle free variables in objects

Conservative extension
c

�

Sorge, 2003, Calculemus, Rome – p.12



Future Work

Handle various representations in parallel

Support switch of representations

Deal with free variables

Generalise concept to more complex objects

c

�

Sorge, 2003, Calculemus, Rome – p.13


	Motivation
	Examples
	Annotated Constants (Idea)
	Annotated Constants (Defin.)
	Annotated Constants for Sets
	Annotated Constants for Cycles
	Implementation in Omega
	Manipulation
	Correctness
	Case Study
	Assessment
	Future Work

