Integrating Computational
Properties at the Term Level

Volker Sorge

University of Birmingham, UK

joint work with
Martin Pollet, University of Saarbricken, Germany

@© Sorge, 2003, Calculemus, Rome — p.1

Motivation

B As soon as you formalise a concrete mathematical object
It Is often hard to see what it was

@© Sorge, 2003, Calculemus, Rome — p.2

Motivation

B As soon as you formalise a concrete mathematical object
It Is often hard to see what it was

concrete object formal construction

5 s(s(s(s(s(zero)))))

@© Sorge, 2003, Calculemus, Rome — p.2

Motivation

B As soon as you formalise a concrete mathematical object
It Is often hard to see what it was

concrete object formal construction
5 > s(s(s(s(s(zero)))))

@© Sorge, 2003, Calculemus, Rome — p.2

-
&8

Motivation

B As soon as you formalise a concrete mathematical object
It Is often hard to see what it was

concrete object formal construction
5 > s(s(s(s(s(zero)))))

®m Treat some objects as the constants they actually are

®m Abstract from the construction of objects

@© Sorge, 2003, Calculemus, Rome — p.2

Examples

m Numbers
m |LIStS

m Sets
m Tuples

Object Construction

5 s(s(s(s(s(zero)))))

(a b c) cons(a, cons(b, cons(c,nil)))
{a,b,c} Ax.(x=aV x=bV x=C)
(a,1,) pair(a,pair(l,a))

@© Sorge, 2003, Calculemus, Rome — p.3

Annotated Constants (Idea) (&

Pragmatic approach to
m |dentify computational objects as constants
m Attach relevant information on the object to the constants
= Ease communication (with CAS)
— Have special display representation

= Abstract from simple properties (via built-in equality, .. .)

@© Sorge, 2003, Calculemus, Rome — p.4

Annotated Constants (Defin.)

Triple (k,t,a) with
m constant & of the signature of formal language £
mterm ¢t € L: the formal definition of &

m annotation a: arbitrary data-structure
representing £

= k can be identified given a

= t can be generated given a

@© Sorge, 2003, Calculemus, Rome — p.5

Annotated Constants for Sets &

Annotation: data-structure of sets with terms in £
{b,a,c} witha,b,c € L

Constant: identifi er generated from a duplicate free ordering
of the elements
Fabey € L

Definition: term generated from ordered set
\e.(x=aV z=bV x=c) € L

@© Sorge, 2003, Calculemus, Rome — p.6

Annotated Constants for Sets &

Annotation: data-structure of sets with terms in £
{b,a,c} witha,b,c € L

Constant: identifi er generated from a duplicate free ordering
of the elements
Fabey € L

Definition: term generated from ordered set
\e.(x=aV z=bV x=c) € L

—>{b,a,c} ={a,b,c}

@© Sorge, 2003, Calculemus, Rome — p.6

Annotated Constants for Cycles

Annotation: duplicate-free list with integers in £
(312)with1,2,3 € L

Constant: identifi er generated from normalised cycle
kaasg €L

Definition: term generated from normalised cycle
cons(1, cons(2, cons(3,nil))) € L

@© Sorge, 2003, Calculemus, Rome — p.7

st g9

Annotated Constants for Cyclesg

S

Annotation: duplicate-free list with integers in £
(312)with1,2,3 € L

Constant: identifi er generated from normalised cycle
kaasg €L

Definition: term generated from normalised cycle
cons(1, cons(2, cons(3,nil))) € L

—(312)=(123)

—>Ensure duplicate-freeness when creating annotation

@© Sorge, 2003, Calculemus, Rome — p.7

Implementation iIn Omega &)

m Extension of the data-structures for terms

= Annotated constant treated as logical constant

= Definition expansion dynamically created from
annotation

= Additional reader/pretty-printing function for
each kind of annotation

= Check of additional properties during parsing

@© Sorge, 2003, Calculemus, Rome — p.8

Manipulation &

m Specialised tactics Implement computations
= Operate directly on annotation

m Employ efficient algorithms
within the prover OR apply external CAS

= Choice of implementing annotations as
efficient data-structure OR input syntax for CAS

@© Sorge, 2003, Calculemus, Rome — p.9

Eh.f]
¢&

cCorrectness

m Correctness of tactics checked by expansion to calculus
level

B Annotated constants replaced by formal defi nition

m Verifi cation of properties explicit during tactic expansion

Example:

Ly cycle((1 2 3)) Is-cycle

© Sorge, 2003, Calculemus, Rome — p.10

"
Correctness .-

m Correctness of tactics checked by expansion to calculus
level

B Annotated constants replaced by formal defi nition

m Verifi cation of properties explicit during tactic expansion

Example:

Ly cycle((1 2 3)) defn-expand (1 2 3) Lo
Lo cycle(cons(1,cons(2,cons(3,nil)))) defn-expand cycle Ls
Ly 1¢&{2,3} A cycle(cons(2,cons(3,nil))) A-l Ly, Ls

© Sorge, 2003, Calculemus, Rome — p.10

Case Study &

Certifying solutions to permutation group problems
[with A. Cohen, S. Murray, CADE-19]

m Permutations are sets of disjoint cycles
Example: {(3,9)(4,5)(6,10)(7,11)}
= Annotation similar to input syntax of GAP

m Specialised tactics employ GAP

© Sorge, 2003, Calculemus, Rome — p.11

Assessment

Nice things
B Recognisable computational objects
m Easier to handle by prover and external CAS
m Eases input and display of objects

m Conservative extension

© Sorge, 2003, Calculemus, Rome — p.12

Assessment

Nice things
B Recognisable computational objects
m Easier to handle by prover and external CAS
m Eases input and display of objects
m Conservative extension
Not so nice things

® New objects require implementation of new constants
type plus tactics and equality methods

m Cannot handle free variables in objects

m Conservative extension

© Sorge, 2003, Calculemus, Rome — p.12

Future Work

= Handle various representations in parallel
m Support switch of representations
= Deal with free variables

= Generalise concept to more complex objects

© Sorge, 2003, Calculemus, Rome — p.13

	Motivation
	Examples
	Annotated Constants (Idea)
	Annotated Constants (Defin.)
	Annotated Constants for Sets
	Annotated Constants for Cycles
	Implementation in Omega
	Manipulation
	Correctness
	Case Study
	Assessment
	Future Work

