

Integrating Computational Properties at the Term Level

Volker Sorge

University of Birmingham, UK

joint work with Martin Pollet, University of Saarbrücken, Germany

© Sorge, 2003, Calculemus, Rome - p.1

As soon as you formalise a concrete mathematical object it is often hard to see what it was

As soon as you formalise a concrete mathematical object it is often hard to see what it was

concrete object

formal construction

s(s(s(s(s(zero))))))

5

As soon as you formalise a concrete mathematical object it is often hard to see what it was

concrete object

formal construction

 $5 \longleftrightarrow$

s(s(s(s(s(zero))))))

5

As soon as you formalise a concrete mathematical object it is often hard to see what it was

s(s(s(s(s(zero))))))

- concrete object formal construction

 - Treat some objects as the constants they actually are
 - Abstract from the construction of objects

 \longleftrightarrow

	Object	Construction
Numbers	5	s(s(s(s(s(zero))))))
Lists	$(a \ b \ c)$	cons(a, cons(b, cons(c, nil)))
Sets	$\{a, b, c\}$	$\lambda x.(x{=}a \lor x{=}b \lor x{=}c)$
Tuples	(a,1,lpha)	$pair(a, pair(1, \alpha))$

Pragmatic approach to

- Identify computational objects as constants
- Attach relevant information on the object to the constants
- \Rightarrow Ease communication (with CAS)
- \Rightarrow Have special display representation
- \Rightarrow Abstract from simple properties (via built-in equality, ...)

- Triple (k, t, \mathbf{a}) with
 - constant k of the signature of formal language \mathcal{L}
 - term $t \in \mathcal{L}$: the formal definition of k
 - annotation a: arbitrary data-structure representing k
 - \Rightarrow k can be identified given a
 - \Rightarrow t can be generated given a

Annotation: data-structure of sets with terms in \mathcal{L}

 $\{b, a, c\}$ with $a, b, c \in \mathcal{L}$

Constant: identifier generated from a duplicate free ordering of the elements

 $k_{\{a,b,c\}} \in \mathcal{L}$

Definition: term generated from ordered set

 $\lambda x.(x = a \lor x = b \lor x = c) \in \mathcal{L}$

Annotation: data-structure of sets with terms in \mathcal{L}

 $\{b, a, c\}$ with $a, b, c \in \mathcal{L}$

Constant: identifier generated from a duplicate free ordering of the elements

 $k_{\{a,b,c\}} \in \mathcal{L}$

Definition: term generated from ordered set

 $\lambda x.(x = a \lor x = b \lor x = c) \in \mathcal{L}$

 \Longrightarrow {b, a, c} = {a, b, c}

Annotation: duplicate-free list with integers in \mathcal{L} (3 1 2) with $1, 2, 3 \in \mathcal{L}$

Constant: identifier generated from normalised cycle $k_{(1\ 2\ 3)} \in \mathcal{L}$

Definition: term generated from normalised cycle $cons(1, cons(2, cons(3, nil))) \in \mathcal{L}$

Annotation: duplicate-free list with integers in \mathcal{L} (3 1 2) with $1, 2, 3 \in \mathcal{L}$

Constant: identifier generated from normalised cycle $k_{(1\ 2\ 3)} \in \mathcal{L}$

Definition: term generated from normalised cycle $cons(1, cons(2, cons(3, nil))) \in \mathcal{L}$

 $\Longrightarrow (3\ 1\ 2) = (1\ 2\ 3)$

 \implies Ensure duplicate-freeness when creating annotation

- Extension of the data-structures for terms
- Annotated constant treated as logical constant
- Definition expansion dynamically created from annotation
- Additional reader/pretty-printing function for each kind of annotation
- Check of additional properties during parsing

- Specialised tactics implement computations
- Operate directly on annotation
- Employ efficient algorithms within the prover OR apply external CAS
- Choice of implementing annotations as efficient data-structure OR input syntax for CAS

- Correctness of tactics checked by expansion to calculus level
- Annotated constants replaced by formal definition
- Verifi cation of properties explicit during tactic expansion

Example:

 L_1 cycle((1 2 3)) is-cycle

- Correctness of tactics checked by expansion to calculus level
- Annotated constants replaced by formal definition
- Verifi cation of properties explicit during tactic expansion

Example:

 $\begin{array}{ll} L_1 & cycle((1\ 2\ 3)) & defn-expand\ (1\ 2\ 3)\ L_2 \\ L_2 & cycle(cons(1,cons(2,cons(3,nil)))) & defn-expand\ cycle\ L_3 \\ L_3 & 1 \notin \{2,3\} \land cycle(cons(2,cons(3,nil))) & \land -I\ L_4, L_5 \end{array}$

Certifying solutions to permutation group problems [with A. Cohen, S. Murray, CADE-19]

- Permutations are sets of disjoint cycles Example: {(3,9)(4,5)(6,10)(7,11)}
- Annotation similar to input syntax of GAP
- Specialised tactics employ GAP

Nice things

- Recognisable computational objects
- Easier to handle by prover and external CAS
- Eases input and display of objects
- Conservative extension

Nice things

- Recognisable computational objects
- Easier to handle by prover and external CAS
- Eases input and display of objects
- Conservative extension

Not so nice things

- New objects require implementation of new constants type plus tactics and equality methods
- Cannot handle free variables in objects
- Conservative extension

- Handle various representations in parallel
- Support switch of representations
- Deal with free variables
- Generalise concept to more complex objects