
Approximate Query Processing for
Label-Constrained Reachability Queries

Internship report submitted to the faculty Claude Bernard, Lyon 1 in partial fulfillment of the
requirements for the degree of

Master of Information Technology and Web

by

Amaia Nazábal

Research carried out in :

Laboratoire d’InfoRmatique en Images et Systèmes d’information, CNRS
UMR 5205

Supervisors:

Prof. Dr. Angela Bonifati

Dr. Stefania Dumbrava

Keywords: property graphs, summarization, approximative query processing, regular path
queries, navigational queries.

Amaia Nazábal: Approximate Query Processing for Label-Constrained Reachability Queries, © 26. Septem-
ber 2018

To my parents and my boyfriend Diego for providing me with unfailing support and continuous
encouragement throughout my years of study...

Data is the new science.
BigData holds the answers.

Are you asking the right questions?

— Patrick P. Gelsinge, 2012

A C K N O W L E D G M E N T S

I would first like to thank my thesis advisor Prof. Dr. Angela Bonifati for her sage advice, insightful
criticisms, and patient encouragement during the writing of this thesis.

The door of Dr. Stefania Dumbrava’s office was always open, thanks for her help, support, and
patience during the development of this work.

I would like to thank Oracle Labs for the anticipated release of the version 3.1 of Oracle Labs PGX,
that allowed us to improve the results during the experimentation phase.

The last, but not the least, to my country, Paraguay. I am grateful for the funding sources that
allowed me to pursue my master studies.

A B S T R A C T

The current surge of interest in graph-based data models and graph query processing reflects the
usage of increasingly complex reachability queries, as witnessed by analytical studies on real-world
graph query logs. Despite the maturity of graph DBMS capabilities, complex label-constrained reach-
ability queries remain difficult to evaluate along with their corresponding aggregate versions. In this
work, we focus on an approximate evaluation of counting label-constrained reachability queries and
we offer a human-explainable solution of graph Approximate Query Processing (AQP) by designing
a graph summarization algorithm (GRASP) outputting a graph summary. Although the problem of
node group minimization associated with the creation of GRASP summaries is NP-complete, our
GRASP summaries are reasonably small in practice even for large graph instances and guarantee
approximate graph query answering paired with controllable error estimates. We experimentally
gauge the scalability and efficiency of our GRASP algorithm and verify the accuracy and error esti-
mation of the graph AQP module. To the best of our knowledge, ours is the first system capable of
approximate graph analytics for complex label-constrained reachability queries.

R É S U M É

L’intérêt actuel pour les bases de données de graphes et le traitement des requêtes de graphes reflète
que les requêtes complexes de type d’accessibilité (reachability) deviennent progressivement plus uti-
lisées, comme l’atteste les études analytiques de requêtes de graphes réels. Malgré la maturité des
capacités de SGBD des graphes, les requêtes d’accessibilité complexe avec des restrictions des éti-
quettes restent difficiles à évaluer avec leurs versions agrégées correspondantes. Dans ce travail,
nous nous concentrons sur une évaluation approximative du comptage des requêtes d’accessibilité
avec des restrictions des étiquettes et nous proposons une solution compréhensible d’AQP en con-
cevant un algorithme de summarization des graphes (GRASP) produisant un graphe résumé. Bien
que le problème de la minimisation des groupes de noeuds associé à la création de résumés GRASP
soit NP-complet, nos résumés sont relativement petits dans la pratique même pour les grandes
instances de graphes et garantissent une réponse approximative aux requêtes associées à des esti-
mations d’erreur contrôlables. Nous évaluons expérimentalement l’évolutivité et l’efficacité de notre
algorithme GRASP et vérifions la précision et l’estimation des erreurs du module AQP. À notre con-
naissance, notre système est le premier système capable d’analyser approximativement les graphes
pour des requêtes complexes d’accessibilité avec des restrictions des étiquettes.

P R E S E N TAT I O N

the laboratory

LIRIS(Laboratoire d’InfoRmatique en Image et Systèmes d’information) is a mixed unit of research.
It has 330 members, and its main scientific field is computing science and information technology.

Some of its activities of research are at the cross-road between engineering, human and social
sciences, life sciences, and environmental sciences. Six of the centers participating in these lines of
research.

Figure 0.2: Organization chart

LIRIS covers multiples scientific themes structured in six centers including 14 teams:

• Intelligent vision and visual recognition (Imagine team).

• Geometry and Modeling (GeoMod and M2DisCo teams)

• Data Science (DB, DM2L and GOAL teams)

• Interactions and cognition (SICAL, SMA, and TWEAK teams)

• Services, Distributed Systems and Security (DRIM and SOC teams)

• Simulation, virtuality and computational sciences (Beagle, R3AM and SAARA teams)

My internship was carried out in the DB team. The group is focused on the principles, techniques,
and applications of data management systems and it is divided around three themes: Models and
Languages, Architecture of systems and Security and data quality.

the mission

The goal of this internship is to develop an efficient approximate query processing algorithms for graph
databases. In the settings we consider:

(i) data is stored as property graphs;

(ii) users submit queries that request aggregate values for navigational paths;

(iii) the data volume makes it prohibitive to retrieve all of them at query time.

contributions

(a) A Query-oriented Graph Summarization technique (GRASP Algorithm).

(b) An AQP implementation that allows exploiting the pre-computed properties in the GRASP
Algorithm to approximate the answers of the original graph.

(c) A query translator from query workloads on the original graph to the query workloads on the
summary graph.

(d) Small Error Bounds and Experimental Analysis.

(e) A prototype.

(f) A regular research paper submitted(in process of reviewing) in The Forty-fifth International Con-
ference on Very Large Data Bases - Los Angeles, California conference.

C O N T E N T S

i theoretical fundamentals

1 property graphs 3

2 graph patterns 5

2.1 Graph Pattern Matching . 5

2.2 Graph Navigation Queries & RPQ . 6

3 summarization 9

3.1 Core techniques employed . 9

3.1.1 Grouping-based methods . 9

3.1.2 Bit compression-based methods . 10

3.1.3 Influence-based methods . 10

3.2 Challenges . 10

4 graph databases 11

4.1 Neo4j . 11

4.2 AllegroGraph . 11

4.3 Oracle PGX . 12

4.4 Comparison between those three languages . 14

ii our approach

5 graph summarization algorithm 16

5.1 Context . 16

5.2 Preliminaries . 17

5.3 GRASP Algorithm . 18

5.3.1 Grouping Phase . 18

5.3.2 Evaluation Phase . 20

5.3.3 Merge Phase . 23

5.3.4 GRASP Characterization . 24

6 approximate query processing 25

6.1 Query Translations . 25

7 experimental analysis 26

8 related work 29

9 conclusion and future perspective 30

iii annexes

a annexes 1 32

a.1 NP-completeness Proof . 32

a.2 Query Translations . 33

bibliography 34

I N T R O D U C T I O N

During the last decade, we have seen a resurgence interest in graph databases. Part of this resurgence
is due to the need for simplified representations which benefit from graph pattern and navigational
queries between nodes with an arbitrary path length. Representing entities and relationships as
nodes and edges allow us to take advantage of these benefits.

It is also true that graph processing has become an integral part of big-data analytics. Of course,
this tremendous amount of information can be analyzed by leveraging the already mature query
capabilities of graph DBMSs. However, complex graph reachability queries, entailing rather intricate
and possibly recursive graph patterns (as required by extracting friendship relationships in social
networks or protein-to-protein interactions in biological networks), prove difficult to evaluate on
even small-sized graph datasets. Moreover, the usage of these queries has radically increased in
real-world graph query logs.

The primary objective of this research is to propose an approach to reduce the time complexity of
such queries, using techniques for obtaining small summaries, preserving topological properties of
the original graph, and allowing for improved query execution times.

In this work, we introduce the GRASP algorithm, a query-oriented, summarization algorithm aim-
ing at preserving information about the label-constrained reachability of the initial graph and book-
keeping additional statistics in the node properties of the graph summary to allow approximate
graph query evaluation. Our goal is also to offer a human-explainable approximate graph query
processing by focusing on regular path queries that identify paths in graphs through regular expres-
sions over the edge labels. We focus on counting reachability queries that are label-constrained.

The rest of this thesis is organized in ten chapters, where the introduction is general and the
others are divided into two parts:

• First part: Theoretical fundamentals. Chapters 1 to 4, where we review the concepts of property
graphs, graph patterns, summarization and graph databases.

• Second part: Our Approach. Sections 5 to 9, where we introduce our GRASP algorithm, the
experimental analysis, the related work, future perspectives and conclusion.

Part I

T H E O R E T I C A L F U N D A M E N TA L S

1
P R O P E RT Y G R A P H S

Graphs are used to encode data, whereby nodes represent objects in a domain of interest, and
edges represent relationships between these objects [4]. However, different graph data models exist,
namely, plain graphs, labeled graphs and property graphs. In this thesis, we will focus only on
property graphs.

In property graphs, edges and nodes can be labeled. Each edge and node is enriched with a
unique identifier that can be used as an index to associate additional meta-information1 directly
to that edge or node. The graph property instances are multi-edge digraphs, in which objects are
represented by typed data vertices, and the relationships between these, as typed, labeled edges.

Both vertices and edges can have any number of properties (meta-information) associated to them;
we denote the set of all properties as P .

Figure 1.1: A property graph inspired in LDBC Social-Network schema with attribute values storing informa-
tion of people who know each other.

Example 1 A property graph representation of a fictitious social network is shown in Figure 1.1. Each node
is labeled Person or Forum and each edge is labeled knows, hasMember or hasModerator. Nodes with label
Person may have attributes for firstName, lastName, gender, birthday and speaks, nodes with Forum
label may have an attribute title; and in this example, the edges do not have any attribute, only a single
label each one.

For instance, in Figure 1.1, we show a graph inspired in LDBC Social-Network schema, repre-
senting a subset of characters that includes labels and attributes on nodes and edges. In this figure,
the identifiers are shown in italic and the attributes are shown inside the round rectangle box, as
property-value pairs. Thus, for example, for the node with the identifier n1 the first two proper-
ties are firstName and lastName, their corresponding values are Harry and Potter, and its label is
Person. In this example, the edges do not contain any property, only labels.

In this model, we can directly encode multiple edges (having different identifiers) with the same
label between the same two nodes. This condition is called: multi-labels. In our definition of a prop-
erty graph, each node, and edge can be associated with a single label; however, a variation of prop-
erty graphs allows the association of multiple labels, which we call multi-valued property graph.[4]

1 The meta-information is represented in the form of a set of property-value pairs called attributes.

contents 4

Figure 1.2: A property graph inspired by UniProt schema, storing information about protein-to-protein inter-
actions in a biological network.

Property graphs can either be homogeneous or heterogeneous [26]. A homogeneous property
graph is a graph where every vertex/edge has the same properties with the same names and types
as all the other vertices/edges (c.f. Figure 1.2). An heterogeneous property graph is a graph where
the vertices/edges may have different number of properties and different types (c.f. Figure 1.1).

We now provide a formal definition of the notion of a property graph, using the example in the
Figure 1.1.

Definition 1 (Property graph) A property graph G is a tuple (V, E, ρ, γ, σ), where [4][25]:

V is a finite set of vertices, such that V = {v1, v2, ..., vn}. In our example V = {n1, n2, n3, n4, f1}.(a)

E is a finite set of edges E = {e1, e2, ..., em} such that V and E are disjoint. In our example
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9}.

(b)

ρ : E → (V × V) is a total function. Intuitively, ρ(e) = (v1, v2) indicates that e is a directed
edge from node v1 to node v2 in G. For example: ρ(e1) = (n1, n3).

(c)

γ : (V ∪ E) → Lab is a total function where Lab is a set of labels. And for each v ∈ V (resp.
e ∈ E), γ(v) = lv (resp. γ(e) = le), where lv (resp. le) is the label of the node v (resp. edge e) in
G. For example: γ(n1) = Person.

(d)

σ : (V ∪ E)× P → V is a partial function with V a set of values of P . And for each v ∈ V
(resp. e ∈ E), p ∈ P , there exists σ(v, p) = s (resp. σ(e, p) = s), s.t. s ∈ V and it is the value of
the property p for the node v (resp., edge e) in G. For example: σ(n1, firstName) = Harry.

(e)

γv and γe are disjoints vertex and edge types, whose elements we denote as LV , resp., LE, such
that Lab = LV ∪ LE, and E ⊆ V × LE ×V.

(f)

Each vertex v ∈ V consist of a label id, lv of type LV , and a set of properties (attributes)
{l1, ..., lk}, each of which is included in P and has a certain, potentially, undefined respective
term value {t1, ..., tk}, all of them included in V .

(g)

2
G R A P H PAT T E R N S

Multiple declarative query languages have emerged in the last decade, for querying instances of
graph data models presented in the previous section. The main operations for interrogating graph
are graph pattern matching and graph navigation.

2.1 graph pattern matching

Renzo et al. in [4] have defined a basic graph pattern (BGP) as a graph-structured query to be
matched against the graph database. A BGP follows the same structure as the latter and it is used
for querying while allowing variables. In other words, a BGP for querying a graph is just another
graph where variables can appear as nodes or edge labels. A BGP mapping assigns to each pattern
variable a constant in the original database.

Example 2 Let G be the graph in Figure 1.1. Assume we want to find the friends of all the moderators in
this graph. We can do this by matching the BGP in Figure 2.1a, called Q, against G. In Q, we use terms xi as
variables that will match any term in the database. On the other hand, knows and hasModerator are constants
from the set Lab that will be the only matched edges with the corresponding labels in the original graph. The
result of evaluating the BGP Q against the graph G, which we denote as Q(G), is shown in the Figure 2.1b.

The evaluation of Q is made by replacing the variable x1 by the vertex n1, x2 by the vertex n2 and
x3 by the vertex f1, we get then a subgraph (c.f. Figure 2.1b) of the original graph; thus we call this
mapping a match for Q against G. The result of Q consist of all such valid matches. The example
2 is a basic one; however, it is also possible to include conditions on the value of properties (e.g.
x1.gender = ’male’) or equalities between attributes (e.g. x1.speaks = x2.speaks) or any boolean
expression that it will filter the results. Evaluating a BGP Q against a graph G corresponds to listing
all possible matches of Q in G. More formally, we can define a match as follows.

Definition 2 (Match) Given a graph G = (V, E) and a BGP Q = (V ′, E′), a match h of Q in G is a
mapping from Const ∪Var to Const, where Const is a set of constants and Var is a set of variables,
such that:

For each constant a ∈ Const, it is the case that h(a) = a; that is, the mapping maps constants
to themselves and;

(a)

For each edge (src, label, dst) ∈ E′, it holds that (h(src), h(label), h(dst)) ∈ E; this conditions
imposes that each edge of Q is mapped to an edge of G, and the structure of Q is preserved
in its image under h in G, or in other words, when applied to all the terms in Q, the result is
a subgraph of G.

(b)

(a) Query graph Q. (b) The matching subgraph of G, after evaluating Q.

Figure 2.1: An example of a BGP, a query graph Q and the affected sub-graph of G. Both figure apply to the
graph database depicted in Figure 1.1.

contents 6

When evaluating a query Q over a graph G, one can consider different semantics. In this work,
we focus on the following ones: [4]

(a) Homomorphism-based semantics. In technical terms, a match h corresponds to a homomorphism
from Q to G. Thus, multiple variables in Q can map to the same term in G. This is the uncon-
strained semantics, as no additional restriction is imposed.

(b) Isomorphism-based semantics. In some cases, it is desirable that different variables map to distinct
terms. Under this type of semantics, certain types of variables are restricted to match distinct
constants in the database. This leaves us with a variety of different possible isomorphism-based
semantics, the main ones being:

i No-repeated-anything semantics. This means that no two variables can be mapped to the same
term in a given match.

ii No-repeated-node semantics. As the name implies, the restriction is imposed only on the nodes.

iii No-repeated-edge semantics. The restriction only applies to variables that map to edges (i.e.
edge variables), whereas other types of variables (nodes, labels, properties, etc.) can still be
mapped to the same term.

While some of the previous semantics may restrict the duplication of terms within a single match
(isomorphism-based semantics) we can also consider another orthogonal preference of semantics
with respect to duplicates matches in the result of evaluating a BGP Q over a graph database G, as
follows: [4]

– Set semantics. Q(G) is defined as a set of matches; in other words, the result of evaluating Q
cannot contain duplicate matches.

– Bag semantics. Q(G) is defined as a bag of matches, meaning that the number of times that a
match appears in the result corresponds to the number of mappings that appear in the match.

Examples of these different semantics will be provided in Section 4.

2.2 graph navigation queries & rpq

There also exists another type of queries to describe paths. One example of such query is to find
all acquaintances-of-an-acquaintance of a given person in a social setting, as described in Figure 1.1.
Here we are not only interested in immediate acquaintances of a person, but also in the people that
person might know through other people. Queries such as the above are called path queries since
they require us to navigate through the graph using paths of arbitrary length. Of course, sometimes
the paths alone are not enough, and we are interested in repetitions of graph patterns inside the
graph, to discover pathways or patterns that are often repeated. Such queries are called navigational
queries.

Paths are the most basic navigational object in a graph database. The most fundamental type of
path query is determining path existence. This is a fundamental notion related to the problem of
reachability and transitive closure in directed graphs. Path existence refers to establishing whether
there exists a directed path between a pair of nodes in a property graph. [4]

Definition 3 (Path Query) We denote a path query as π = x α−→ y, where α specifies conditions
on the paths, we wish to retrieve and x and y denote the endpoints of the path. The length of
|π| is the number of edges in π. A π path is called nonempty if |π| > 0. A path π is simple if it
does not go through the same node twice.[8] There are a variety of formalisms under which α can
express more complex path constraints. One of the prominent such formalisms is regular expressions
defined over the set Lab of edge labels. For example, π can be also defined as the corresponding

path v1
l1
e−→ v2 . . . vk−1

lk
e−→ vk, where the edge label concatenation are l1

e · . . . · lk
e .

contents 7

A regular expression can be used as a path constraint, in order to retrieve all the paths that match the
expression. Path queries using regular expressions are commonly known as Regular Path Queries
(RQP).

Let us review first the notion of regular expressions and RPQ.

Definition 4 (Regular Expression) A regular expression over a set of labels L is an expression of
the following form [25]:

E ::= L|(E · E)|(E + E)|E∗|E+|E?

A regular expression E matches a word w = l1...ln if any of the following conditions is satisfied:

• E ∈ L is a label and w = E.

• E = (E1 · E2) and there is i ∈ 0, ..., n such that E1 matches l1, ..., li and E2 matches li+1, ..., ln.

• E = (E1 + E2) and wi s matched by E1 or by E2.

• E = E∗1 and w has the form w1w2...wn for n ≥ 0, where each word wi is matches by E1.

• E = E+
1 and w has the form w1w2...wn for n > 0, where each word wi is matches by E1.

• E = E1? and w is matched by E1 or not.

Definition 5 (Regular Path Queries) A Regular Path Query (RPQ) is an expression of the form
E(s, t) where E is a regular expression and s and t are terms (constants or variables). Let a and b be
constants. An RPQ E(a, b) is entailed by a graph G if there exists a directed path π from node a to
node b that is labeled with a word matched by E [25].

Example 3 Let G be the graph over σ = knows, hasMember, hasModerator in Figure 1.1, where σ is a
finite alphabet. The following RPQ matches the acquaintance-of-an-acquaintance relationship in our
social network configuration and can be expressed via the following RPQ:

Q1 : Ans(x, y)← (x, knows+, y)

Here the symbol ‘+’ denotes one or more relations. The regular expression knows+ is used to specify all paths
formed from a sequence of one or more edges with the label knows (c.f. Figure 2.2).

Figure 2.2: A finite automaton representing the
query Q1

RPQs can be used to express typical reachability
queries. However, there are various navigational op-
erations not supported that seem quite natural. Thus,
various extensions have been introduced to express
these expressions and more intricate ones. Among
these extensions, we note that allowing for inverse
navigation, which results in Two-Way Regular Path
Queries (2RPQs). Another notable extension is that allowing for conjunctive queries, called Con-
junctive Regular Path Queries (CRPQs) that extends the power of RPQs with conjunctive queries.

Definition 6 (Two-Way Regular Path Queries) The Two-Way Regular Path Queries (2RPQ) extend
the vocabulary of RPQs by the inverse of each relationship symbol. For each symbol a in Lab there
exists a− which specify the traversal of edges in a backward direction.

Example 4 The following 2RPQ match all the acquaintances of a moderator of a given forum in our social
network graph in Figure 1.1, and can be expressed as follows:

Q2 : Ans(x, y)← (x, knows · hasModerator−, y)

To understand the example, we have to take into account that the domain of the predicate hasModerator is a
vertex of label Forum and the range a vertex of a label Person. Note; however, that the domain and range of
the predicate knows is the same, a vertex of label Person. That is the reason why we need to use the inverse of
the predicate hasModerator, to maintain the typing consistency between both vertex labels.

contents 8

Definition 7 (Conjunctive Two-Way Regular Path Queries) The Conjunctive Two-Way Regular Path
Queries (C2RPQs) is another extension from RPQs. They include 2RPQ and also allow free path vari-
ables in the query. [8] [25]

Example 5 The following C2RPQ matches all the pairs consisting of a person and the moderator of a forum,
of which an acquaintance of hers is a member (see graph G in Figure 1.1). This can be expressed as follows:

Q3 : Ans(x, y)← (x, knows, y) ∧ (y, hasMember−, z) ∧ (z, hasModerator, y)

It is easy to see that this query cannot be expressed using only 2RPQ because we are using the same variable
y in two conditions, i.e., the person must be a member and a moderator of the same forum.

BGPs can also be extended to Navigational Graph Patterns(NGP), in which edges can also be labeled
by an RPQ denoting an arbitrary path. While other further additions to BGPs exist, in this work, we
will focus the previous definitions.

In RPQs, the possibility of having paths involving cycles or other topologies gives rise to more
semantics for the evaluation of path queries. The most common forms of evaluation are the no-
repeated-node and no-repeated-edge semantics. Additionally, we can find these approaches:[4]

(a) Arbitrary path semantics. All paths in G that satisfy the constraints of α are included in the result.
Under this semantics, the result of a query with a transitive cloture operation (* or +) may
contain an infinite number of paths (for example if there exist cycles inside the topology of the
graph) which quickly becomes impractical.

(b) Shortest path semantics. In this case, the result of a query is defined only in terms of the shortest
paths, i.e., paths of minimal length that satisfy the constraint specify in of P. A variation of
this approach is also the cheapest path semantics, which keeps the same principle with the only
difference that instead of looking for the shortest path, it looks for the cheapest one.

3
S U M M A R I Z AT I O N

As we have seen in the previous sections, the properties graphs are increasingly bigger and, thus,
data analysis using RPQs becomes expensive. Despite the maturity of graph DBMS capabilities,
complex label-constrained reachability queries remain difficult to evaluate along with their corre-
sponding aggregate versions. These large amounts of data and the need for a fast analysis call
for data summarization. The main goal of summarization is to apply some techniques to produce
small summaries, preserving some particular properties of the original graph, in order to improve
some defined measures (e.g. less storage space, better response time, identify some patterns, entity
resolution, etc.).

Some of the benefits of graph summarization include:[27]
- Reduction of data volume and storage.
- Speedup of graph algorithms and queries.
- Interactive analysis support. The summarization is introduced to handle information extraction

and speedup user analysis.
- Noise elimination. Summarization serves to filter out noise and reveal patterns in the data.

A summarization is often application-dependent and can be defined with respect to various goals:
preservation of structural patterns, focus on some entities in the network (e.g. influencers in social
networks), preservation of query answers, etc. Graph summarization methods are categorized based
on the type of data handled and the core techniques employed.

Overall, the main challenge in summarizing labeled graphs is the efficient combination of two
different types of data: structural connections and attributes. We will explore now the different core
techniques used to summarize static and labeled graphs.

3.1 core techniques employed

3.1.1 Grouping-based methods

Grouping-based methods aggregate nodes into super-nodes connected by super-edges based on both
structural properties and node attributes. Grouped nodes are usually structurally close in the graph
and share similar attribute values[27].

Figure 3.1: SNAP summary. Graph summa-
rization by Aggregation of a stu-
dent graph.

Here, attributed clustering, or community detection
techniques do not perform summarization. However, they
could be leveraged for clustering purposes. In this setting,
provided a relevant similarity is maximized, super-nodes
can be obtained from such clusters resulting in a compact
representation of the original graph.

A fundamental difference between summarizing and
clustering is that the former finds coherent sets of nodes
with similar connectivity patterns,while clustering results
in coherent, densely-connected groups of nodes and the
connectivity to the rest of graph is ignored. [27]

SNAP and k-SNAP are two popular database-style ap-
proaches to summarize graphs. Both of them start by creating groups of nodes that share the same
list of user-selected attributes , and then iteratively split these groups until the grouping is compati-
ble with the relationship ((A,R)-Compatible, i.e., attribute and relationship compatible). The nodes of
the summary graph correspond to the identified groups, also called super-nodes, and the edges are
the group relationship, which are called super-edges. For example, in Figure 3.1, each student in G1

contents 10

has at least one friend and one classmate in G2. The super-node size reflects the number of people
per group Gi [40][27].

3.1.2 Bit compression-based methods

In graph summarization, the goal is to use bit compression techniques to minimize the number of
bits needed to describe the input graph.[27] The graph summary or model is significantly smaller
than the original graph and often reveals various structural patterns, that enhance the understand-
ing of the original graph structure. Most compression-based summaries methods leverage the Mini-
mum Description Length (MDL) principle to guide the grouping of nodes or the discovery of frequent
structures to be replaced with virtual nodes in the summary.

The first and most prominent frequent-subgraph-based summarization schema, SUBDUE, em-
ploys a two-part MDL representation. Beyond the networks structure, the MDL encoding accounts
for node and edge labels. This approach is used to iteratively replace the most frequent subgraph
in a labeled graph, which minimizes the MDL cost, with a meta-node. Multiple passes of SUB-
DUE eventually produce a hierarchical description of the structural regularities in the graph. The
resulting representation can be used to either identify anomalous structures (instances that do not
compress well) or the most common substructures (substructures that have very low compression
cost). For example, SUBDUE allows to discover of substructures in chemical compounds graphs
(where the vertices are atoms and the edge are bonds).

3.1.3 Influence-based methods

Influence-based summarization methods for labeled graphs are currently scarce[27]. The representa-
tive method in this category leverages both structural and node attribute similarities to summarize
the influence or diffusion process in a large-scale network. The sole work in this category, VEGAS,
summarizes influence propagation in citation networks via a matrix decomposition-based algorithm.
The summarization problems aim to find the community membership matrix of the nodes such that
the similarity is minimized.

3.2 challenges

The goals of graph summarization can be numerous,among which mitigating the information over-
load, but also improving the efficiency and query execution time, or to allow pattern discovery
maintaining some measure like "interesting", or to improve an influence analysis. However, several
challenges may arise:
(i) The volume and complexity of the data. The requirement of efficiency to deal with a large amount of
data, and their possible heterogeneous sources (CSV files formats, databases, images, etc) will lead
to exacerbate the problem of summarization due to data integration needs. Finally, real datasets
often contain noise or missing information which may also interfere with the quality of the output.
(ii) The complexity of the representation. As we are addressing the property graphs model, the sum-
marization algorithm requires a detailed design that takes into accounts all the attributes of the
vertices and edges. Characteristics like the heterogeneity and density, the presence of multi-labels
or a multi-valued property graph model (see chapter 1) will determine the time complexity during
the construction of such summary.
(iii) Evaluation. The evaluation of such summary also represents the main challenge. Using a database
perspective, a summary can be considered good if it has a high accuracy in the evaluation of queries,
but also it should have a significant runtime gain that justifies the construction of such summary.
A translation algorithm might be necessary to translate the queries on the original graph to corre-
sponding queries on the graph summary.

As demonstrated by these challenges, graph summarization is a difficult and multi-faceted prob-
lem.

4
G R A P H D ATA B A S E S

A graph database is a database designed to treat the relationships between data as equally important
as the data itself. It is intended to hold data without constricting it to a predefined model. Instead,
the data are stored showing how each individual entity connects with or is related to others.

Only a database that natively embraces relationships is able to store, process, and query connec-
tions efficiently. While other databases compute relationships at query time through expensive JOIN
operations, a graph database stores connections alongside the data in the model.

Here a brief description of some of the graph databases. We choose these engines because they
are most widely-used in practice, but they exhibit significant differences.

4.1 neo4j

Neo4j is an open-source native graph database that offers functionality similar to traditional RDBMSs
such as full transactional support, a declarative query language (Cypher), availability and scalabil-
ity through a distributed version. The major benefit of Neo4j is its intuitive way of modeling and
querying graph-shaped data. Internally, it stores edges as double linked lists. Properties are stored
separately, referencing the nodes with corresponding properties.[31]

Cypher introduced the idea of using visual ASCII-Art1 syntax to express the topological con-
straints of a pattern. This syntax made pattern matching functionality approachable, firmly estab-
lished declarative pattern matching in the market, and was a great success with real-world users.[38]

Example 6 A BGP query using the Cypher syntax matching all the pairs of people who are the know- of-a-
known, using the graph of Figure 1.1.

MATCH (x1:Person) -[:knows]-> (:Person) <-[:knows]- (x2:Person)

RETURN x1, x2

The above query will match two paths in G: (n1, e1 · e9, n4) and (n1, e4 · e2, n3). The result will be then the
two pairs: (n1, n4) and (n1, n3).

Cypher, unlike other languages, uses isomorphism-based no-repeated-edges bag semantics[4]
(Section 2.1), and thus the evaluation of the query on Example 6 against G would not include
the match that sends both x1 and x2 to the same node n1 (resp. n4), since it would require mapping
the same edge e1 (resp. e4) twice in a single match.

Example 7 A RPQ query using the Cypher syntax. This expression selects pairs of nodes that are linked by
a path completely labeled by the knows predicate included the empty set. To do this, it applies the Kleene star
operator (i.e. *) over the label knows.

MATCH (x1:Person) -[:knows*]-> (x2:Person)

RETURN x1, x2

Currently, Cypher does not support full regular expressions; however, still allows transitive clo-
sure over a single label. Apart from this restriction, Cypher also offers the repetition quantifiers for
specifying the length of the path. For instance, in Example 7, we can also use −[: knows ∗ 2..4]− >

as a path constraint to specify that the path must be between two and four edges.

4.2 allegrograph

AllegroGraph is a high-performance, software-oriented database model that came as a precursor
to the current generation of graph databases. It is implemented as an RDF database, and serves

1 ASCII art is a graphic design technique that uses computers for presentation and consists of pictures or representations
pieced together defined by the ASCII Standard.

contents 12

as a reference implementation for the SPARQL query language. Implementations of geo-temporal
reasoning and social network analysis extend the functionality of the database as well as a Prolog
extension. Although it was born as a graph database, its current development is oriented to meet
the Semantic Web standards (i.e., RDFS, SPARQL, and OWL).[45]

SPARQL is a declarative language recommended by the W3C for querying RDF graphs. The
basic building blocks of SPARQL are triple patterns, which are RDF triples where the subject, ob-
ject or predicate may be a variable. SPARQL supports all the complex graph pattern features. The
evaluation of BGPs is done following homomorphism-based bag semantics that was explained in
Section 2.1. Originally, the simple path queries were based on a bag semantics too. However, since
it was shown that such semantics quickly renders query evaluation impractical, the semantics was
changed. Now, in order to evaluate any query containing the transitive cloture (* or +), SPARQL
uses a set semantics. Otherwise, if a property path can be rewritten as a BGP, SPARQL instead uses
the bag semantics defined for BGPs.[4]

Example 8 A BGP query using the SPARQL syntax matching all the pair of people who are the know-of-a-
known, using the graph of Figure 1.1.

PREFIX : <http://my-graph.com/#>

SELECT ?x1, ?x2

WHERE {

?x1 :knows ?x0 ,

(^:knows) ?x2 .

FILTER (?x1 != ?x2)

}

The above query will have the same result as the Example 6, however, this is due to the FILTER clause
where we specify that we want an isomorphic no-repeated-node semantic, if we had avoided the use of this
clause, the result would have included also the paths: (n1, e1 · e1, n1), (n1, e4 · e4, n3), etc.

SPARQL also supports a wide range of FILTER expressions, variable assignments, arithmetic
operations, conditionals, federation and so forth. Since the version 1.1, it also allows the use of
property paths, which are an extended form of regular expression that, beyond usual RPQs, also
allows inverses and a limited form of negation.

Example 9 The same query in Example 7, using the SPARQL syntax.

PREFIX : <http://my-graph.com/#>

SELECT ?x1, ?x2

WHERE {

?x1 (:knows*) ?x2 .

FILTER (?x1 != ?x2)

}

4.3 oracle pgx

Parallel Graph AnalytiX (PGX) is a fast, parallel, in-memory graph analytic framework developed
by Oracle Lab, which allows users to load customized graphs into memory, run efficient algorithms
and query them. Some of these algorithms are part of the runtime of the Green-Marl2 Domain
Specific Language. PGX provides rich features such as graph pattern matching, built-in parallel
graph algorithms, customization of graph algorithms, and interactive shell. It even has a powerful
declarative graph query language PGQL that provides many familiar functionalities in a SQL-like
syntax, such as aggregation, order by, group by, and negation.

PGQL was inspired by both SQL and Cypher and features a similar ASCII-Art pattern syntax.
PGQL was the first property graph query language that supported the regular path patterns. Syn-
tactically, PGQL aims to follow SQL syntax where possible.

2 Green-Marl is a domain-specific language written in C++ that is specially designed for graph data analysis.

contents 13

PGX Engine is focused on providing an alternative solution to the subgraph isomorphism problem.
Theoretically, the problem of subgraph isomorphism involves finding all subgraphs of graph G that
are isomorphic to another graph Q. The graph G (the data graph) is typically huge while the graph
Q (the query graph) is typically small. The term isomorphic in the above definition says that there is
a one-to-one mapping between the nodes and edges of the two graphs (Section 2.1). Note that when
the nodes (edges) of the graph Q have certain properties, the matching nodes (edges) in graph G
must have the same-valued properties.

Example 10 A BGP query using the PGQL syntax matching all the pair of people who are the know- of-a-
known, using the graph of Figure 1.1.[34]

SELECT x1, x2

MATCH (x1: Person) -[:knows]-> () <-[:knows]- (x2:Person)

WHERE x1 != x2

The above query will have the same result as the Example 6 and 8, however, in PGQL as in SPARQL, we
need to introduce a non-equality constraint in the WHERE clause to have an isomorphic match similar to
Neo4j engine with the difference that the introduced clause ensure a no-repeated-node semantics, whereas
Neo4j has a no-repeated-edge semantics. The result is preserved because the graph G don’t have multi-edges.

The built-in semantic of PGQL is based on graph homomorphism, none additional restriction
imposed, but patterns can still be matched in an isomorphic manner by specifying non-equality
constraints between vertices and/or edges as we can appreciate in the previous example.

Example 11 A RPQ query using the PGQL syntax. This expression selects pairs of nodes that are linked by
a path completely labeled by the knows predicate included the empty set as the examples 7 and 9.

SELECT x1, x2

MATCH (x1:Person) -/:knows*/-> (x2:Person)

In PGQL syntax, when we want to add path constraints instead of simple graph patterns, we need to use
the slash instead of the bracket.

Figure 4.1: PGX Overview

Figure 4.1 depicts an overview of using PGX for graph analysis. Some of its features are [26]:

• Loading graphs into memory. From files or databases.

• Running built-in graph algorithms: PGX provides built-in implementations of many popular
graph algorithms.

• Between then we can find: Dijkstra Algorithms, Local Clustering Coefficient, Triangle Count-
ing and Page Rank.

• Running BGP queries or RPQs.

contents 14

• Mutating Graphs. For example, one may want to create an undirected version of the graph,
renumber the vertices

• in the graph, or remove repeated edges between vertices. PGX provides fast, parallel built-in
implementation

• of such operations.

• Browsing and exporting results.

PGX also provides a Java API that is designed for synchronous or asynchronous execution [26].
This API also benefits of all the above-detailed features and the latest version is 3.1.

4.4 comparison between those three languages

Language design scope:
All three languages support BGP with enumeration and reachability queries, as well as projection,
sorting, filtering, and aggregation of matches. Cypher and SPARQL also support a full data manipu-
lation language (DML) for creating, updating, and deleting nodes and relationships [38]. The future
addition of DML capabilities have been discussed for PGQL, but no specification of such features
has been put forth so far, however, these operations are possible using the PGX API, where, even if
the graph is immutable, it proposes functions to mutate the original graph.

Query structure and clause order:
The languages differ in the chosen syntactic order of clauses. PGQL and SPARQL follow SQL in that
it interprets clauses from bottom-to-top (i.e. the first SELECT clause describes the returned data).
Cypher, on the other hand, uses top-to-bottom-order as a natural way of expressing sequences of
DML statements [38].

Path variables:
Cypher allows storing immutable paths, assigning their value to a variable. PGQL allows declaring
a path to be use it in a query, but its value is ephemeral. SPARQL, however, does not allow declaring
or assign a path to a variable.

Path patterns:
PGQL and SPARQL have support for the full regular path patterns. Cypher, however, have proposed
similar features.

Pattern matching semantics:
As mentioned in the above, while both the SPARQL and PGQL languages are based on graph-
homomorphism, they are also amenable to a graph-isomorphism approach, consisting of adding
a non-equality constraint. Nevertheless, Cypher uses only a graph-isomorphism no-repeated-edge
semantics.

Other notorious differences exist, such as the support for graph construction in Cypher and SPARQL,
between those three languages. However, we are not interested in those features for our purpose
since the PGX API supports these functionalities.

We chose PGX for the construction of our prototype. The reasons for this choice are various:
(a) Unlike existing in-memory solutions, PGX is designed to handle very large graphs; (b) It also
captures the inherent large degree of parallelism of the problem and exploits contemporary big
multiprocessor machines; (c) It supports full RPQs.

Part II

O U R A P P R O A C H

5
G R A P H S U M M A R I Z AT I O N A L G O R I T H M

We illustrate our proposed methodology and its potential in the running example described in
Section 5.1. The notations and grammars that we will use are in Section 5.2. The GRASP algorithm
and its characterizations are in the sections 5.3 and 5.3.4 respectively.

Figure 5.1: Original Graph (left) and Graph Summary (right) for 5K LDBC social network

5.1 context

Example 12 (Graph AQP for Social Network Advertising) Let GSN (see Fig. 5.2) represent a social net-
work, whose schema is inspired by the LDBC benchmark [20]. Entities can be people (type Person, Pi) that
know (l0) and/or follow (l1) either each other or certain forums (type Forum, Fi). The latter are moderated
(l2) by specific people and can contain (l3) messages/ads (type Message, Mi), to which persons can author (l4)
other messages in reply (l5) or re-share (l6) such replies (type Reply, Ri). GSN exemplifies a graph instance
adhering to the property graph model (PGM) that we will define in Section 1 Definition 1. Our goal is to
perform graph AQP to obtain high-accuracy, fast, query estimates.

P1 P2 P3

P4

P5 P6P7

P8 P9

P10

R1 R2 R3 R4

M1 M2 M3

F1

F2

M4 M5 M6

R5 R6 R7

Forum knows (l0)

Message follows (l1)

Reply moderates (l2)

Person contains (l3)

authors (l4)

replies (l5)

reshares (l6)

Figure 5.2: Example Social Graph GSN

A practical application in this scenario
would be leveraging AQP to obtain tar-
geted advertising markers in social net-
works. In order to make use of the hetero-
geneity of real-world networks, we need to
express aggregate queries in a query lan-
guage allowing labeled constraints, corre-
sponding to a dialect of the Regular Path
Queries [3, 5, 43]. The expressivity of this
language suffices to express the aggregate
RPQ-based queries of the types illustrated
below 1.
Simple and Optional Label. The count of

node pairs that satisfy Q1, i.e., ()
l5−→(), cap-

tures the number of ad reactions, while the corresponding count for Q2, i.e., ()
l2?−→() indicates the

number of actual and potential moderators.
Kleene Plus/Kleene Star. The number of the connected acquaintances/potentially connected acquain-
tances can be determined as the count of node pairs satisfying Q3, i.e., () ← l+0 (), and, respectively,
Q4, i.e., ()← l∗0 ()
Disjunction. The number of the targeted subscribers is computable as the sum of counting all node

pairs satisfying Q5, i.e., ()
l4←−() or ()

l1←−().

1 For ease of exposition, their translation in a high-level syntax is reported in Figure 5.4 in Section 2.

contents 17

Clauses C ::= A← A1, . . . , An | Q← A1, . . . , An

Queries Q ::= Ans(p1, . . . , pm, count(x1, . . . , xn))

Atoms A ::= π(lv1 , lv2), for lv1 , lv2 ∈ LV | ≤ (lv1 , lv2) |
< (lv1 , lv2) | ≥ (lv1 , lv2) | > (lv1 , lv2)

Paths π ::= ε | le | le? | l−1
e | l∗e , for le ∈ LE | π + π | le · le

Figure 5.3: Graph Query Language

Conjunction. The direct reach of a company via its page ads can be measured as the count of all

node pairs satisfying Q6, i.e., ()
l4←−() l5−→().

A direct evaluation of the above analytical queries on the original graph can be costly in terms of
runtime. We develop a novel, query-oriented, summarization algorithm aiming at preserving informa-
tion about label-constrained reachability of the initial graph and bookkeeping additional statistics in
the node properties of the graph summary and some topological characteristics to allow approximate
graph query evaluation. In contrast, with existing graph summarization techniques, some of then
explained in Section 3 like SNAP, k-SNAP, SUBDUE or VEGAS, which do not take into account the
queries to be evaluated on the summary, our summary fulfills this objective for label-constrained
reachability queries relevant to graph analytical applications using the grouping-based method (see
Section 3.1.1).

The produced graph summary, grouping nodes into supernodes (SN) and merging them in hyper-
nodes (HN), is guaranteed to be encoded as a property graph similarly to the original graph, thus
permitting the evaluation of approximate queries directly in the graph database. Figure 5.1 depicts
in the right-hand-side for a quick grasp of the latter in the case of a 5K LDBC social network graph.

5.2 preliminaries

Graph Model.
We take the property graph model defined in Section 1 and we denote G = (V, E). We henceforth
use a binary notation for edges and, given e ∈ E, e = l(v1, v2), we abbreviate l as γ(e), v1 as e.1 and
v2 as e.2. For a given edge label, l, we abbreviate its number of occurrences in G as #l. For a label set,
Λ = {l1

e , . . . , ln
e }, we denote its associated frequency list as ~Λ = [l1, . . . , ln], where l1 = li1

e , . . . , ln = lin
e

and {i1, . . . , in} is a permutation of {1, . . . , n}, such that #li1
e ≥ . . . ≥ #lin

e . For a graph G = (V, E), we
denote its set of edge labels as Λ(G) = {γ(e) | e ∈ E}. For a G-subgraph, G ′ = (V ′, E′), we denote
the set of edge labels incoming to/outgoing from G ′ as Λ+(G ′) = {γ(e) | e ∈ E∧ e.2 ∈ V ′ ∧ e.1 /∈ V ′}
and Λ−(G ′) = {γ(e) | e ∈ E ∧ e.1 ∈ V ′ ∧ e.2 /∈ V ′}.
Graph Query Language.
To query the above property graph model, we rely on a fragment of the regular path queries (RPQ)
([10], [12], [13]), which we enrich with aggregate operators, as depicted in Fig. 5.3. RPQs correspond
to property paths in SPARQL 1.1 [41] and are a well-studied query class tailored to express label-
constrained graph reachability patterns, consisting of one or more label-constrained reachability paths (see
more details in section 4.2).

Q1(l5) Ans(count(_))← l5(_, _)

Q2(l2) Ans(count(_))← l2?(_, _)

Q3(l0) Ans(count(_))← l+0 (_, _)

Q4(l0) Ans(count(_))← l∗0 (_, _)

Q5(l4, l1) Ans(count(_))← l4 + l1(_, _)

Q6(l4, l5) Ans(count(_))← l4 · l5(_, _)

Figure 5.4: Targeted Advertising
Marker Queries

Given an alphabet LE of edge labels le and vertices v1 and vk, the
labeled path π (see Definition 3). In their full generality, RPQs allow
selecting vertices connected via such labeled paths that belong
to a regular language over LE. To our ends, we restrict RPQs to
handle atomic paths – bi-directional, optional, single-labeled (le, le?,
and l−e) and transitive single-labeled (l∗e) – and composite paths –
conjunctive and disjunctive composition of atomic paths (le · le and
π +π). The expressivity of the fragment we have identified is thus
on par with that of Cypher [30]. While not as general as SPARQL,
it retains relevance since it, for example, already captures more
than 60% of the SPARQL queries with property paths users write in practice, as reported in [9].

contents 18

Moreover, this also captures queries with property paths, as found in both the Wikidata online
query collection [42] and the Wikidata large corpus studied in [28]. These are further enriched with
the count operator, in order to support basic graph reachability estimates.

Example 13 We report in Figure 5.4 the queries of Example 12 expressed by using the syntax of Figure 5.3.

5.3 grasp algorithm

Let us assume a graph G = (V, E) and an edge label set ΛQ ⊆ Λ(G). We introduce the GRASP
summarization algorithm, which compresses G into an AQP-amenable property graph, Ĝ, that is
tailored for counting label-constrained reachability queries (see Fig. 5.3), whose labels are all in ΛQ.

As described in Algorithm 1, the GRASP summarization consists of three phases. The grouping
phase computes Φ, a label-driven partitioning of G into groupings, following the label-connectivity
on the most frequently occurring edge labels in Λ(G). Next, the evaluation phase refines the previ-
ous step, by further isolating into supernodes the grouping components that satisfy a custom prop-
erty concerning label-connectivity. The merge phase then fuses supernodes into hypernodes, based
on label-reachability similarity conditions, as specified by each heuristic mode m.

Algorithm 1 GRASP(G, ΛQ, m)

Input: G – a graph; ΛQ ⊆ Λ(G) – a set of query labels; m – heuristic mode
Output: Ĝ – a graph summary

1: Φ← GROUPING(G)
2: G∗ ← EVALUATION(Φ, ΛQ)

3: Ĝ ← MERGE(G∗, ΛQ, m)

4: return Ĝ = (V̂, Ê)

The GRASP summarization phases are detailed in Sections 5.3.1, 5.3.2, and 5.3.3. In Section 5.3.4,
we give a characterization of the underlying algorithm.

5.3.1 Grouping Phase

The grouping phase aims to output a partitioning Φ of G, such that |Φ| is minimized and, for each
Gi ∈ Φ, the number of occurrences of the most frequent edge label in Λ(Gi), max

l∈Λ(Gi)
(#l), is maximized.

To this end, we first sort the set of edge labels in G, Λ(G), into a frequency list,
−−−→
Λ(G). Next, for

each li ∈
−−−→
Λ(G), in descending frequency order, we set to identify the largest subgraphs of G that

are weakly-connected on li. By relying on a most-frequently-occurring-label heuristic, we thus bias the
graph partitioning towards a coarser-level of granularity.

The key notion required to define Φ is that of maximal weak label-connectivity, introduced below.
Let us first introduce needed preliminary notions. In the following, we denote by G = (V, E), where
|E| = |E|, the transformation of G into an undirected graph. Also, we say that a graph G ′ is a
subgraph of G if and only if V ′ ⊆ V and E′ ⊆ E.

Definition 8 (Weak Connectivity) G is weakly connected iff G is connected, i.e., there exists a path
between any pair of vertices in V.

Definition 9 (Maximal Weak Connectivity) A subgraph of G, G ′ = (V ′, E′) is maximal weakly con-
nected iff: 1) G ′ is weakly connected and 2) no edge in E connects any of the nodes in V ′ to V \V ′.

As we are interested in compressing G by label-connectivity, we strengthen the definition of weak-
connectivity below.

contents 19

Definition 10 (Weak Label-Connectivity) Given a graph G = (V, E) and a label l ∈ Λ(G), we say
that G is weakly label-connected on l iff: 1) when converting all edges in E into undirected ones, the
resulting graph, G = (V, E), where |E| = |E|, is connected and 2) when removing any edge labeled
with l from E, there exist vertices v1, v2 in V that are not connected in G by a path labeled l+.

Since we aim to capture as many vertices in each weakly label-connected subgraph of G, we further
enforce on the latter the notion of maximality, as defined next.

Algorithm 2 GROUPING(G)
Input: G – a graph Output: Φ – a graph partitioning

. Initialization
1: n← |Λ(G)|,

−−−→
Λ(G)← [l1, . . . , ln], Φ← ∅, i← 1

. Label-driven partitioning computation

2: for all l ∈
−−−→
Λ(G) do

3: Gi ← {Gk
i = (Vk

i , Ek
i) ⊆ G | λ(Gk

i) = l}
4: Φ← Φ ∪ {Gi}
5: V ← V \ ⋃

Gk
i ∈Gi

{v ∈ V | v ∈ Vk
i }

6: i← i + 1
7: V(Φ)← ⋃

Gi ∈Φ

⋃
Gk

i ∈Gi

{v ∈ V | v ∈ Vk
i }

8: Φ← Φ ∪ {Gi = (Vi, Ei) ⊆ G | Vi = V \V(Φ)}
9: return Φ

Definition 11 (Maximal Weak Label-Connectivity) Given a graph G = (V, E) and a label l ∈ Λ(G),
we say that a subgraph of G, G ′ = (V ′, E′), is maximal weakly label-connected on l, denoted as λ(G ′) = l,
iff: 1) G ′ is weakly label-connected on l and 2) no edge in E, with label l, connects any of the nodes in
V ′ to V \V ′.

Based on the above, we can now outline the grouping phase, as described in Algorithm 2.
We henceforth denote Φ = GROUPING(G) and name each G ′, G ′ ∈ Φ, a G-grouping and each G ′′,
G ′′ ∈ G ′, a G ′-subgrouping. Note that Φ is not unique, as, for l1, l2 ∈ Λ(G), such that #l1 = #l2, we

arbitrarily order l1 and l2 in
−−−→
Λ(G).

Definition 12 (Non-Trivial (Sub)Groupings) A G-grouping, G ′, G ′ = (V ′, E′), is called trivial, if
G ′ = G or E′ = ∅, and non-trivial, otherwise. A G ′-subgrouping, G ′′ = (V ′′, E′′), is called trivial, if
E′′ = ∅, and non-trivial, otherwise.

Lemma 1 (Non-Trivial Grouping Properties) Let G ′ be a non-trivial G-grouping. Then, it holds that:
P1: For any non-trivial G ′-subgrouping, G ′′, there exists l′′, l′′ ∈ Λ(G ′), such that λ(G ′) = l′′

P2: For any non-trivial distinct G ′-subgroupings, G ′′1 , G ′′2 : a) λ(G ′′1) = λ(G ′′2) and b) G ′′1 and G ′′2 are edge-wise
disjoint.

Proof P1 is provable by contradiction. If @l′′, l′′ ∈ Λ(G ′), such that λ(G ′) = l′′, then E′ = ∅, con-
tradicting the non-triviality of G ′. P2.a) holds by construction and P2.b), by contradiction. Assume
G ′′1 ∩ G ′′2 6= ∅; then, G ′′1 and G ′′2 share at least a node, which is impossible by construction.

Next, let us characterize the GROUPING algorithm. We start with the following observations.

Lemma 2 (Subgrouping Maximal Label-Connectivity) For each Gi, Gi ∈ Φ, each of its maximally
weakly connected components, Gk

i , Gk
i ∈ Gi is also maximally label-connected on l, where #l = max

l∈Λ(Gi)
(#l).

Proof By construction, we know that, if Gk
i ∈ Gi, then there exists a label l′, l′ ∈ Λ(G), such that

λ(Gk
i) = l′. Assume that l′ 6= l. By definition, there exists at least one edge in Ek

i labeled l. Since

contents 20

Gk
i is maximally weakly label-connected on l′, then each such edge has to connect vertices that are

also connected by an edge labeled l′. As #l ≥ #l′, then there exists at least one pair of vertices in
Vk

i that are connected by more edges labeled l than by edges labeled l′. This implies that λ(Gk
i) = l,

contradicting our hypothesis.

Theorem 1 (GROUPING Properties) If |V| ≥ 1, the following properties hold:
P1: ∀Gi ∈ Φ, Vi 6= ∅
P2: ∀Gi,Gj ∈ Φ, where i 6= j, Gi ∩ Gj = ∅
P3:

⋃
i∈[1,k]

Vi = V and
⋃

i∈[1,k]
Ei ⊆ E

P4: Φ = {Gi = (Vi, Ei) ⊆ G | i ∈ [1, |Λ(G)|+ 1]}

Proof P1, P2, P3 trivially hold. Let us prove P4. If E = ∅, Φ = {G}. Otherwise, there exists a label

l ∈
−−−→
Λ(G) and we can construct a grouping Gi, where λ(Gi) = l. Assume Φ > |Λ(G)|+ 1. Then, there

exist at least two groupings Gi,Gj ∈ Φ, that have the same most frequently occurring label, l. Since

|Gi| ≥ 1 and |Gj| ≥ 1, each contains a maximally weakly connected component, Gki
i , respectively, Gk j

j .

From Lemma 2, λ(Gki
i) = λ(Gk j

j), contradicting Gi ∩ Gj 6= ∅.

G1 G3

G2

P1 P2 P3

P4

P5 P6P7

P8 P9

P10

R1 R2 R3 R4

M1 M2 M3

F1 F2

M4 M5 M6

R5 R6 R7

Grouping

Subgrouping

Figure 5.5: Summarizing GSN (Grouping Phase)

We illustrate the above algorithm, in Figure 5.5, as follows.

Example 14 (Graph Grouping) Let G be the graph from Figure 5.2. It holds that: #l0 = 11, #l1 =

3, #l2 = 2, #l3 = 6, #l4 = 7, #l5 = 7, #l6 = 1. Hence, we can take
−−−→
Λ(G) = [l0, l5, l4, l3, l1, l2, l6].

Note that, as #l4 = #l5, we can choose an arbitrary order between the labels in
−−−→
Λ(G). Following Al-

gorithm 2, we first add G1 to Φ, as it regroups the maximal weakly-label components on l0. We then
have V = {R1, . . . , R7, M1, . . . , M6, F1, F2}. Next, we add G2 to Φ, as it regroups the maximally weakly-
label component on l5. We obtain V = {F1, F2}. We add the remaining subgraph, G3, to Φ and output
Φ = {G1,G2,G3}, as illustrated in Figure 5.5.

5.3.2 Evaluation Phase

The evaluation phase takes as input a G-partitioning, Φ, as computed by Algorithm 2, along with a
set of labels, ΛQ, and outputs a AQP-amenable compression of G, into a graph G∗ = (V∗, E∗). The
phase proceeds in two steps, corresponding to the creation of V∗, the set of supernodes (SN), and,
respectively, to that of E∗, the set of superedges (SE). At the end of each step, G∗ is enriched with
AQP-relevant properties that will be exploited in Section 6.

We first explain how supernodes are computed. Each such structure (see Definition 13) contains a
maximal weakly label-connected subgrouping, as identified in Section 5.3.1.

contents 21

Definition 13 (Supernodes (SN)) Let Φ be a partitioning of G into groupings, Gi. Φ is transformed
into a set of supernodes, V∗ = VFUSE(Φ), as shown in Algorithm 3, Each supernode, v∗ ∈ V∗, is
obtained through the fusion of all vertices and edges of each subgrouping Gk

i , Gk
i ∈ Gi. We denote

the label l, such that λ(Gk
i) = l, as λ(v∗).

Algorithm 3 VFUSE(Φ)
Input: Φ – a graph partitioning; Output: V∗ – set of supernodes

1: V∗ ← ∅
2: for all Gi ∈ Φ do
3: for all Gk

i ∈ Gi do
4: v∗k ← Gk

i
5: V∗ ← V∗ ∪ {v∗k}
6: return V∗

no

Let l ∈ Λ(G), v∗i , v∗j ∈ V∗. We denote the set of l-labeled edges between v∗i and v∗j as Ei,j(l) = {e ∈
E|e.1 ∈ v∗i ∧ e.2 ∈ v∗j ∧ γ(e) = l} and call each edge in Ei,j(l) a cross-edge. We associate to each v∗,
obtained from a subgrouping Gk

i = (Vk
i , Ek

i), the property set σ(v∗), consisting of:

SN1 SN2 SN3

SN4

SN5 SN6 SN7

SN8

SN9

moderates (l2)

contains (l3)

authors (l4)

reshares (l6)

Figure 5.6: Summarizing GSN (Evalua-
tion Phase)

Compression Properties. We record the number of inner ver-
tices in v∗ as VWeight(v∗) : |Vk

i | and the number of inner
edges as EWeight(v∗) : |Ek

i |.
Label-Connectivity Properties. The percentage-wise occur-

rence of l in v∗ is LPercent(v∗, l) : |{e∈ Ek
i | γ(e) = l|

EWeight(v∗) and the
count of vertex pairs connected with an l-labeled edge is
LReach(v∗, l) : |{(v1, v2) ∈ Vk

i ×Vk
i | l+(v1, v2) ∈ Gk

i }|.
Pairwise Label-Traversal Properties. Let l1, l2 ∈ Λ(G) and
d1, d2 ∈ {1, 2}, direction indices. We compute the num-
ber of paths between two cross-edges, with labels l1, l2,
directions d1, d2, and a common node, with the property
EReach(v∗, l1, l2, d1, d2) = |{(e∗1 , e∗2)|{e∗1 , e∗2} ⊆ E∗ \ Ek

i ∧ γ(e∗1) = l1 ∧ γ(e∗2) = l2 ∧ e∗1 .d1 = v∗ = e∗2 .d2}|.
We compute the number of traversal edges, i.e., inner/cross-edge pairs, e1, e2, with respective la-
bels, l1, l2, directions, d1, d2, and v∗ as common endpoint, as δ(v∗, l1, l2, d1, d2) = |{(e1, e2)| e1 ∈
E∗ \ Ek

i ∧ γ(e1) = l1 ∧ e2 ∈ Ek
i ∧ γ(e2) = l2 ∧ e1.d1 = v∗ = e2.d2}|. We take the number of

frontier vertices, for a given label l and direction d, to be VF(v∗, l, d) = {v| v ∈ v∗ ∧ ∃e, e ∈
E \ Ek

i ∧ γ(e) = l ∧ e.d = v}|. We define the relative label participation as RLPart(v∗, l1, l2, d1, d2) :
(∑

v∈Vk
i

δ(v, l1, d1, d2, V \ Vk
i))/|VF(v∗, l2, d2)|, representing the number of l1-labeled cross-edges rela-

tive to that of frontier vertices on l2.

v1

× × ×

×

v2

v3v∗1 v∗2

l2l1
l1 l2

l1

Figure 5.7: Traversal Nodes/Edges and
Frontier Vertices

These properties, illustrated in Example 15, are used in
Sec. 6, for counting binary label conjunctions.

Example 15 (Supernode Properties) In Fig.5.7, we have that
EReach(v∗1 , l1, l2, 1, 1) = 1,
δ(v∗2 , l1, l2, 1, 2) = 1 and VF(v∗2 , l1, 1) = {v1, v3}.

We now proceed to explaining the creation of superedges.

contents 22

Algorithm 4 VProperties(Φ, Λ)
Input: V – a set of vertices, Λ – a set of labels;
Output: V – property-enriched set of vertices

1: for all v ∈ V do
2: v.vweight← VWeight(v),
3: v.eweight← EWeight(v)
4: for all (l1, l2) ∈ Λ, (d1, d2) ∈ {1, 2} do
5: v.plabel(l1)← LPercent(v, l1)
6: v.lreach(l1)← LReach(v, l1)
7: v.ereach(l1, d1, d2)← EReach(v, l1, d1, d2)

8: v.rlpart(l1, l2, d1, d2)← RLReach(v, l1, l2, d1, d2)

9: return V

Definition 14 (Superedges (SE)) A superedge, e∗ ∈ E∗, is ob-
tained by merging all cross-edges e, e ∈ Ei,j(l), l ∈ Λ(G), as described in the algorithm presented
below. To each such e∗ we then associate a weight, EWeight(e∗) : |{e ∈ E | e ∈ e∗}|.

The evaluation phase is summarized in the next two algorithms. We illustrate below these algo-
rithms by revisiting our running example.

Algorithm 5 EFUSE(V∗, Λ)
Input: Φ – a graph partitioning, ΛQ – a set of label pairs;
Output: G∗ – a graph with supernodes and superedges

1: E∗ ← ∅
2: for all l ∈ Λ do
3: El ← {e ∈ E|γ(e) = l}
4: for all v∗i , v∗j ∈ V∗ do
5: for all vi ∈ v∗i , vj ∈ v∗j do
6: e∗ ← {l(v∗i , v∗j)|l(vi, vj) ∈ El}
7: E∗ ← E∗ ∪ {e∗}
8: return E∗

Algorithm 6 EVALUATE(Φ, Λ)
Input: Φ – a graph partitioning, Λ – a set of labels;
Output: G∗ – a graph with supernodes and superedges

1: V∗ ← VFUSE(Φ)

2: V∗ ← VProperties(V∗, Λ)

3: Ê← EFUSE(V∗, Λ)

4: for all e∗ ∈ E∗ do
5: e∗.weight← EWeight(e∗)

6: return G∗ = (V∗, E∗)

Example 16 (Graph Compression) In Figure 5.6, we display the supergraph G∗, obtained from the graph
G = (V, E), after the evaluation phase. Each supernode corresponds to a Φ-subgrouping, as depicted in
Figure 5.5. Each superedge is obtained by compressing similarly labeled edges, whose source and, respectively,
target vertices are in the same supernode. Each superedge e∗ has EWeight(e∗) = 1, except that connecting
SN4 and SN1, whose edge weight is 2.

contents 23

5.3.3 Merge Phase

The merge phase takes as input a graph, G∗, as computed by Algorithm 7, along with a set of labels,
ΛQ, and outputs a compressed graph, Ĝ = (V̂, Ê). The phase proceeds in two steps, corresponding
to the creation of V̂, the set of hypernodes (HN), and, respectively, to that of Ê, the set of hyperedges
(HE). After each step, Ĝ is enriched with AQP-relevant properties that will be exploited in Section
6.

Hypernodes are computed by merging together supernodes based on various criteria, according to
the Definition 15. The primary, inner-merge, condition for merging candidate supernodes is for them
to be maximal weakly label-connected on the same label. The source-merge heuristic additionally
requires that they share the same set of outgoing labels, while the target-merge heuristic requires
that they share the same set of ingoing labels. We define hypernodes as follows.

Definition 15 (Hypernodes (HN)) Let V∗ be a set of supernodes, such that V∗ = {v∗1 , . . . , v∗n}. V∗

is transformed into a set of hypernodes, V̂ = VMERGE(V∗), where V̂ = {v̂1, . . . , v̂m}. A hypernode
v̂k ∈ V̂ corresponds to fusing a subset V∗k of V∗, such that, for all i, j ∈ [1, n], {v∗i , v∗j } ∈ V∗k , if
λ(v∗i) = λ(v∗j) and either of the following is satisfied: Case 1. Λ+(v∗i) = Λ+(v∗j), for all i, j ∈ [1, n].
Case 2. Λ−(v∗i) = Λ−(v∗j), for all i, j ∈ [1, n].
The first condition corresponds to the target-merge heuristic, while the latter corresponds to the
source-merge.

To each such hypernode, v̂, we associate a property set.

Definition 16 (Hypernode Properties) The property set of v̂, σ(v̂) is the same as in Definition 13.
Except for LPercent, the values of hypernode properties are obtained by adding all those corre-
sponding to supernodes v∗, such that v∗ ∈ v̂. For the label percentage property on a given label l, we

have: LPercent(v̂, l) :
∑

v∗∈v̂
LPercent(v∗,l) ∗ EWeight(v∗)

∑
v∗∈v̂

EWeight(v∗) .

Superedges are merged into hyperedges if they share the same label and endpoints, as defined below.

Definition 17 (Hyperedges (HE)) Let E∗ be a set of superedges, E∗ = {e∗1 , . . . , e∗n}. E∗ is transformed
into a set of hyperedges, Ê = EMERGE(E∗), where Ê = {ê1, . . . , êm}. A hyperedge, êk, êk ∈ ê, corre-
sponds to fusing a subset E∗k of E∗, such that, for a label l ∈ Λ(G) and i, j ∈ [1, n], {e∗i , e∗j } ⊆ E∗k ,

if e∗i
l
= e∗j , e∗i .1 = e∗j .1, and e∗i .2 = e∗j .2. To each hyperedge ê we associate a weight, EWeight(ê),

corresponding to |E∗k |, the number of superedges êk compressed.

The merge phase is captured in Algorithm 7.

Algorithm 7 MERGE(G∗, Λ, m)
Input: G∗ – a graph; ΛQ – a set of label pairs;

m – heuristic mode
Output: Ĝ – a graph summary

1: V̂ ← VMERGE(V∗, Λ, m)

2: V̂ ← VProperties(V̂, Λ)

3: Ê← EFUSE(E∗, Λ(G∗))
4: for all ê ∈ Ê do
5: ê.eweight← EWeight(ê)

6: return Ĝ = (V̂, Ê)

contents 24

Algorithm 8 VMERGE(V∗, Λ, m)
Input: V∗ – a set of supernodes; Λ – a set of labels;

m – heuristic mode
Output: V̂ – a set of hypernodes

1: for all v∗ ∈ V∗ do
2: Λ+(v∗)← {l ∈ Λ | ∃v∗s , v∗s ∈ V∗ ∧ l(v∗s , v∗) ∈ E∗}
3: Λ−(v∗)← {l ∈ Λ | ∃v∗t , v∗t ∈ V∗ ∧ l(v∗, v∗t) ∈ E∗}
4: for all v∗1 , v∗2 ∈ V∗ do
5: bλ ← λ(v∗1) = λ(v∗2) .Inner-Merge Condition
6: b+ ← Λ+(v∗1) = Λ+(v∗2), b− ← Λ−(v∗1) = Λ−(v∗2)
7: if m = true then
8: v̂← {v∗1 , v∗2 | bλ ∧ b+ = true} .Target-Merge
9: else

10: v̂← {v∗1 , v∗2 | bλ ∧ b− = true} .Source-Merge

11: V̂ ← {v̂k | k ∈ [1, |V∗|]}
12: return V̂

Finally, we depict the resulting GRASP-summarization of our running example, as follows .

Example 17 (Graph Compression) The graphs in Figure 5.8 are obtained from G∗ = (V∗, E∗), after the
merge phase. Each hypernode corresponds to the fusion of the supernodes in Figure 5.6, according to the
heuristics target-merge (left) and source-merge (right).

HN1 HN2

HN3HN4

(a) Target Merge heuristic.

HN1 HN2

HN3

moderates (l2)

contains (l3)

authors (l4)

reshares (l6)

(b) Source Merge heuristic.

Figure 5.8: Summarizing GSN (Merge Phase)

5.3.4 GRASP Characterization

Theorem 2 (GRASP Invariants) For a graph G = (V, E), GRASP(G) = Ĝ, where Ĝ = (V̂, Ê) such
that:

P1: |V̂| � |V|
P2: |Ê| � |E|
P3: ∑

v̂∈V̂
v̂.vweight = |V|

P4: ∑
v̂∈V̂

v̂.eweight + ∑
ê∈Ê

ê.weight = |E|

P5: Λ(Ĝ) ∪ (σ(γ(Ê)) ∩Λ(G)) = Λ(G)
P6: the same pair of HNs cannot be related by multiple HEs with the same label, i.e., ∀ê1, ê1 ∈ Ê,@ê2, ê2 ∈
Ê ∧ γ(ê1) = γ(ê2) ∧ ê1.1 = ê2.1∧ ê1.2 = ê2.2

Proof By induction on |Λ(G)|, based on Theorem 1.

We show the intractability of the graph summarization problem, under the conditions of our
algorithm in the Annexes A.1.

6
A P P R O X I M AT E Q U E RY P R O C E S S I N G

As it is explained in the previous section, the main goal of the GRASP Algorithm is to produce a
summary graph with meta-information that it will allow approximate the counting queries.

6.1 query translations

Given an input graph G and a counting reachability query Q, we aim to approximate the result
JQKG of evaluating Q over G. To this end, we translate Q into a query QT to be evaluated over the
summarization Ĝ of G, such that JQTKĜ ≈ JQKG . The translations for each input query type are
presented in Figure A.2 (in the annexes), where we use PGQL [35] as a concrete syntax. We discuss
each query class next.

Simple and Optional Label (QL, QO) There are two plausible configurations in which the label l
can occur in Ĝ: either inside a HN or on a cross-edge. In the first case, we cumulate the number of
l-labeled HN inner-edges; in the second, we cumulate the l-labeled cross-edge weights. To account
for the potential absence of l, in the optional-label query Q2, we additionally estimate the number
of nodes in G ′, by cumulating the number of nodes in each HN.

Kleene Plus and Kleene Star (QP, QS) To estimate l+, we cumulate the counts inside hypernodes
containing l-labeled inner-edges and, as in (6.1), the weights on l-labeled cross-edges. For the first
part, we use the statistics gathered during the evaluation phase (Sec. 5.3.2). We distinguish three
scenarios, depending on whether the l+ reachability is due to: 1) inner-edge connectivity – in which
case we use the corresponding property counting the inner l-paths; 2) incoming cross-edges – hence,
we cumulate the l-labeled in-degrees of HN vertices; or 3) outgoing cross-edges – in which case we
cumulate on the number of outgoing l-paths. To handle the ε-label in l∗, we use the same formula
as in (6.1) to additionally estimate the number of nodes in Ĝ.

Disjunction (QD) As in (6.1), we treat each configuration, considering both labels. In the first case,
we cumulate the number of l1 or l2-labeled HN inner-edges; in the second, we cumulate over the
cross-edge weights with either label.

Binary Conjunction (QC) We consider all possible configurations, depending on whether: 1) the
label concatenation ł1 · l2 appears on a path inside a HN, 2) one of the labels l1, l2 occurs on a HN
inner-edge and the other, as a cross-edge, or 3) both labels occur on cross-edges.

Example 18 (Approximating Brand Reach Estimates) Revisiting Example 12, we evaluate the AQP-
translation in Figure A.2(in the annexes)over the GRASP summary Ĝ = (V̂, Ê) in Fig. 5.8, as follows:
JQ1KĜ = QT

L(l5) = ∑
v̂∈V̂

EWeight(v̂, l5) ∗ LPercent(v̂, l5).

Hence, JQ1KĜ = EWeight(HN2, l5) ∗ LPercent(HN2, l5) = 7
JQ2KĜ = QT

O(l2) = QT
L(l2) + ∑

v̂∈V̂
AvgSNVWeight(v̂) ∗VWeight(v̂).

Hence, JQ2KĜ = QT
L(l2) = 27

JQ3KĜ = QT
P(l0) = ∑

v̂∈V̂
LReach(v̂, l0) + ∑

ê∈Ê
EWeight(ê, l0)

Hence, JQ3KĜ = ∑
v̂∈V̂

LReach(v̂, l0) = 15.

JQ4KĜ = QT
S (l0) = QT

P(l0) + ∑
v̂∈V̂

AvgSNVWeight(v̂) ∗VWeight(v̂).

Hence, JQ4KĜ = 40.
JQ5KĜ = QT

D(l4, l1) = QT
L(l4) + QT

L(l1) = 14.
JQ6KĜ = QT

C(l4, l5) = 7.

Next, we will empirically study the error bounds on various datasets with queries translated
according to Figure A.2.

7
E X P E R I M E N TA L A N A LY S I S

We present in this section our extensive empirical evaluation gauging (1) the succinctness of our
GRASP summaries and the efficiency of our graph summarization algorithm; and (2) the suitability
of GRASP summaries for approximate evaluation of counting label-constrained reachability queries.
Setup, Datasets and Implementation. We have implemented GRASP in Java using OpenJDK 1.8.
The engine has been implemented in Java with query calls (in PGQL) to Oracle Labs PGX 3.1 as
underlying graph database backend.

Figure 7.1: Compression Ratios for vertices and edges along with
SCT runtime for various sizes of graph datasets for
both source-merge (a) to (c) and target-merge (d) to
(e).

Since the available version of PGX
works on homogeneous graphs rather
than on heterogeneous ones, we
padded each node in the graph
summary with the same properties
as in the other nodes. For graph
analysis intermediate operations (e.g.
weakly connected components), we
have used Green-Marl [18], as re-
quired by our graph summary con-
struction algorithm. We used four
graph datasets for our analysis: (bib)
a Bibliographic network of varying
sizes (|V| from 0.9K to 170K, |E| from
1.3K to 240K), exhibiting 4 edge labels,
5 vertex labels; (uniprot) a Uniprot
dataset (|V| from 2.1K to 177K, |E|
from 3.8K to 773K), having 7 edge
labels and 5 vertex labels, encoding
Uniprot knowledge graphs [14]; (so-
cial) a Social network (|V| from 4.4K
to 177K, |E| from 10K to 450K) with
27 edge labels and 15 vertex labels,
encoding LDBC schema [15]; (shop) a
Shop dataset (|V| from 3.1K to 109K,
|E| from 4.3K to 168K) with 82 edge
labels and 24 vertex labels, encoding
WatDiv schema [2].

The variations in size of the above
datasets have been obtained using
gMark [7], a synthetic graph instance
and query workload generator. On

the same datasets, query workloads of varying size have been generated by reflecting the query
characteristics presented in Section 5.2. Precisely, single-label path queries, Kleene-star path queries,
path queries with transitive closure (+, ∗), path queries with unions and paths queries with con-
catenation have been considered in each type of workload. Recent studies [9, 28] have shown that
practical graph pattern queries formulated by users and in online query endpoints are often small:
56.5% of real-life SPARQL queries consists of a single edge (RDF triple) whereas 90.8% uses 6 edges
at most. Hence, we select small-sized template queries whose topology can be found in real-life
queries such as chains [9]. These templates are formulated on the four datasets for query workloads
containing a total of 616 queries by modifying the vertex labels.

contents 27

(a) Relative Error per Workload (b) Time Gain per Workload

Figure 7.2: Experiments on each Dataset, for Single Label, Disjunction, Kleene Star/Plus and Optional
Queries.

All experiments were executed on a cloud VM with Intel Xeon E312xx (4 cores) 1.80 GHz CPU
and 128GB RAM, running Ubuntu 16.04.4 64-bit. Each data point has been obtained by running the
same experiment six times and discarding the first value in the computation of the average.
Compression Ratios of GRASP summaries. First, we evaluate the effect of using the two heuris-
tics (source-merge and target-merge) in the construction of the GRASP summaries. We measure
the compression ratio CR obtained on the vertices and edges of the original graph (by using
(1− |V̂ |/|V|) ∗ 100 and (1− |Ê |/|E |) ∗ 100, respectively for the CR vertices and edges), along with
the summary construction time (SCT). We recall that our graph summaries are encoded using the
property graph data model and as such they possess node and edge properties.

In the following, we first discuss the results for one heuristic (source merge) and we defer to
the end of this paragraph the comparison between the two heuristics. In Figure 7.1 (a) and (b), we
can observe that the most homogeneous datasets (bib) and (uniprot) achieve very high CR (close to
100%) and steadily maintain it when varying the graph sizes. As far as heterogeneity significantly
grows for datasets (shop) and (social), the CR becomes eagerly sensitive to the size of the dataset,
starting with low values for smaller graph sizes and achieving a plateau between 85% and 90% for
larger sizes. As a consequence, our GRASP algorithm let us obtain compact summaries for large
sizes of highly heterogeneous datasets. Notice also that the datasets (shop) and (social), which are
the most heterogeneous ones, although being close to each other, exhibit a symmetric behavior in
terms of CR Vertices and Edges. Social networks get better compressed in terms of vertices, while
shop gets better compressed in terms of edges, and vice-versa in our GRASP summaries. When it
comes to SCT runtime in Figure 7.1 (c), all datasets keep a reasonable runtime (including the most
heterogeneous one (shop)) for larger sizes. We can notice that the SCT runtime is in fact not affected
by the heterogeneity degree and is rather sensitive to the number of edges for larger sizes, the latter
growing to 450K and 773K for uniprot and social datasets.

We now contrast the two heuristics source-merge (s-m) and target-merge (t-m), the latter being
reported in Figure 7.1 (d-e-f). We can observe that, while the SCT runtime is quite similar for the
two heuristics, target-merge exhibits better compression ratios for the social network dataset. The
rationale behind it is that the target-merge better compresses the graph edges compared to source-
merge. Overall, the dataset with the worst CR across the two heuristics is shop, which has the lowest
CR especially for smaller sizes. This is also due to the high number of labels in the initial shop graph
instances. Consequently, to the high number of properties necessary for the graph summary for this
dataset compared to the other tested datasets: on average across all considered sizes the shop graph
summary requires 62,33 properties against 17,67 for the social graph summary, 10,0 properties for
the bib graph summary and 14,0 properties for the uniprot graph summary. Nevertheless, even for
shop and especially for large sizes, the CR are fairly high. These experiments show that, despite its
high complexity, our graph summarization technique behaves well in practice, by providing high
CRs and low SCT runtimes.
AQP Accuracy on GRASP summaries. We measured the accuracy and efficiency of our engine by
using the usual measures of relative error and time gain, respectively. The relative error (per query
Qi) is given by the following formula: 1− min(Qi(G), QT

i (Ĝ))/ max(Qi(G), QT
i (Ĝ)) (in %), where

contents 28

Figure 7.3: Relative Error and Time Gain per query, in each Dataset, for Conjunctive Queries, Fig. (above) and
(below).

Qi(G) and QT
i (Ĝ) are the results of the counting query Qi on the original graph (executed with

PGX) and the result of the translated query QT
i on the GRASP summary (executed with our engine),

respectively. The time gain is given by: tG − tĜ/max(tG , tĜ) (in %), where the times tG and tĜ are the
query evaluation times of query Qi on the original graph and on the GRASP summary, respectively.

We have generated workloads for Disjunction, Kleene-plus, Kleene-star, Optional and Single Label
workloads, with the size of the workload being bounded by the number of labels in each dataset. For
concatenation workloads, we considered binary conjunctive queries with no disjunction, recursion,
and optionality. For the time being, our GRASP summaries do not support compositionality in order
to cover concatenations of greater length.

Figure 7.2 shows the relative error and the average time gain for Disjunction, Kleene-plus, Kleene-
star, Optional and Single Label workloads. In Figure 7.2a, we can observe that the avg relative error
is kept low in all cases and is bounded by 5.5% in the case of social dataset’s Kleene-plus and
Kleene-star workloads. In all the other cases including Kleene-plus and Kleene-star workloads for
shop dataset, the error is relatively small and near to 0%. This experiment confirms the effectiveness
of our GRASP summaries for approximate evaluation of graph queries. In Figure 7.2b, we studied
the efficiency of AQP on GRASP summaries by reporting the time gain (in %) compared with the
query evaluation on the original graphs for the four datasets. We can notice a positive time gain
(greater or equal to 75%) in the majority of the cases, but the disjunction.

Figure 7.3 (above) and (below) show the comparison among the most heterogeneous datasets
(shop and social) on workloads of binary conjunctive queries (on a total of 14 queries, 7 per each
dataset). We report the relative error and time gain per query instead of reporting it per workload
as before. We can observe in Figure 7.3 (above) a relatively small error for almost all queries (with
an average of 1.6%), and an upper bound of 8.44% for query Q5.

Finally, the shop dataset exhibits a relatively small error with an average of 0.14%. We can observe
in Figure 7.3 (below) a fairly high time gain for conjunctive queries, 81.64% faster than on the
original graph, for the social dataset, and 70.95% faster for the shop dataset. The difference between
social and shop is mainly due to the high heterogeneity of the latter and to the fact that we have to
deal with more properties.

8
R E L AT E D W O R K

Chaudhuri et al. in [11] have highlighted the importance of AQP in the world of Big data where
(i) passing the control to the user to decide the trade-off between accuracy and efficiency and (ii)
ensuring accuracy guarantees that are query-independent and applicable to query classes are iden-
tified as promising avenues to integrate AQP into Big data platforms. We leverage these two key
directions in our work by studying approximate graph query processing and show how blending
AQP enables advanced graph analytics.

Previous influential work on APQ has focused on relational languages (SQL and restricted OLAP
queries) possibly by embedding samplers directly in the query language and evaluating them in the
query plan [1, 11]. Relational rows are sampled uniformly-at-random with a given probability. Uni-
form sampling is widely supported by RDBMS performing AQP as well as by Big data systems [6,
17, 29, 32, 37] and online aggregation methods [19, 22]. Different classes of samplers ranging from
less accurate uniform samplers to distinct samplers and universe sampler working respectively on
small groups and on join operators in the query plans have been introduced.

Preliminary work on approximate graph analytics in a distributed setting has recently been pur-
sued in [21]. They rather focus on a graph sparsification technique and small samples in order
to approximate the results of specific graph algorithms, such as PageRank and triangle counting
on undirected graphs. In contrast, our approach operates in a centralized setting and relies on a
query-driven graph summarization for graph navigational queries with aggregates.

RDF graph summarization for cardinality estimation has been tackled in recent work [39]. How-
ever, their main goal is RDF query cardinality estimation and, to the best of our knowledge, their
graph summary is neither query-driven nor AQP-friendly and their work covers BGP queries.

Aggregation-based graph summarization [24] is at the heart of previous approaches, the most
notable of which is SNAP [40]. However, SNAP and its successor k-SNAP [44] summaries are not
suitable for AQP and are mainly devoted to discovery-driven graph summarization of heteroge-
neous networks by relying on a notion of interestingness. These approaches pioneering user inter-
action as a mean to control the resolutions of the graph summary. However, user intervention here
is basically used to drill-down or roll-up to navigate through summaries with different resolutions.
More recently, preliminary work by Rudolf et al. [36] has introduced a graph summary suitable for
property graphs based on a set of summarization rules provided as input. In the spirit of SNAP, heir
summary is conceived for the property graph cube and supports OLAP operations of the kind roll-
up, drill-down and slice dice for reducing/expanding the cube dimensions. They further tackle the
problems of unbalanced hierarchies and OLAP anomalies. They do not support label-constrained
reachability queries as we do in this work.

The AQP++ system [33] blends AQP with aggregate pre-computation such as data cubes in order
to deal with aggregate relational queries. They show their superiority with respect to AQP without
aggregate pre-computation.

9
C O N C L U S I O N A N D F U T U R E P E R S P E C T I V E

This work presents a graph summarization technique suitable for label-constrained counting reach-
ability queries on property graphs. We showed that the problem of deciding whether there exists
an optimal graph summary, i.e., such the number of label-constrained graph partitions is minimal,
is NP-complete. We leverage the obtained graph summary for approximate graph query processing.
The experiments show fairly high compression ratios of our GRASP summaries on various datasets,
along with the low relative error and time gain of approximate query processing on the summaries.
In future work, we are interested to further explore the interplay between visualization techniques
and AQP along with studying further graph analytics and aggregation operators on top of our
summaries.

Part III

A N N E X E S

A
A N N E X E S 1

a.1 np-completeness proof

In this section, we show the intractability of the graph summarization problem, under the conditions
of our algorithm.

Definition 18 (Summarization Function) Let G = (V, E) be a graph and Φ = {Gi = (Vi, Ei) | i ∈
[1, |V|]}, a G-partitioning into HNs. Each HN, Gi, contains HN-subgraphs, Gk

i , that are all maximal
weakly label-connected on a label l ∈ Λ(G), l ∈ Λ. A summarization function χΛ : V → N is a function
assigning to each vertex, v, a unique HN identifier χΛ(v) ∈ [1, k]. χΛ is valid if, for all vertices, v1, v2,
such that χΛ(v1) = χΛ(v2), v1, v2 belong to either:
Case 1 the same HN-subgraph, Gk

i , that is maximal weak label-connected on l, or to
Case 2 different HN-subgraphs, Gk1

i , Gk2
i , that are each maximal label-connected on l and that are

not connected by an l-labeled edge in G.

Theorem 3 (Optimal Summarization NP-completeness) Let MinSummary be the problem that, given
a graph G and an integer k′ ≥ 2, decides whether there exists a label-driven partitioning Φ of G with |Φ| ≤ k′,
such that χΛ is a valid summarization. Then, MinSummary is NP-complete. MinSummary remains NP-
complete, even when restricted to undirected graphs, |Λ(G)| ≤ 2 and k′ = 2. Proof We establish the result

in two steps.
MinSummary is in NP. As a witness, we construct a valid summarization function, χΛ. For a graph
partitioning into k subgraphs, one can verify in polynomial time (see [23]) that any two vertices are reachable
by a given labeled-constrained path and decide if they belong to the same HN or if their assignation to different
HNs is valid (Def. 18).
MinSummary is NP-hard. Let us henceforth reduce the MinSummary problem to IndSet – the problem of
establishing whether an undirected graph contains K independent vertices, for an arbitrary K –, known to be
NP-complete (see [16]). We prove IndSet ≤p MinSummary. Let G = (V, E) be an IndSet instance, where
G is undirected, |V| = n ≥ 2, |E| = m, Λ(G) = {l1}. We consider a polynomial reduction function, f ,
such that f (G) = G ′, where G ′ = (V ′, E′) (see Fig. A.1), {v′1, v′2, v′3} ⊂ V ′, Λ(G) = {l1, l2}, and G̃ ⊂ G,
where G̃ is obtained from G, by adding, between each pair of vertices connected with an l1-labeled edge, n more
l1-labeled edges. Also let G ′ contain three paths of length k, between v′1 and v′2 (one that is l1-labeled and two
that are l2-labeled) and two paths of length n between v′2 and v′3 (one of each color). Let K be the number of
independent vertices in G, K ≥ 0. Note that, in G ′, #l1 ≥ (n + 1)(n− K − 1) + 2k + n and #l2 = 2n + k.
l2 = max

l∈G ′
(#l)⇒ K ≥ n2−n−1+k

n+1 ≥ 1. We show: G satisfies IndSet⇔ G ′ satisfies MinSummary.

×
×
...

×
×

v′1 v′2 v′3︸︷︷︸
A

︸︷︷︸
B

G̃

G ′ :
k n

Figure A.1: G ′ Construction

⇒ Let G satisfy IndSet. We can thus choose a set of independent vertices S ⊂ V, |S| = k. ap Let G2 be
the G ′-subgraph induced by S ∪ A ∪ B. It is maximal weakly label-connected on l2 and contains 2k + n
edges labeled l2 and 2k + n edges labeled l1, i.e., λ(G2) = l2. Let G1 be the G ′-subgraph induced by V \ S. It
is maximal weakly label-connected on l1 and contains (n + 1)m edges, all labeled l1; hence, λ(G1) = l1.
Thus, Φ = {G1,G2} is a valid summarization of G ′, as l1 = max

l∈G1

(#l) and l2 = max
l∈G2

(#l). G ′ satisfies

MinSummary.

contents 33

⇐ Let G ′ satisfy MinSummary. We can thus compute a G-partitioning, Φ, that is a valid summarization,
where |Φ| ≤ 2. If Φ = 2, then there exist two distinct G ′-subgraphs, G1, G2, where Φ = {G1,G2}. As
#l1 = (n + 1)m + 2k + n ≥ 2n + k = #l2 in G ′, one of the subgraphs G1, G2, should be such that all of its
components are maximal weakly label-connected on l1. Let that subgraph be G1. Hence, G1 ∩ G̃ contains
all vertices connected by a l1-labeled edge. Let us denote by Ṽ1 the set of vertices in G1 ∩ G̃. The set of vertices
in G1 is thus Ṽ1 ∪ A ∪ B. As Φ has to be a valid summarization, the set of vertices in G2 is V2, where
V2 = V ′ \ (Ṽ1 ∪ A ∪ B). We can thus choose the set of independent vertices of size K in G to be S = V2. If
|Φ| = 1, Φ = {G ′} must be a valid summarization of G ′. As G ′ is maximal weakly connected on l2, it
must hold that l2 = max

l∈G ′
(#l). Hence, K ≥ 1 and we can choose the set of independent vertices in G to be

S = V ′ ∩V. Thus, G satisfies IndSet.

a.2 query translations

Figure A.2 depicts the translation, using PGQL syntax, for each query input described in Example
18 in chapter 6.

QL(l) SELECT COUNT(*) MATCH () -[:l]-> ()

QT
L (l)

SELECT SUM(x.LPERCENT_L * x.EWEIGHT) MATCH (x)
SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()

QO(l) SELECT COUNT(*) MATCH () -[:l?]-> ()

QT
O

SELECT SUM(x.LPERCENT_L * x.EWEIGHT) MATCH (x)
SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()
SELECT SUM(x.AVG_SN_VWEIGHT * x.VWEIGHT) MATCH (x)

QP(l) SELECT COUNT(*) MATCH () -/:l+/-> ()

QT
P(l)

SELECT SUM(x.LREACH_L) MATCH (x)
WHERE x.LREACH_L > 0
SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()

QS(l) SELECT COUNT(*) MATCH () -/:l*/-> ()

QT
S (l)

SELECT SUM(x.LREACH_L) MATCH (x)
WHERE x.LREACH_L > 0
SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()
SELECT SUM(x.AVG_SN_VWEIGHT * x.VWEIGHT) MATCH (x)

QD(l1, l2) SELECT COUNT(*) MATCH () -[:l1|l2]-> ()

QT
D(l1, l2)

SELECT SUM(x.LPERCENT_L1 * x.EWEIGHT +
x.LPERCENT_L2 * x.EWEIGHT) MATCH (x)

SELECT SUM(e.EWEIGHT) MATCH () -[e:l1|l2]-> ()

QC(l1, l2, 1, 1) SELECT COUNT(*) MATCH () -[:l1]-> () <-[:l2]- ()

QC(l1, l2, 1, 2) SELECT COUNT(*) MATCH () -[:l1]-> () -[:l2]-> ()

QC(l1, l2, 2, 1) SELECT COUNT(*) MATCH () <-[:l1]- () <-[:l2]- ()

QC(l1, l2, 2, 2) SELECT COUNT(*) MATCH () <-[:l1]- () -[:l2]-> ()

QT
C(l1, l2, d1, d2)

SELECT SUM((x.RLPART_L2_L1_D2_D1 * e.EWEIGHT)/
(x.LPERCENT_L1 * x.VWEIGHT))

MATCH (x) -[e:l2] -> ()
WHERE x.LPERCENT_L1 > 0
SELECT SUM((y.RLPART_L1_L2_D1_D2 * e.EWEIGHT)/

(y.LPERCENT_L2 * y.VWEIGHT))
MATCH () -[e:l1] -> (y)
WHERE y.LPERCENT_L2 >0
SELECT SUM(x.EWEIGHT *

min(x.LPERCENT_L1, x.LPERCENT_L2))
MATCH (x)
SELECT SUM(x.EREACH_L1_L2_D1_D2) MATCH (x)

Figure A.2: Query translations onto the graph summary.

B I B L I O G R A P H Y

[1] Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. “Congressional Samples for
Approximate Answering of Group-by Queries.” In: SIGMOD Conference. ACM, 2000, pp. 487–
498.

[2] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. “Diversified Stress Testing
of RDF Data Management Systems.” In: International Semantic Web Conference (1). Vol. 8796.
Lecture Notes in Computer Science. Springer, 2014, pp. 197–212.

[3] Renzo Angles. “The Property Graph Database Model.” In: AMW. Vol. 2100. CEUR Workshop
Proceedings. CEUR-WS.org, 2018.

[4] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. “Foundations of Modern Query Languages for Graph Databases.” In: ACM Comput.
Surv. 50.5 (2017), 68:1–68:40.

[5] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. “Foundations of Modern Query Languages for Graph Databases.” In: ACM Computing
Surveys 50.5 (2017). doi: 10.1145/3104031.

[6] Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark.” In: SIGMOD Con-
ference. ACM, 2015, pp. 1383–1394.

[7] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien Lemay,
and Nicky Advokaat. “gMark: Schema-Driven Generation of Graphs and Queries.” In: IEEE
Trans. Knowl. Data Eng. 29.4 (2017), pp. 856–869.

[8] Pablo Barceló Baeza. “Querying graph databases.” In: Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of database systems. ACM. 2013, pp. 175–188.

[9] Angela Bonifati, Wim Martens, and Thomas Timm. “An Analytical Study of Large SPARQL
Query Logs.” In: PVLDB 11.2 (2017), pp. 149–161.

[10] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. “Rewriting
of Regular Expressions and Regular Path Queries.” In: J. Comput. Syst. Sci. 64.3 (2002), pp. 443–
465.

[11] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. “Approximate Query Processing: No
Silver Bullet.” In: SIGMOD Conference. ACM, 2017, pp. 511–519.

[12] Mariano P. Consens and Alberto O. Mendelzon. “GraphLog: a Visual Formalism for Real Life
Recursion.” In: (1990), pp. 404–416.

[13] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query Language
Supporting Recursion.” In: Proceedings of the ACM Special Interest Group on Management of Data.
1987, pp. 323–330.

[14] Elixir. Uniprot KB. https://www.uniprot.org/. 2018.

[15] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau
Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. “The LDBC Social Network Benchmark:
Interactive Workload.” In: SIGMOD Conference. ACM, 2015, pp. 619–630.

[16] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[17] Google. Sampling in google bigquery. https://cloud.google.com/bigquery/docs/reference/
standard-sql/functions-and-operators#approx_top_sum.. 2017.

[18] Green-Marl. Green-Marl DSL. https://github.com/stanford-ppl/Green-Marl. 2018.

https://doi.org/10.1145/3104031
 https://www.uniprot.org/
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#approx_top_sum.
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#approx_top_sum.
https://github.com/stanford-ppl/Green-Marl

bibliography 35

[19] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. “Online Aggregation.” In: Proceedings
of the 1997 ACM SIGMOD International Conference on Management of Data. SIGMOD ’97. Tucson,
Arizona, USA, 1997, pp. 171–182. isbn: 0-89791-911-4.

[20] Alexandru Iosup et al. “LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on
Parallel and Distributed Platforms.” In: PVLDB 9.13 (2016), pp. 1317–1328.

[21] Anand Padmanabha Iyer, Aurojit Panda, Shivaram Venkataraman, Mosharaf Chowdhury,
Aditya Akella, Scott Shenker, and Ion Stoica. “Bridging the GAP: towards approximate graph
analytics.” In: GRADES/NDA@SIGMOD/PODS. ACM, 2018, 10:1–10:5.

[22] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. “Scalable Approxi-
mate Query Processing with the DBO Engine.” In: ACM Trans. Database Syst. 33.4 (Dec. 2008),
23:1–23:54. issn: 0362-5915.

[23] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. “Computing Label-
constraint Reachability in Graph Databases.” In: SIGMOD Conference. ACM, 2010, pp. 123–
134.

[24] Arijit Khan, Sourav S. Bhowmick, and Francesco Bonchi. “Summarizing Static and Dynamic
Big Graphs.” In: PVLDB 10.12 (2017), pp. 1981–1984.

[25] Markus Krötzsch. DATABASE THEORY. Lecture 13: Graph Databases and Path Queries. https:
//iccl.inf.tu-dresden.de/w/images/5/53/DBT2016-Lecture-13.pdf. 2016.

[26] Oracle Labs. PGX Docs. https://docs.oracle.com/cd/E56133_01/latest/reference/
overview/. 2017.

[27] Yike Liu, Abhilash Dighe, Tara Safavi, and Danai Koutra. “Graph Summarization Methods
and Applications: A Survey.” In: CoRR abs/1612.04883 (2016). arXiv: 1612.04883. url: http:
//arxiv.org/abs/1612.04883.

[28] Stanislav Malyshev, Markus Kröotzsch, Larry Gonzalez, Julius Gonsior, and Adrian Bielefeldt.
“Getting the Most out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge
Graph.” In: ISWC Conference (to appear). LNCS, 2018.

[29] Microsoft. Microsoft powerbi. https://powerbi.microsoft.com/en-us/. 2017.

[30] Neo4J. Cypher Query Language. https://www.opencypher.org/. 2018.

[31] Inc. Neo4j. What is Neo4j? https://neo4j.com/developer/graph-database/#_what_is_neo4j.
2018.

[32] Oracle. Oracle data mining blog: To sample or not to sample. https : / / blogs . oracle . com /

datamining/entry/to_sample_or_not_to_sample. 2017.

[33] Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. “AQP++: Connecting Approx-
imate Query Processing With Aggregate Precomputation for Interactive Analytics.” In: SIG-
MOD Conference. ACM, 2018, pp. 1477–1492.

[34] Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan Chafi, and Jay Banerjee.
“Pgx. iso: parallel and efficient in-memory engine for subgraph isomorphism.” In: Proceedings
of Workshop on GRAph Data management Experiences and Systems. ACM. 2014, pp. 1–6.

[35] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. “PGQL: a
property graph query language.” In: Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems, Redwood Shores, CA, USA, June 24 - 24, 2016. 2016,
p. 7.

[36] Michael Rudolf, Hannes Voigt, Christof Bornhövd, and Wolfgang Lehner. “SynopSys: Foun-
dations for Multidimensional Graph Analytics.” In: Enabling Real-Time Business Intelligence -
International Workshops, BIRTE 2013, Riva del Garda, Italy, August 26, 2013, and BIRTE 2014,
Hangzhou, China, September 1, 2014, Revised Selected Papers. 2014, pp. 159–166.

[37] SnappyData. SnappyData.IO. http://www.snappydata.io.. 2017.

[38] US Stefan Plantikow. “Summary Chart of Cypher, PGQL, and G-Core.” In: (2018).

https://iccl.inf.tu-dresden.de/w/images/5/53/DBT2016-Lecture-13.pdf
https://iccl.inf.tu-dresden.de/w/images/5/53/DBT2016-Lecture-13.pdf
https://docs.oracle.com/cd/E56133_01/latest/reference/overview/
https://docs.oracle.com/cd/E56133_01/latest/reference/overview/
https://arxiv.org/abs/1612.04883
http://arxiv.org/abs/1612.04883
http://arxiv.org/abs/1612.04883
https://powerbi.microsoft.com/en-us/
https://www.opencypher.org/
https://neo4j.com/developer/graph-database/#_what_is_neo4j
https://blogs.oracle.com/datamining/entry/to_sample_or_ not_to_sample
https://blogs.oracle.com/datamining/entry/to_sample_or_ not_to_sample
http://www.snappydata.io.

bibliography 36

[39] Giorgio Stefanoni, Boris Motik, and Egor V. Kostylev. “Estimating the Cardinality of Conjunc-
tive Queries over RDF Data Using Graph Summarisation.” In: Proceedings of the 2018 World
Wide Web Conference. WWW ’18. 2018, pp. 1043–1052.

[40] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. “Efficient aggregation for graph
summarization.” In: SIGMOD Conference. ACM, 2008, pp. 567–580.

[41] W3C. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/. 2013.

[42] Wikidata SPARQL Query Service. Wikidata Query Examples. https://www.wikidata.org/wiki/
Wikidata:SPARQL_query_service/queries/examples. 2017.

[43] Peter T. Wood. “Query languages for graph databases.” In: SIGMOD Record 41.1 (2012), pp. 50–
60. doi: 10.1145/2206869.2206879.

[44] Ning Zhang, Yuanyuan Tian, and Jignesh M. Patel. “Discovery-driven graph summarization.”
In: ICDE. IEEE Computer Society, 2010, pp. 880–891.

[45] AllegroGraph ®. AllegroGraph Support Documentation. https://franz.com/agraph/allegrograph/.

https://www.w3.org/TR/sparql11-query/
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://doi.org/10.1145/2206869.2206879
https://franz.com/agraph/allegrograph/

	Titelblatt
	Acknowledgments
	Abstract
	Résumé
	Presentation
	Contents

	 Theoretical Fundamentals
	1 Property graphs
	2 Graph Patterns
	2.1 Graph Pattern Matching
	2.2 Graph Navigation Queries & RPQ

	3 Summarization
	3.1 Core techniques employed
	3.1.1 Grouping-based methods
	3.1.2 Bit compression-based methods
	3.1.3 Influence-based methods

	3.2 Challenges

	4 Graph databases
	4.1 Neo4j
	4.2 AllegroGraph
	4.3 Oracle PGX
	4.4 Comparison between those three languages

	 Our approach
	5 Graph Summarization Algorithm
	5.1 Context
	5.2 Preliminaries
	5.3 GRASP Algorithm
	5.3.1 Grouping Phase
	5.3.2 Evaluation Phase
	5.3.3 Merge Phase
	5.3.4 GRASP Characterization

	6 Approximate Query Processing
	6.1 Query Translations

	7 Experimental Analysis
	8 Related Work
	9 Conclusion and future perspective

	 Annexes
	A Annexes 1
	A.1 NP-completeness Proof
	A.2 Query Translations

	 Bibliography

