
GOX: Towards a Scalable Graph Database-Driven
SDN Controller

Fetia Bannour
ENSIIE & SAMOVAR, Evry, France

fetia.bannour@ensiie.fr

Stefania Dumbrava
ENSIIE & SAMOVAR, Evry, France

stefania.dumbrava@ensiie.fr

Alex Danduran--Lembezat
ENSIIE, Evry, France

alex.danduran–lembezat@ensiie.fr

Abstract—The Software-Defined Networking (SDN) paradigm
relies on decoupling the control and data planes, and logically
centralizing SDN control to enable direct network programming
via open interfaces. New abstractions are thus needed in a bid
to rethink the traditional networking approach and create new
opportunities for management and automation. We demonstrate
the GOX controller, proposing a novel graph abstraction of the
network topology in real time using the scalable Neo4j graph
database. Our proof-of-concept was evaluated for a forwarding
application designed for GOX. Compared to POX’s model, GOX
shows better performance and scalability on synthetic topologies
and real-world topologies from the Internet Topology Zoo.

I. INTRODUCTION

Traditional networks are grappling with the explosion of
demand, mobile trends, and Cloud Computing. They are
ill-suited to meet the requirements of today’s users, en-
terprises, and carriers, given their static nature, vertically-
integrated design, and distributed control logic. The Internet
has thus evolved into an ossified bundle of closed devices and
hardware-centric protocols, and has become extremely hard
to manage [1]. SDN [2] breaks the vertical integration of
legacy networks, separating the network’s control logic from
the underlying hardware. Thus, it promises to improve network
management, automation and innovation. In SDN, network
intelligence is logically centralized in software controllers that
ensure a globally consistent network view to be leveraged by
applications [3]. The controllers maintain the network state
and handle communications between applications and devices
through open Application Programming Interfaces (APIs).

That said, SDN introduces programmatic interfaces and pro-
vides them with abstractions to improve resource utilization,
and ease application development and network management.
There has been a growing interest in designing proper network
topology abstractions that abstract the complexity of the un-
derlying hardware. So far, extensive efforts have been devoted
to developing a suitable abstraction for the Southbound API
(allowing interactions between the control and data planes), as
OpenFlow has become its widely-accepted standard [4].

But, little attention has been paid to studying abstractions
for the Northbound API, which allows the communication
between the control and application planes, and the East-
Westbound API, which ensures the communication between
the controllers in a physically-distributed SDN control plane
[1]. Particularly, standardizing these interfaces partly relies on
providing a proper abstraction of the network topology (the
global network view). The representation of this abstraction is
key to rethinking the network architecture and management.

Recent works have shown that graph database models offer
performance and scalability benefits for today’s modern appli-
cations [5]. Inspired by these works, we leverage graph data
models to build a dynamic graph-based network representation
and implement it using modern graph database techniques.

Specifically, we propose a proof-of-concept methodology
for building a graph model abstraction of the network which
stores the network state in real time. Our graph-oriented
controller, which we refer to as GOX, augments the popular
and developer-friendly POX controller [6] with a graph-based
module implemented with the scalable Neo4j graph database
[7]. We implement a custom forwarding application and use it
to showcase GOX’s superior performance compared to POX.

The goal of this demo is to illustrate the GOX system which
allows users to engage in the following scenarios:

• visualization and exploration of a network topology in
the Neo4j graph database system;

• execution of a network application leveraging the expres-
siveness of the Cypher graph query language;

• inspection of the performance benefits of using our data-
centric SDN controller model over the POX baseline.

II. RELATED WORK

Previous works on SDN management explored the concept
of leveraging graph databases [8], [9]. Souza et al. [5] intro-
duce the NML semantic network model implemented in Neo4j.
They encode the NetGraph SDN primitives as queries in SQL
and Cypher (Neo4j’s query language), showing the superior
efficiency of path queries [10] on synthetic topologies. Unlike
our network model, NML does not use the full expressiveness
of Neo4j’s property graph model, as edges are unattributed.
Also, the method is not implemented in a controller and is
only tested on synthetic topologies. Ravel [11] and Gavel [12],
[13] are proof-of-concept controllers that implement an SDN
architecture within a database. For Ravel, network abstractions
correspond to SQL views, while Gavel treats them as graph
instances. While Gavel is shown to perform better than Ravel,
it is not compared with other SDN controller platforms.

III. GOX SYSTEM ARCHITECTURE

A. Workflow Diagram
The interactions between the controller, the graph database,

and the SDN applications are captured in Fig. 1.
1) Processing network updates: SDN network updates

(host joining or switch disconnecting) trigger GOX events.
These can either be processed using topology information from
the graph database, or can modify the latter. For example,



Network

Event Handler GOX 
Application 

Network 
Events 

Graph 
Database 

Provides
Information

Provides
Information

Updates the 
Database

Updates the 
Database

Network 
updates 

Updates the 
network 

Graph Database-Defined Controller (GOX)

Fig. 1: Workflow diagram of the GOX controller

when a host joins the network, the event handler checks
whether it is registered and, if not, it adds it to the database.

2) GOX applications: Network events can be sent to GOX
applications. These need to know the network’s current state,
as recorded in the database providing them with information.
Based on the introduced logic, applications might need to
update the database, to account for how they will update the
network. For example, a forwarding application might require
information about a particular path between two hosts from
the database. If it wants to create/modify that path, it should
modify/update the database accordingly and send packets to
the switches on that path to install the new forwarding rules.

B. Network Modeling
We abstract network topologies (interconnected hosts and

switches) using the property graph model, i.e., a directed
multi-graph, with property lists attached to nodes and edges.
We represent hosts and switches as nodes and their links as

Fig. 2: Example of a simple network under our network model

edges. To identify nodes, we use the DataPath ID (DPID) for
switches and the MAC address for hosts. Links contain port
information and, since Neo4j relationships are oriented, we
distinguish the origin and destination ports, as in Fig. 2.

IV. GOX SYSTEM DESIGN

A. GOX : A Novel Graph-Oriented POX

GOX leverages the key advantages of graph databases for
modeling network abstractions and designing applications.
Indeed, representing applications as graph queries greatly
simplifies programmability, reduces orchestration complexity
(as all applications access the same network state), and ensures
efficient execution, due to their custom evaluation algorithms.

1) GOX’s Database Component: The gox_db component
adds/deletes hosts, switches, links and extracts property values.

2) GOX’s Network Component: The gox_network com-
ponent is crucial to adapting GOX’s topology model to
the network dynamicity. As such, it responds to events
raised by components like openflow.discovery and
host_tracker, and updates the database accordingly.
When openflow.discovery raises a LinkEvent, it
means a connection update (created/removed) between a pair
of switches is detected. gox_network catches that event and
recovers the stored information: the DPID of both switches
and the ports on which the link is added/removed. The
ConnectionUp and ConnectionDown events are raised
when a switch is connected/disconnected. From these, we
can extract the switch’s DPID and update the database, us-
ing the gox_db component. The host_tracker raises a
HostEvent when the status of a host changes (joined, left,
moved). Then, GOX can retrieve the host’s MAC address, the
DPID of the switch it is connected to, and the port.

B. Use case : A GOX Forwarding Application

To study GOX’s performance, we developed an application
leveraging Neo4j’s graphs. It forwards packets between hosts,
along the shortest-path (Dijkstra’s algorithm). Initially, no
forwarding rules are installed. When switches send packets
to the controller, the PacketIn event is triggered and GOX
retrieves the switch’s DPID, the source MAC address, the
target host, and the transfer type. If the sending and receiving
hosts are unknown, it broadcasts the packet until it learns
the location of the destination host. Since GOX uses POX’s
host_tracker, if a host is inactive for a while, it times out
and gets deleted. When hosts are known, we execute a Cypher
query (see Listing 1) to create the path storing the switch
DPIDs and ports, linking the sending and receiving hosts.
Our application sends OpenFlow messages to path switches,
using their DPIDs. Since POX’s flow system uses OpenFlow’s
packet-matching pattern, we can define the action to be taken
when a packet is matched. We communicate the identified
destination port for each path switch, installing the path. This
can be used by further packets, without calling the controller.
MATCH (h1:Host {mac: "da:25:b5:f7:9a:3e"})
MATCH (h2:Host {mac: "95:d5:e5:d0:b7:4f"})
MATCH
p = shortestPath((h1)-[:Connected_to*]->(h2))
WITH h1, h2, p,
[n in nodes(p)[1..-1]| n.dpid] AS switches,
[r in relationships(p)[1..] | r.orig_port] AS

out_ports,
[r in relationships(p)[..-1]| r.dst_port] AS

in_ports
MERGE (h1)-[p1:Path_to]->(h2)
ON CREATE SET p1.switches=switches,

p1.out_ports=out_ports,
p1.in_ports=in_ports

Listing 1: Cypher query example for our application

V. DEMONSTRATION OVERVIEW

We demonstrate the superior performance of GOX com-
pared to POX through several experiments. These experiments
are performed on a VM running an Ubuntu 20.04.2 LTS



tree,3,4 (n=21) tree,3,5 (n=31) tree,3,6 (n=42)
0

50

100

150

200

Ti
m

e 
fo

r a
 p

in
g 

(m
s)

GOX
POX

(a) Tree topologies, depth 3

Geant (40 switches) Renater (43 switches) Viatel (88 switches)
0

50

100

150

200

250

300

350

Ti
m

e 
fo

r a
 p

in
g 

(m
s)

GOX
POX

(b) Real-world topology types
Fig. 3: Forwarding performance for various topology types (with an increasing number of nodes (n))

0 50 100 150 200 250

Ping delay (ms)
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

D
en

si
ty

GOX
POX

(a) Geant network

0 50 100 150 200 250

Ping delay (ms)
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

GOX
POX

(b) Renater network

0 50 100 150 200 250 300 350

Ping delay (ms)
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

D
en

si
ty

GOX
POX

(c) Viatel network
Fig. 4: Forwarding delay distributions for different real-world topologies

server, with 8 GB of RAM and 8 CPU cores. We used POX’s
"gar-experimental" version, Mininet 2.3.0, and Neo4j Server
4.1.10. Our evaluation measures the Round-Trip Time for host
message exchanges, by allowing a random host to ping all
others. Such ICMP requests rely on our application, which
creates paths between hosts in the controller’s graph database
and installs them in the switches’ flow tables.

On small network topologies, from (tree_2_2) to (tree_2_6),
GOX’s performance is comparable to POX’s. However, on
larger, depth-3 tree topologies, ranging from (tree_3_2) to
(tree_3_6), GOX outperforms POX (see Fig. 3a). We also
notice that GOX’s performance is relatively more steady as
the network size increases, highlighting the better scalability of
our model. These experiments also reveal that the controllers’
performance depends on the network topology type and size.

On real-world topologies (Geant, Renater, and Viatel), with
up to ≈ 90 switches, GOX’s mean ping time is lower than
POX’s (see Fig. 3b). The percentage-wise time gain with GOX
is up to ≈ 50% for the Viatel topology (88 switches). Also, as
seen in Fig. 4, the mean and standard deviation parameters for
a ping delay distribution are lower for GOX. This highlights
the stability of our approach on larger, real-world networks,
confirming the observations on tree topologies.

For both synthetic and real-world topologies, GOX has a su-
perior performance on larger networks and a more predictable
forwarding time. Its scale-out capabilities come from the use of
a graph database, as these are optimized for large topologies.

VI. CONCLUSION

We demonstrate the GOX graph-oriented SDN controller
and the inherent advantages of implementing it with the Neo4j
graph database. Its evaluation, on a custom forwarding appli-
cation, is shown to yield better performance results compared

to POX. Our experiments confirm that graph databases offer a
natural real time representation of the network topology for the
SDN control plane. Together with the reduced complexity and
latency of graph queries for network applications, this shows
the promise of leveraging such technologies to improve SDN
management and automation. In future work, we aim to lever-
age the property graph model for controller interoperability.
GOX is accessible at https://github.com/ExcessDrive/GOX.

REFERENCES

[1] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Commun. Surv. Tutorials,
vol. 20, no. 1, pp. 333–354, 2018.

[2] M. He, M. Huang, and W. Kellerer, “Optimizing the flexibility of SDN
control plane,” in NOMS. IEEE, 2020, pp. 1–9.

[3] V. Huang, G. Chen, P. Zhang, and et al., “A scalable approach to SDN
control plane management: High utilization comes with low latency,”
IEEE Trans. Netw. Serv. Manag., vol. 17, no. 2, pp. 682–695, 2020.

[4] D. E. Sarmiento, A. Lebre, L. Nussbaum, and A. Chari, “Decentralized
SDN control plane for a distributed cloud-edge infrastructure: A survey,”
IEEE Commun. Surv. Tutorials, vol. 23, no. 1, pp. 256–281, 2021.

[5] T. D. Souza, C. E. Rothenberg, M. A. S. Santos, and L. B. de Paula,
“Towards semantic network models via graph databases for SDN appli-
cations,” in EWSDN. IEEE Computer Society, 2015, pp. 49–54.

[6] Pox controller. [Online]. Available: https://github.com/noxrepo/pox/
[7] Neo4j. [Online]. Available: https://neo4j.com/
[8] P. S. Rivera, M. Hayashida, J. Griffioen, and Z. Fei, “Dynamically

creating custom SDN high-speed network paths for big data science
flows,” in PEARC. ACM, 2017, pp. 59:1–59:4.

[9] B. Halder, M. S. Barik, and C. Mazumdar, “A graph based formalism for
detecting flow conflicts in software defined network,” in ANTS. IEEE,
2017, pp. 1–6.

[10] A. Bonifati and S. Dumbrava, “Graph queries: From theory to practice,”
SIGMOD Rec., vol. 47, no. 4, pp. 5–16, 2018.

[11] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, “Ravel: A
database-defined network,” SOSR, 2016.

[12] O. L. Barakat, D. Koll, and X. Fu, “Gavel: Software-defined network
control with graph databases,” in ICIN. IEEE, 2017, pp. 279–286.

[13] O. L. Barakat, D. Koll, and X. Fu, “Gavel: A fast and easy-to-use plain
data representation for software-defined networks,” in IEEE Trans. Netw.
Serv. Manag., vol. 16, no. 2, 2019, pp. 606–617.


