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Abstract—In a Software-Defined Networking (SDN) architec-
ture, Northbound, Southbound, and East-Westbound APIs are
used to describe how interfaces operate between the three SDN
planes, namely the data, control, and application planes. Apart
from the standardization of the Southbound interface, for which
OpenFlow has emerged as the widely-accepted standard, there is
to date no open and vendor-neutral standard for the Northbound
and East-West interfaces to provide the required interoperability
between different SDN controller platform designs. This paper
addresses the lack of a well-defined standard for the Northbound
API that is used for the interaction between the applications and
the SDN controllers, by proposing a GraphQL-based Northbound
API design for the SDN controllers in the context of large-scale
deployments. Our proof-of-concept methodology was validated
and evaluated for an intent-based routing application that we
designed on top of the ONOS controllers. When compared to
ONOS’s native REST API, our Northbound API model proved
efficient in optimizing different performance metrics (i.e the num-
ber of requests, the request execution time, and the throughput)
on both synthetic and real-world network topologies (like Renater
and China Telecom) that are emulated using Mininet.

I. INTRODUCTION

SDN [1], [2] is an emergent network architecture paradigm
that allows openness, programmatic management, flexible
control, and resource optimization. Compared to traditional
networking, SDN has the potential to enable rapid innovation,
automation, and to adapt to the dynamics of today’s applica-
tions. In the SDN architecture, the control logic is decoupled
from the underlying hardware devices. Also, network intelli-
gence is logically centralized in software controllers [3]. These
aim to ensure a global and consistent view of the network,
by handling communications between network applications
and data plane devices using open interfaces, referred to as
Application Programming Interfaces (APIs).

To simplify network management in SDN and facilitate
the tasks of network application developers, there has been
an increasing interest in designing suitable abstractions for
the network topology and the underlying physical network
infrastructure. These have been extensively studied when
developing interfaces for the Southbound API (between the
control and data planes), in the context of standardizing
the OpenFlow communication protocol [4]. However, little
attention has been devoted to studying suitable abstractions for
both the Northbound API (between the control and application
planes) and the East-Westbound API (between the distributed

SDN controllers in the control plane). In particular, addressing
the lack of a standardized Northbound (NB) interface, relies
not only on finding a suitable abstraction of the network
topology (the global network view), but also on defining a
proper API (transport language) to ensure an efficient NB
communication between the control and application planes.
As there is no standardized NB interface, some of the current
SDN controllers propose their own ad-hoc Northbound APIs,
while many other controllers use the Web-based REST API.
Given the importance of the NB interface for SDN application
developers, we aim to leverage the potential of GraphQL-
based [5] approaches to ensure a more efficient and scalable
communication between the SDN controllers and applications.

In this work, we propose a proof-of-concept methodology
for building a GraphQL-based API as an SDN Northbound
API. The advantages of using the GraphQL API over REST
in SDN include the increased performance and flexibility of
requests and the rapid application development. Some of these
advantages are also discussed in [6]. Our approach is imple-
mented on the open-source ONOS controller [7]. It is evalu-
ated for an off-platform intent-based routing application that
we designed on top of ONOS and which leverages ONOS’s
intent framework. Generally, Intent Based Networking (IBN)
is an emergent concept that offers users the ability to express
what they want to achieve in a high-level manner rather than
how to achieve it, thereby easing network management.

Outline: The rest of the paper is organized as follows. In
Section II, we review the NB API designs used by state-of-the-
art SDN controller platforms, and works comparing RESTful
and GraphQL APIs. In Section III, we present the proposed
methodology for building our GraphQL-based NB API model
for SDN controllers. We also describe the implementation of
our GraphQL API and an off-platform intent-based routing
application on ONOS. Section IV provides an experimental
analysis comparing the performance of our GraphQL API with
that of ONOS’ native REST API for our designed application
on different test scenarios. Finally, Section V summarizes our
approach and outlines possible directions for future work.

II. BACKGROUND

A. Northbound APIs in SDN

The Northbound API, which is considered as one of
the key components of an SDN architecture, represents the
communication channel between the control plane and the978-1-6654-0601-7/22/$31.00 © 2022 IEEE



application plane. More specifically, it provides a common
abstraction of network functions to the upper layers, namely
the SDN applications and management systems. The latter use
this interface to consume the network services, configure the
network dynamically, and dictate the behavior of the network,
regardless of the underlying network infrastructure hardware.

Contrary to the Southbound API, the standardization of
the Northbound API is an ongoing topic of discussion, given
the different SDN application requirements. Hence, many
Northbound API designs have been adopted by SDN controller
platforms. They can be classified into two categories [1].

The first category involves simple and primitive APIs that
are directly linked to the controller’s internal services. These
implementations include low-level specialized ad-hoc APIs
that are proprietary and controller-specific, as well as Web-
based APIs like the widely-used REST API. The latter has
been adopted by current SDN controllers like Floodlight
and ONOS. The second category includes higher level APIs
that rely on domain-specific programming languages, such as
Procera and Pyretic [8], to provide a wide range of powerful
abstractions that make it easier for application writers to
develop software modules and SDN-enabled programs.

B. REST and GraphQL APIs

APIs provide protocols that can serve as a contract, describ-
ing the data that web services accept and return to clients.

1) REST API: RESTful APIs conform to the REST ar-
chitectural style guidelines (uniform interface, client-server
decoupling, statelessness, cacheability, layered system archi-
tecture) and allow to interact with RESTful web services.
The most common REST operations are GET, POST, PUT
and DELETE, used to read data from resource URIs, create,
update, and, respectively, destroy resources.

2) GraphQL: GraphQL is novel language for implementing
Web-based, client-driven APIs, which allows to specify a
common abstraction layer (schema) between the client and the
server. The GraphQL Schema comprises object types, which
contain a collection of fields, each with their own type and
with values from back-end data stores (obtained using resolver
functions). As the language supports arbitrary nesting, it is
especially tailored to compactly describe hierarchical data that
needs to be fetched by queries or modified through mutations.
The language’s flexibility allows the client side to exactly
specify the needed information, without impacting the server-
side. This avoids under- and over-fetching problems, common
to REST APIs, and leads to more agile front-end development.

3) REST and GraphQL Comparison: Recent research
works focused on comparing REST and GraphQL. In [9],
Seabra et al. conducted a study in which they compared these
techniques in terms of performance, but their work has been
carried out in a different context. Thus, their results cannot be
directly applied to our SDN approach. Another work found
in [6] studies the differences in implementation between these
two architectural techniques. Specifically, the authors perform
an experiment that investigates the time taken to implement
requests on a Web server. Based on this study, the authors

conclude that implementing GraphQL queries is less time
consuming than implementing REST queries, especially when
performing complex queries with multiple parameters.

Essentially, the GraphQL syntax makes it easy to understand
the code and requires less effort to specify the parameters.
Hence, the GraphQL queries proposed by the study partici-
pants are all correct, unlike the proposed REST queries.

On the other hand, a single GraphQL query can possibly call
several other resolvers allowing to increase the complexity of
the queries, without multiplying the REST queries (as they
are limited to a single function) or increasing the difficulty
of implementing the queries. In the REST case, the risks of
errors are particularly high at the syntax level, and the queries
can quickly become long and difficult to read.

III. THE PROPOSED GRAPHQL-BASED NORTHBOUND API
FOR SDN CONTROLLERS

We design a generic method that is agnostic to the controller
choice. To this end, we mount a GraphQL API server interme-
diary between the SDN controller and the external application.

A. Workflow Overview

The SDN architecture is fully implemented in the virtual
machine accessible on the local network through its IP address.
In fact, access to SDN network information, from the external
off-platform application, is done through the Northbound
interface via REST or GraphQL, as can be seen in Fig. 1.
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Fig. 1: Pipeline overview

The external application is independent from the ONOS
controller and only has access to the information transmitted
via its API endpoint. In particular, we focus on the application
in charge of intent installation. Given a pair of hosts, this ap-
plication will install the rules necessary to route the packages
passing between them. We propose a dynamic method which
propagates updates to and from the network.

B. Design of a GraphQL Northbound API

We build a GraphQL server serving as an intermediary
between external applications and the ONOS controller. Thus,
when the GraphQL server receives requests from a given
application, it will execute them through the ONOS CLI.
However, this gives additional latency to each GraphQL query,
since it must pass through the GraphQL server before reaching
the ONOS controller. This latency must be taken into account
when comparing our GraphQL API with the REST-based one.
Hence, we build, on the same GraphQL server, an alternative
REST API, which uses the ONOS CLI commands, exactly
like GraphQL. The latency due to the intermediate server is,
thus, identical between the two APIs.



Note that the GraphQL and REST servers are, like the
external application, independent of the ONOS controller. The
implementation of the GraphQL server relies on encoding the
JSON responses obtained from the ONOS CLI as GraphQL
types. Based on this, we build the general GraphQL schema,
by defining the types of queries, mutations, and resolvers.

routing 
application

ONOS 
controller

REST + 
GraphQL 

server

CLI commands
REST queries

GraphQL queries

Fig. 2: Interaction between our application and the controller

C. Use Case: Intent-based SDN routing application
To test our approach’s feasibility, we developed a proactive

intent-based routing application (see Fig. 3). Note that our
approach is generic and not only specific to intent-based
applications. Given intents expressed by users in ONOS’s
Intent Framework, this installs, in the corresponding switches,
the OpenFlow rules needed to enable host communication.
Unlike in reactive routing, these OpenFlow rules do not expire.

a) Path computation: Once the user provides a pair of
hosts to communicate, the application computes the shortest-
path needed to connect them. This is computed using Di-
jsktra’s algorithm, as implemented in the Networkx Python
library. The path is specified as a list containing the IDs and
ports of hosts, as well as that of the switches through which
the packets have to transit. It thus suffices to process this list
and install, in each switch, the needed routing rules.

b) Intent installation: Next, we install the same intents
to connect the input host pairs, using the REST and GraphQL
APIs. The REST approach uses 2×n GET and POST requests,
where n is the size of the considered path. GraphQL uses a
single query, with the list of intents as its argument.
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Fig. 3: Application overview

IV. PERFORMANCE EVALUATION

A. Experimental setup
a) Test environment: Our experiments are performed on

a VirtualBox virtual machine running an Ubuntu 18.04 LTS
server with two 3.8GHz 64-bits Intel Pentium CPUs, 5 GB of
memory and a 250 GB solid-state drive. We used ONOS 2.6
[7] and Mininet 2.3.0 to start an emulated ONOS network on a
single development machine; including a logically-centralized
ONOS cluster, a modeled control network, and a data network.

b) Network topologies: We used Mininet to generate
synthetic network topologies (torus and tree) and real-world
network topologies from ”The Internet Topology Zoo” [10]
(Renater and China Telecom) (cf. Table 4). For real-world
topologies, we used a Python converter [11] that parses the
network topologies in the GraphML format from The Internet
Topology Zoo, and then creates the Mininet topologies.

````````````Topologies
Components

Switches Hosts Links

Torus 3 x 3 9 9 36
Torus 4 x 4 16 16 64
Tree (depth 4, fanout 2) 15 16 28
Renater 43 43 112
China Telecom 42 40 132

Fig. 4: Characteristics of the topologies used in the analysis.

c) Performance metrics: To compare ONOS’s REST API
with the GraphQL-based API we designed for ONOS’s North-
bound interface, we use the intent-based routing application
that we developed on ONOS. For each network topology, and
for a given number N of host pairs to be linked, we propose
to consider and measure the following performance metrics :

• The number of REST/GraphQL requests required to
connect the N couples of hosts,

• The time needed to execute these requests (the intent
installation delay: the sum of the delay to reach the
GraphQL server and that to install the intents on switches)

• The deduced throughput for both types of API.
For the synthetic topologies, we vary their type. Then, for

a fixed type, we vary their corresponding size.

B. Results

We first compare the RESTful and GraphQL APIs, in terms
of the time required to generate and install OpenFlow rules,
for a given topology, and a given number of host pairs.

The results, for the synthetic and real-world topologies we
considered, are summarized in Figures 5, 6, and 7. These
confirm the superiority of the GraphQL-based approach, which
leads to a time efficiency gain of approx. 27%, on each of
these configurations. The reason is the relative number of
GraphQL queries and, respectively, REST requests that need
to be transmitted. Specifically, for n intents to be installed,
2 × n REST requests are required, while only one GraphQL
query suffices. This is due to the expressiveness of GraphQL,
whose support for arbitrarily nested fields and relationships
allows to retrieve comparatively more information than simple
REST queries. While one could set up a routing path within
the same GET/POST request, data structuring is more difficult
with REST, since there is no standardized resolver on the
server side, as in GraphQL. Even with modifying ONOS’s
REST API to send all intents at once, as in GraphQL, one has
to deserialize on the server side to well-structure the received
data. We avoid this bottleneck by leveraging GraphQL and
encoding all needed information in a single query.
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Fig. 5: GraphQL vs. REST runtime performance comparison (generation time of intents rules)

3 6 9 12 15 18 21 24 27 30
Number of host pairs generated

0

50

100

150

Nu
mb

er
 of

 qu
er

ies

18
32

44
64 74

90
102

124
136 138

REST

(a) Torus topology (3x3)

12 24 36 48 60 72 84 96 108 120
Number of host pairs generated

0

200

400

600

800

1000

Nu
mb

er
 of

 qu
er

ies
62

156
218

300
362

422
540

604
680

764

REST

(b) Torus topology (4x4)

12 24 36 48 60 72 84 96 108 120
Number of host pairs generated

0

500

1000

1500

Nu
mb

er
 of

 qu
er

ies

132
268 344

516
640

792
940

1116 1180
1348

REST

(c) Tree topology (depth 4, fanout 2)

Fig. 6: Number of generated REST requests (number of needed queries to generate intent rules)
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Fig. 7: GraphQL vs. REST runtimes (a, b) and number of REST requests (c, d) for intent generation for real-world topologies

Figures 6 and 7 show that, for our intent-based routing
application, the number of necessary intents ranges from less
than 1.5 K for the synthetic topologies, to 6K and respectively
8K for the China Telecom and Renater real-world topologies.
This leads to the generation of up to 7K REST requests for
the synthetic topologies, as well as 33K and, respectively, 48K
requests, for China Telecom and Renater. This result trend also
holds when running our experiments under information loss.

One might think that the advantage would be more signif-
icant for GraphQL. Indeed, if we send only one request to
the GraphQL server, it has to decrypt and execute it, thus
calling the intent installation function for each element of the
previously sent list, i.e., 2×n times. As the calls are local, we
gain the network latency times we would have with REST.
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Fig. 8: REST/GraphQL query size relative to the topology type

As can observed in Figure 8, the size of the requests is much
smaller with GraphQL. Indeed, as can be noticed from the
synthetic topologies we considered, the size of the GraphQL
queries is, on average, approx. 14% of that corresponding to

the REST requests needed to install the same intents.
A similar explanation for this efficiency gain is that the

GraphQL language allows object nesting. As such, a single
POST query can contain the list of all the intents to be added.
The succinctness and expressivity of GraphQL queries make
it possible to transfer a large amount of information, without
having to overload the network with a high number of queries.
This has the added benefit that there is a much lower risk of
losing or altering information during the process. Given that
in the SDN setting the controller alone is responsible for the
network control, these reliability advantages are critical.

V. CONCLUSION

In our experimental study, we found that our GraphQL
Northbound API outperforms REST on both synthetic and
real-world emulated networks. Specifically, on each of the
considered topologies, our approach leads to a speed-up of
approximately 27% in intent rule installation. Also, we have
shown that relying on GraphQL leads to a dramatic overhead
reduction, as only one query is needed to communicate with
the external application we consider, while the REST approach
can require up to 9K requests for the same purpose. These
promising results show the feasibility of our proposed method-
ology and its scalability to realistic topologies.

Looking ahead, a main direction of future work consists
in integrating our GraphQL API with a database representing
a dynamic network topology, in the context of developing a
web-scalable database-defined network architecture.
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