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INTRODUCTION GENERALE

Cette theése se compose de trois parties indépendantes portant sur I'application du

controle stochastique a la finance.

Dans la premiére partie, nous étudions la maximisation d’utilité de la richesse terminale
dans un modele avec défauts (ou sauts de type poissonnien) dans le cadre d’une informa-
tion totale puis d’une information partielle. Nous nous intéressons aux fonctions d’utilité
classiques : exponentielle, logarithmique et puissance. Cette étude est faite dans le cas de
stratégies a valeurs dans un ensemble compact puis dans le cas non contraint. Le cas com-
pact est résolu simplement grace a un théoréme de vérification. Dans le cas non contraint,
grice a des techniques de programmation dynamique, la fonction valeur associée a ce pro-
bléme peut étre caractérisée comme la solution d’une équation différentielle stochastique
rétrograde (EDSR). Elle peut également étre caractérisée comme la limite croissante (ou
décroissante pour 'utilité exponentielle) d’une suite de solutions d’EDSR lipschitziennes.
Ce résultat permet d’approcher numériquement la fonction valeur. En utilisant ces résul-
tats, on obtient une caractérisation et une approximation du prix d’indifférence d’'un actif

contingent non duplicable.

Dans la deuxiéme partie, nous nous intéressons aux EDSR & sauts et plus particulié-
rement aux EDSR quadratiques. Celles-ci sont généralement utilisées en finance pour la
résolution du probléme de maximisation d’utilité de la richesse terminale en prenant pour
fonction d’utilité la fonction exponentielle ou puissance. Nous utilisons la décomposition
des processus a sauts liée au grossissement progressif de filtrations pour nous ramener &
des EDSR browniennes entre les sauts. Cette méthode nous permet d’établir un théoréme
d’existence ainsi qu’'un théoréme d’unicité. En utilisant ces techniques de décomposition,
nous donnons également une décomposition de la formule de Feynman-Kac pour les équa-
tions intégro-différentielles, celle-ci s’écrivant sous forme d’un systéme récursif d’équations
aux dérivées partielles. Ces résultats sont appliqués a ’évaluation et & la couverture d’une
option européenne dans un marché complet, et a la résolution du probléme de maximisation

d’utilité exponentielle de la richesse terminale dans le cas de stratégies a valeurs dans un

11



12 INTRODUCTION GENERALE

ensemble compact.

La troisiéeme partie est plus numérique et porte sur ’étude de la liquidation d’'un porte-
feuille dans un modéle de risque de liquidité. On entend par liquidité la liquidité du marché,
qui correspond & la possibilité pour un investisseur d’effectuer une transaction au prix affiché
et pour un volume important sans affecter le cours du titre. Dans les modéles classiques,
on fait 'hypothése d’'un marché financier parfaitement liquide, ce qui ne correspond guére
a la réalité du marché. En effet, dans la plupart des cas, le marché est peu liquide et repré-
sente donc un risque pour les investisseurs concernés. On essaye d’expliquer le phénoméne
de risque de liquidité & ’aide de la théorie des erreurs. Ceci nous permet de modéliser la
fourchette bid-ask. Ces résultats sont appliqués au probléme de liquidation d’un portefeuille

en temps discret et déterministe dans le modéle obtenu.

Dans la suite de cette introduction, nous allons exposer la problématique de chaque

chapitre ainsi que les résultats importants obtenus.

0.1 Premiére partie : maximisation d’utilité dans un modéle
avec défauts

Dans le contexte d’un marché incomplet, du fait de 'absence de stratégie de réplication,
on va chercher a redéfinir la notion de stratégie optimale. Ceci est 'une des motivations
conduisant & s’intéresser & des problémes d’optimisation de la fonction d’utilité. Le pro-
bléme particulier qui nous intéresse est celui de la maximisation de la fonction d’utilité de
la richesse terminale d’un portefeuille. Nous regardons dans le premier chapitre la fonction
d’utilité exponentielle, et dans le deuxiéme chapitre nous étudions les fonctions d’utilité lo-
garithmique et puissance dans le cas d’une information totale et d’une information partielle.
Rappelons qu’on parle d’une information partielle lorsque certaines des variables apparais-

sant dans le modéle ne sont pas observées.

Ce probléme de maximisation d’utilité est trés largement étudié dans la littérature.
Dans l'article de référence de Merton [98], I’auteur examine un probléme en temps continu de
consommation-investissement d’un agent sur le marché. Il souhaite déterminer la proportion
optimale de richesse que l'investisseur doit détenir pour chaque actif en fonction de son
prix. En utilisant des techniques d’Hamilton-Jacobi-Bellman, ’auteur obtient une formule
explicite de la fonction valeur associée au probléme et la stratégie optimale correspondante.

Dans la littérature, on distingue deux approches pour résoudre ce probléme de maximi-
sation :

— l"approche duale, qui consiste & introduire le probléme dual associé au probléme d’op-
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timisation, lorsque ce dernier est formulé de maniére statique. On cite comme réfé-
rences, dans le cadre d’un marché complet, Karatzas, Lehoczky et Shreve [77] ou Cox
et Huang [41], et dans le cadre d’un marché incomplet, Karatzas et al. [78], Kramkov
et Schachermayer [84] ou Delbaen et al. [45] ;

— l"approche par contrdle stochastique, qui est basée sur le principe de la programmation
dynamique (une formulation en est donnée dans El Karoui, Peng et Quenez [56]). On
peut citer Jeanblanc et Pontier [TI] dans le cadre d’un marché complet avec sauts,
Rouge et El Karoui [I17] dans le cas d’une filtration brownienne, Hu, Imkeller et Mul-
ler [67] dans le cas o les stratégies prennent leurs valeurs dans un ensemble fermé,
Mania et Schweizer [97] pour des semimartingales générales ou Morlais [99] pour une

filtration discontinue.

Concernant U'information partielle, la littérature est moins abondante. On peut citer
dans le cas complet Detemple [47], Dothan et Feldman [48] ou Gennotte [63], qui utilisent
le principe de la programmation dynamique dans un cadre gaussien, Lakner [86, 87|, qui
utilise 'approche martingale également dans un cadre gaussien, ou Karatzas et Zhao [81],
qui utilisent I’approche duale dans un cadre bayesien. Dans un modéle incomplet, on peut
citer Frey et Runggaldier [6I] ou Lasry et Lions [88], qui étudient des problémes de cou-
verture, Pham et Quenez [110], qui traitent le cas de la volatilité stochastique, Platen et
Runggaldier [113], qui s’intéressent a 'optimisation, Saas et Haussmann [120], qui regardent
le cas markovien ou Callegaro, Di Masi et Runggaldier [32] et Roland [116], qui étudient le

cas a sauts. On peut se référer a Runggaldier [I19] pour un survey sur le filtrage.

Dans les deux chapitres de cette premiére partie, nous étudions un modéle avec défauts :
on considére un marché financier incomplet constitué d’un actif sans risque dont le prix
est supposé constant et égal & 1 et de n actifs risqués dont les prix a l'instant ¢ sont notés
(S¥)1<i<n. On suppose que, sur le marché, il existe p instants de défaut (ou plus exactement
de choc) que I'on note (7j)1<j<p. A chaque instant 7;, j € {1,...,p}, les actifs risqués
peuvent étre discontinus. Dans le reste de cette introduction, on prend n = p = 1 pour

simplifier les notations. On suppose que le processus de prix suit la dynamique suivante :
dSt = Stf (,U,tdt + Utth + /Btht),

avec W un mouvement brownien et N le processus correspondant & l'instant de défaut
(Nt = 1,<;). Nous notons F = {F,0 < t < T} la filtration engendrée par (W, N), M
la F-martingale compensée de N et A son F-compensateur. Par la suite, nous considérons
des stratégies m qui correspondent soit & la somme d’argent investie dans l’actif risqué
pour le cas de la fonction d’utilité exponentielle, soit & la quantité d’actifs détenue pour le
cas des fonctions d’utilité logarithmique et puissance. On note X%’Tr la richesse terminale

associée a une richesse initiale = et a une stratégie m. Nous nous intéressons au probléme de
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maximisation de l’espérance de la fonction d’utilité de la richesse terminale X;Cfr :
V(z, &) =supE[U(X7™ +¢)],

ot & est un actif contingent non duplicable (¢ sera égal a 0 pour les fonctions d’utilité
logarithmique et puissance). Une fois caractérisée la fonction valeur, nous déterminons le prix
d’indifférence lorsque la fonction d’utilité est la fonction exponentielle. Celui-ci correspond
a la somme & payer a l'instant initial pour recevoir la valeur associée a ’actif contingent a
I'instant terminal. On le définit comme la somme p & retrancher & la richesse initiale x pour
que le supremum de ’espérance de 1'utilité de la richesse terminale soit le méme entre un

agent possédant ’actif contingent et un agent ne le possédant pas :

supIE[U(er;’”)] = SupE[U (X777 + 5)]

0.1.1 Maximisation de la fonction d’utilité exponentielle et prix d’indif-

férence dans un marché avec défaut

Dans le premier chapitre, nous nous intéressons au cas de la fonction d’utilité exponen-
tielle U(x) = —exp(—~yx) ot v > 0 est une constante représentant 1’aversion au risque de
I'investisseur. Puisque 'égalité V (z, &) = exp(—vyx)V (0, &) est vérifiée, il est suffisant d’étu-
dier le cas ou la richesse initiale = est nulle. Pour simplifier les notations nous écrivons X[

. 0 PRI R , .
a la place de X;"". Le gain réalisé entre ¢ et s, correspondant & une stratégie 7, est noté

Xbm = fts Ty g,lsj . A chaque instant ¢, on définit la fonction valeur J(¢,&) par la variable
aléatoire : '
J(t, &) = essﬂianE[exp ( — ’y(Xéiﬂ + 5)) ’ft]

Nous étudions d’abord le cas ou les stratégies m sont supposées & valeurs dans un en-
semble compact C et les coefficients u, o, B et A sont supposés bornés. En utilisant un
principe de vérification (différent de celui de Hu et al. [67]) appliqué aux EDSR (dans ’es-
prit de celui d’El Karoui et al. [56]), on obtient facilement une caractérisation de la fonction

valeur et de la stratégie optimale.

Théoréme 0.1.1. Soit (Y, Z,U) la solution dans ST x L*(W) x L*(M) de 'EDSR sui-

vante :
2
—dYy = eSSicI*lf {%”?@%Yt — ym(Ys + 00 Zy) — M(1 — e TP (Y + Ut)}dt
S

— ZydW, — UydM,, (0.1.1)

Yr = exp(—7¢).
Alors, J(t,€) =Y:, P—p.s., pour tout t € [0,T]. Il existe une unique stratégie optimale 7t a
valeurs dans le compact C. Elle est caractérisée par le fait qu’elle est ’argument minimum

du générateur de I’EDSR.
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Notons qu’en faisant le changement de variable y; = log(Y}), on a que le processus y est
solution d’une EDSR quadratique. On retrouve donc le résultat établi par Morlais [99] via
des techniques d’EDSR quadratiques.

Dans le cas sans contrainte, il n’est pas possible d’utiliser un théoréme de vérification
comme pour le cas compact. Dans un premier temps, nous nous attardons sur le choix d’un
ensemble approprié de stratégies admissibles. En effet, le principe de la programmation dy-
namique (PPD) n’est pas vérifié sur n’importe quel ensemble : des propriétés de recollement
doivent étre satisfaites, mais également des conditions d’intégrabilité car il s’agit d’'un es-
sentiel infimum (et non un essentiel supremum de variables aléatoires positives). Pour cela,
on peut choisir par exemple 'ensemble A des stratégies m telles qu’il existe, pour chaque
s, une constante K, . telle que Xf’7r > —K, » pour tout s < ¢ < T. Nous montrons que,
sur cet ensemble, le PPD est satisfait : (J(t,&))o<i<7 est le plus grand processus tel que
(exp(—yX[)J(t,€))o<t<T est une sous-martingale pour tout = € A avec comme condition
terminale J(T,¢) = exp(—v§).

A priori, on ne sait pas s’il existe une stratégie optimale sur I’ensemble A, mais on peut
tout de méme caractériser la fonction valeur a I’aide d’'une EDSR (sans aucune hypothése

de bornitude sur les coefficients).

Théoréme 0.1.2. Soit (Y, Z,U, K) la plus grande des sous-solutions dans ST x L*(W) x
L*(M) x A% de ’EDSR suivante :

2

—dYy = ess ij‘lf {%W?Utz}/t — (e Yy + 00 Zy) — Ae(1 — e ™) (Y + Ut)}dt
TE
— dK; — Z dWy — Upd My, (0.1.2)

Yr = exp(—§).
Alors, J(t,&) =Yi, P — p.s., pour tout t € [0,T].

De plus, grace a des techniques de controle, on montre (sans aucune hypothése de bor-
nitude sur les coefficients) que la fonction valeur J(t,§) peut étre approchée par une suite
de processus (J*(t,£))ren ot JF(t,€) est défini par :

Jk(t,g) = eSSLIifE[exp ( _ ,Y(X,?ﬂ _i_é.))’ft},

e

AP étant I'ensemble des stratégies de A bornées par k.

Théoréme 0.1.3. limg .o, | J*(t,£) = J(t,€).

Dans le cas oil les coefficients sont supposés bornés, grace au théoréme appliqué a
J¥, on obtient que J*(t,€) est la solution de PEDSR. (0.1.1) avec C' = [k, k] laquelle est

lipschitzienne. Ce résultat peut étre utilisé pour approcher la fonction valeur grace a des
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méthodes numeériques. De plus, en utilisant un résultat de convergence de Morlais [99] établi
grace a des techniques d’EDSR quadratiques appliqué a log(J(t,€)) et log(J*(t,€)), on en
déduit que la suite de processus (J*(t, €))ren tend vers une solution de PEDSR. (0.1.2) avec
K =0. Il s’en suit :

Corollaire 0.1.1. Si les coefficients sont bornés, la fonction valeur J(t,€) est la solution
mazximale de ’EDSR (0.1.2) (K =0).

Un paragraphe de ce chapitre est consacré a 1’étude du cas ou les coefficients sont non

bornés mais satisfont une hypothése d’intégrabilité de type exponentiel.
Nous pouvons alors caractériser le prix d’indifférence p d’un actif contingent non dupli-
cable £ a l’aide de solutions d’EDSR . :

- (Tog)

et 'approcher par la suite (pk) ren définie par :

car nous avons :
p= lim p.
k—o0

Nous avons également généralisé ces résultats au cas de sauts de type poissonnien.

0.1.2 Optimisation de portefeuille dans un marché avec défaut sous in-

formation totale/partielle

Dans le deuxiéme chapitre, nous nous intéressons tout d’abord au cas d’une information
totale et des fonctions d’utilité logarithmique U(z) = log(z) et puissance U(xz) = a7 ou
0 < 7 < 1 est une constante représentant ’aversion au risque de l'investisseur. Pour ces
fonctions d’utilité, ’ensemble des stratégies admissibles A(x) est I’ensemble des stratégies
telles que la richesse est toujours positive ; pour la fonction d’utilité logarithmique, on ra-
joutera des conditions d’intégrabilité afin de pouvoir résoudre le probléme en adoptant une

approche directe. Dans tout ce chapitre, nous supposons les coefficients bornés.

Le cas de la fonction d’utilité logarithmique peut étre résolu directement :

Théoréme 0.1.4. La solution du probleme d’optimisation est donnée par :

|70 |2
2

V(z) = log(z) + E[/OT (frtut - + M\ log(1 + ﬁtﬁt))dt} ,
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avec 7 la stratégie optimale définie par :

fht L (B +02)? + 4NG20?

sit<T et #O0,

e 202 25 2802
H—; sit<TetfB=0o0ut>r.
o

On rappelle que, dans le cas d’'un modéle sans défaut, la stratégie optimale est donnée
par 79 = py/o?. On remarque donc, dans le cas d’'un modéle avec défaut, que la stratégie
optimale peut s’écrire :

A

0
7Tt:7Tt — €¢,

ol ¢; est un terme additionnel défini par :

et 1 (B +0})? +4NBia?
—s t+ — = sit<Tet 0,
€t = 2Ot2 2,815 QﬂtO'tz Bt ?é

0 sit<tetB=0o0ut>r.

On remarque que, si le coefficient 3 est négatif (respectivement positif), i.e. le prix de I'actif
diminue (resp. augmente) a 'instant de défaut, le terme additionnel est positif (resp. néga-
tif), ce qui veut dire que I’agent doit investir une proportion de sa richesse plus petite (resp.

grande) dans Pactif risqué que si le marché ne présentait pas de défaut.

Concernant la fonction d’utilité puissance, il suffit d’étudier uniquement le cas ou la
richesse initiale x est égale & 1 puisqu’on a l'égalité V(z) = 27V (1). On note A a la place
de A(1) et XJ a la place de th’”. Comme dans le chapitre 1, pour résoudre le probléme
de maximisation, nous rendons dynamique le probléme initial en définissant pour chaque

t € [0,T7] la fonction valeur J(t) par la variable aléatoire :

J(t) = esssup E[(X7™)| 7).
TeA
Mais, avant d’étudier le cas général, nous étudions le cas ol I’ensemble admissible est ’en-
semble des stratégies de A bornées par k, que I'on note A¥. On note J*(t) la fonction
valeur associée & cet ensemble. En appliquant un principe de vérification, on obtient une

caractérisation de la fonction valeur J*(¢) et de la stratégie optimale sur I’'ensemble A* :

Théoréme 0.1.5. Soit (Y, Z,U) la solution dans S? x L>(W) x L>(M) de I’EDSR suivante :

~1
—dY; = — ZydW; — UpdM; + esssup {’Wt(,uth +01Z) + ’Y(’YQ)W?U?Y}
reAk
+ (1 + )T = 1)(Y + Ut)}dt, (0.1.3)
Yr =1.
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Alors, Jk(t) =Y, P—p.s., pour tout t € [0,T]. Il existe une unique stratégie optimale
7 € AF. Elle est caractérisée par le fait qu’elle est Uargument mazimum du générateur de
I’EDSR.

Dans le cas général, le PPD est vérifié pour notre probléme avec ’ensemble des stratégies
admissibles classique A : (J(t))o<t<T est le plus petit processus tel que ((X7)VJ(t))o<i<T
est une surmartingale pour tout = € A avec comme condition terminale J(7') = 1.

Notons que comme il s’agit d’'un essentiel supremum de fonctions positives, le PPD ne

nécessite pas d’hypothése d’intégrabilité comme c’était le cas dans le chapitre précédent.

Par la suite, nous faisons I’hypotheése classique :
J(0) < o0.

Nous savons, d’aprés Kramkov et Schachermayer [84], que, sous cette hypothése, il existe
une stratégie optimale © € A. De plus, sous cette méme hypothése, le critére d’optimalité
est vérifié, c’est a dire :

Proposition 0.1.1. Les assertions suivantes sont équivalentes :
(i) T est une stratégie optimale.
(ii) Le processus ((X])VJ(t))o<i<T est une martingale.

Nous obtenons alors la caractérisation suivante de la fonction valeur :

Théoréme 0.1.6. Soit (Y, Z,U) la plus petite des solutions dans LY+ x LE (W) x L} (M)
de 'EDSR suivante :
—dYy = — ZydWy — UdM; + eSSGSl-‘lP {Wﬂt(#th +o0uZ) + 7(72_1)7%20152)@
+ M((1+ ) = DY+ Up) (0.14)
Yr =1.

Alors, J(t) = Y, P — p.s., pour tout t € [0,T]. La stratégie optimale est un argument
maximum du générateur de ’EDSR.
Notons que la démonstration de ce théoréme est plus courte que dans le cas de la fonc-

tion d’utilité exponentielle car on a ’existence d’une stratégie optimale.

Grace a des techniques de contrdle, on montre que la fonction valeur J peut étre appro-

chée par la suite de processus (J*(t))ren :

J(t) = lim 1 J*(t), P —p.s.

k—o0
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Cela nous donne une méthode numérique pour approcher la fonction valeur J(¢) puisque

les fonctions valeurs (J¥(t))ren sont solutions d’EDSR lipschitziennes.

Nous supposons ensuite que 'agent sur le marché observe a chaque instant ¢ € [0, 7]
uniquement le prix de I'actif S; et le processus N;. Par conséquent, les stratégies admissibles
ne sont plus F-prévisibles, mais G-prévisibles, avec G la filtration engendrée par les prix
observés et le temps de défaut. Nous supposons également que les coefficients o et 3 sont

markoviens :

or=0(t,S;—,t N\7T) et B = B(t,S—, t A T).

Afin d’appliquer les résultats obtenus, nous faisons tout d’abord une opération de filtrage.
Pour cela on introduit les processus fir = E[us|Gi] et Ay = E[\¢|Gy], ainsi que les processus
Wy =W, + fot(us — fis)/osds et My = Ny — f(f Asds. Nous avons alors :

— le processus (W;)o<i< est un G-mouvement brownien,

— le processus (Mt)ogth est la G-martingale compensée du processus N et X son G-

compensateur.

Ceci nous permet alors d’appliquer les résultats obtenus dans le cadre d’une informa-

tion totale pour les fonctions d’utilité logarithmique, puissance et exponentielle, puisque le

processus de prix suit la dynamique suivante :
dSt = Stf (ﬂtdt + Utth + ,Btht)
On obtient alors, pour la fonction d’utilité logarithmique :

Théoréme 0.1.7. La fonction valeur est donnée par :

s

V(z) = log(x) + E[/OT <ﬁtﬂt - + A log(1 + ﬁtﬁt)>dt} ,

avec T la stratégie optimale définie par :

fit 1 \/(ﬂtﬁt +07)? + A\ B}

— — - T sit<Tetf#0,
=4 207 2B 28,07

M—; sit<Tetfi=0o0ut>r.

0t

Pour la fonction d’utilité puissance, nous avons :

Théoréme 0.1.8. — Soit (Y, Z,U) la solution minimale dans L'+ x L?

loc

de ’EDSR (0.1.4) avec (W, M, p, \) remplacé par (W, M, fi, 5\), alors

(W)x L}

loc

(M)

Y; :esssupE[(X;”)w‘gt], P —p.s.
TeA
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— De plus, le processus Y est la limite croissante de la suite de processus (Yk)keN,
ot (Y¥,Z* U*) est la solution dans S? x L*(W) x L?>(M) de V'EDSR (0.1.3) avec
(W, M, p, \) remplacé par (W, M, i, 5\)

Pour la fonction d’utilité exponentielle, nous avons :

Théoréme 0.1.9. ~ Soit (Y, Z,U) la solution mazimale dans ST>° x L?>(W) x L*(M)
de 'EDSR avec (W, M, u, \) remplacé par (W, M, ji, 5\) et K = 0, alors
Y, = J(t,€), P—p.s.
— De plus, le processus Y est la limite décroissante de la suite de processus (Y*)pen,
ot (Y* ZF U*) est la solution dans S*> x L>(W) x L?>(M) de 'EDSR avec
(W, M, p, \) remplacé par (W, M, i, 5\) et C = [~k k.

Ce théoréme nous permet également de caractériser a l’aide de solutions d’EDSR le priz

d’indifférence dans le cas d’une information partielle :

1, (J(0,0)
pzm(ﬂ&@}

Y
et également le prixz de linformation, c’est-a-dire la différence de prix entre un agent non

informé (qui a accés uniquement a U'information G; a l'instant ¢) et un agent informé (qui a

accés a 'information F; a Uinstant ¢) :

ISH
I
1]
|
3

0.2 Grossissement progressif de filtrations et EDSR a sauts

Rappelons que les EDSR sont des équations de la forme suivante :
T T
Vit [ fevaz)is— [ zaw, 0<i<T,
t t

ou W est un mouvement brownien sur un espace de probabilité (2, F, (Fi)o<i<r,P) avec
{Fi, 0 <t < T} la filtration engendrée par W, f est généralement appelé le générateur et
¢ la condition terminale. Une solution est un couple (Y, Z) de processus F-adapté vérifiant
cette équation, Y et Z ont des propriétés d’intégrabilité dépendant des hypothéses sur le
générateur f et sur la condition terminale £. Les EDSR ont été introduites par Bismut
[18] pour le cas linéaire et par Pardoux et Peng [I03] pour le cas général; ils ont montré
que, si le générateur f est lipschitzien et la condition terminale & est de carré intégrable,
alors la solution existe et elle est unique. Depuis ce travail, la théorie des EDSR a connu

un grand développement grace notamment a ses applications en contréle stochastique, en
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mathématiques financiéres et aux équations aux dérivées partielles. On peut citer en par-
ticulier le travail d’El Karoui, Peng et Quenez [56]. D’autres applications des EDSR pour
le contrdle stochastique sont étudiées dans Hamadéne et Lepeltier [64]. On peut également
citer le livre d’El Karoui et Mazliak [55] pour les applications des EDSR. Il y a eu ensuite
de nombreuses extensions portant sur le générateur. Kobylanski [83] a montré Iexistence
de solutions bornées pour un générateur a croissance quadratique en z, Lepeltier et San
Martin [90] ont généralisé ces résultats au cas ou f n’est pas a croissance linéaire en y.
On peut également citer Briand et Hu [28] qui ont relaxé la condition “£ bornée”. Le cas
a croissance quadratique en z trouve de nombreuses applications en finance, en particulier
pour la résolution du probléme de maximisation d’utilité exponentielle avec actif contingent.
Ce probléme a été largement étudié dans le cas continu, on peut citer sans étre exhaustif
Rouge et El Karoui [117], Sekine [124], Hu, Imkeller et Muller [67] et Mania et Schweizer [97].

Dans ce troisiéme chapitre, nous nous intéressons aux EDSR a sauts (EDSRS) du type

T T T
Yt:§+/ f(s,YS,Zs,US)ds—/ stWs—/ / Us(x)p(ds,dx), 0 <t <T,
t t t JE

ol p est une mesure aléatoire particuliére représentant des temps de défaut aléatoires. Dans
le cadre d’une mesure aléatoire classique, ces EDSRS ont été introduites par Tang et Li
[126] qui prouvent lexistence et l'unicité d’une solution dans le cas ou le générateur est
lipschitzien. Puis Barles, Buckdahn et Pardoux [7] ont étudié le cas markovien. Royer [I1§]
donne un théoréme de comparaison pour les solutions de ces EDSRS. Le cas des EDSRS
quadratiques est peu étudié. On peut citer Morlais [99] et El Karoui et al. [58] pour ce
genre d’EDSR. Récemment, ces EDSRS ont été généralisées au risque de défaut, comme
dans les chapitres un et deux de cette thése. On peut citer le travail de Peng et Xu [109] qui
donnent quelques applications des EDSRS au risque de défaut. Le cas quadratique est étudié
dans Ankirchner et al. [3] pour résoudre le probléme de maximisation d’utilité exponentielle

dans un modéle avec un défaut, mais les auteurs font des hypothéses fortes sur le générateur.

Dans cette partie, nous utilisons des techniques de grossissement progressif de filtrations
afin de faire un lien entre les EDSR browniennes et les EDSRS. Le grossissement de filtra-
tions trouve ses origines dans Jeulin [74], Jeulin et Yor [75] et Jacod [69]. Depuis quelques
années, ces travaux ont trouvé de nombreuses applications dans le risque de crédit puis-
qu’ils fournissent des outils puissants pour modéliser le risque de défaut. On peut trouver
des applications, dans Bielecki, Jeanblanc et Rutkowski [14], Bielecki et Rutkowski [16] et
Jiao et Pham [76] pour ne citer qu’eux. Dans la suite, nous utilisons principalement la dé-
composition des processus prévisibles et optionnels donnée dans Pham [111], laquelle est
une généralisation de la décomposition de Jeulin [74].

Nous nous plagons dans un espace de probabilité (2, G, P) muni de la filtration {F;, 0 < ¢t <

T} engendrée par W. Nous considérons une suite finie (74, (x)1<k<n OU :
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— (Tk)1<k<n est une suite de variables aléatoires,
— (Ck)1<k<n est une suite de marques aléatoires a valeurs dans un sous-ensemble borélien
E de R™,

Nous notons p la mesure aléatoire associée a la suite (7x, (x)1<k<n :

w([0,t] x B) = Z]I{TkStVCkEB}’
k=1

Nous notons G = {G;, 0 < ¢t < T} la filtration engendrée par W, les temps de défaut
(Tk)1<k<n et les marques (Cx)i<k<n. Nous remarquons dans un premier résultat qu’il est
possible de prendre les temps de défaut ordonnés grace aux marques. Par la suite nous
noterons 7 et () a la place de (71,...,7) et (C1,..., (k). D’aprés [I11], nous obtenons

les décompositions suivantes :

Lemme 0.2.1. — Tout processus G-prévisible Y = (Y3)o<t<r admet une décomposition

de la forme :

n—1

Y =Y <r, + ZYtk(T(k), Co)lry<t<rrs + Y (Tnys o)) <, 0 <t < T,
k=1

avec YO € Py, et Y* € PE(Ay, EX), pour tout k =1,...,n.
— Tout processus G-optionnel Y = (Y;)o<t<r admet une décomposition de la forme :

n—1

Vi =Y ier, + D V(T Gy Lrpstcmps + Y7 (T S ) rts 0 << T,
k=1

avec Y0 € O, et YF € O{E(Ak,Ek), pour tout k=1,...,n.

Nous notons dans la suite de l'introduction Y;* et Y}*(t,e) au lieu de }Qk(r(k),g(k)) et
Y[ (T(k=1)>t, Ck—1), €)- En utilisant les décompositions de & et de f, nous obtenons un résultat

d’existence de solution aux EDSRS de la forme suivante :
T T T
Y, =¢ +/ f(s,Ys, Zs, Us)ds — / ZsdWy —/ / Us(e)u(de,ds) . (0.2.5)
t t t JE
Théoréme 0.2.10. Supposons que, pour tout (6,e) € A, x E™, '’EDSR :
T T
YI0.0) = €00+ [ 550000, 220.6),0.0. s [ Z2(6.c)aW
t t

admette une solution (Y"(0,e), Z"(0,¢)) € S° x LA(W), et que, pour chaque k =0,...,n—
1, 'EDSR :

T
Y},k(@(k),e(k)) = fk(‘g(k),e(k))‘i‘/t fk(SaYsk(a(k)ve(k))aZ?(Q(k)&(k)),

T
YE Oy, s, eh)5-) — YOy er)))ds —/t ZE(O k), e(r) ) AW
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admette une solution (Yk(H(k),e(k)), Zk(e(k),e(k))) € S x LA(W). Supposons de plus que
chaque Y* (resp. Z%) est Op ®@ B(Ag) @ B(E¥)-mesurable (resp. Pr @ B(Ar) @ B(EF)-
mesurable).
Si toutes ces solutions satisfont :

o mannan | Ol <00

et

01NT Ok NT
/ E[/ 120)2ds + Z/ 1250, (k))\2d5]7(9,e)d9 n(de) < oo,
ApxXE™ 0 O NT

alors 'EDSR admet une solution (Y, Z,U) € 8L x L& (W) x L*(u) donnée par :

n
Y= Yler, + Zy;fk(T(k)a Cey) Lr<t<ryyas
k=1

= Z,?]ltgn + Z Zf (T(k)7 C(k))]lrk <E<Tk419
k=1
n—1
() = U (O Lisr + Y UE (700 Geoys <t
\ k=1

avec UP(.) = Y (t,.) =Y et UF (Tay, Sy ) = Y (7o 1 Sy ) = Y (T Ciy) pOUr chague
k=1,...,n—1.

Nous donnons des exemples explicites pour lesquels le théoréme précédent s’appliquent.

Corollaire 0.2.2. Supposons que la variable aléatoire & est bornée. Supposons également
que le générateur f : Q x [0,T] x R x R x RP — R satisfait une des deuzx conditions

sutvantes :

(i) [ est déterministe et lipschitzien : il existe une constante C' telle que

|f(t,y, z,u(e) = Y)eer — [y, 2 ule) =y )ecel < Clly—9+12-2),

pour tout (t,y,y', z,2',u) € [0,T] x [R]* x [RY* x R”,

(ii) f est quadratique en z : il existe une constante C' telle que
[fty,zu)]l < CO+ ),

pour tout (t,y,z,u) € [0,T] x R x R% x RE,
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Alors, 'EDSR admet une solution dans S x L& (W) x L*(u).

Cette technique de décomposition des EDSRS nous permet également d’obtenir un théo-
réme d’unicité, mais pour cela nous devons ajouter une hypothése sur les temps d’arrét

(Th)1<k<n
Hypothése 0.2.1. Les temps d’arrét (75)1<k<, sont inaccessibles dans la filtration G.

Nous pouvons alors établir un théoréme de comparaison pour les EDSRS. Soit deux
EDSRS (f,§) et (f,€), et (Y,Z,U) et (Y,Z,U) leurs solutions respectives dans S x
LZ (W) x L?(11). Nous considérons les décompositions (£¥)g<r<n (resp. (€F)o<r<n, (fk)ogkgn,

(Fo<ken, YFo<ken, VF)o<ken, (Z¥o<ken, (ZF)o<k<n, (UMo<k<n, (UF)o<k<n ) de €

(resp. &, f, f, Y, Y, Z, Z, U, U) (pour simplifier les notations, nous ne notons pas la

dépendance en (0, e(k))). Et pour simplifier les notations, nous écrivons

— F™(t,y,2) et F™(t,y,2) a la place de S (t,y,2,0) et f(t,y, 2,0),

— F¥(t,y, z) et F¥(t,y, z) ala place de ik(t, Y, 2, YtkH(t, )—y) et fF(t,y, 2, Y;kJrl(t, )=v)
pour chaque k =0,...,n— 1.

Nous obtenons le théoréme de comparaison suivant :

Théoréme 0.2.11. Supposons que § < €, P-p.s. Si pour chaque k =0,...,n
FF(t,y,2) < FMt,y,2), V(ty,2) €0, T]xRxR? P—p.s.,

et que l'un des générateurs F* ou F* satisfait un théoreme de comparaison pour les EDSR

browniennes. Alors, si Uy = U, = 0 pourt > 7,, on a

En particulier, pour les EDSRS quadratiques satisfaisant ’hypothése suivante :

i) il existe une constante C' telle que

[f(ty, 2, u)] C1+2?),

9.1y, z,u)| < C(L+]z]),

IN

(0.2.6)

A

pour tout (¢,7,z,u) € [0,T] x R x R x RF, P-p.s.,

ii) pour tout £ > 0, il existe une constante C; telle que

ayf(t7y7 2, (u(e) - y)eEE) < Cs + 6|Z|2 )

pour tout (¢,7,z,u) € [0,7] x R x R x RF, P-p.s.
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Théoréme 0.2.12. Sous cette derniére hypothése, I’EDSR admet au plus une solu-
tion.

Cette technique de décomposition nous permet également de considérer les équations

intégro-différentielles de la forme :

—Owu(t, ) — Lu(t,z) — h(z,u(t,z), o Du(t, x), /E(u(t,x + B(x,e)) —u(t,x))y(z,e)\(de) =0
pour (t,z) € [0,T] x R? et
u(T7 ) = g()7

ou L est I'opérateur local du second ordre :
1
Lu(t,x) = b(x)Du(t,z)+ iTl“(O'O'T(l‘)DQU(t,{L‘)).
Nous obtenons alors le résultat suivant :

Théoréme 0.2.13. Soit v l'unique solution de ’équation intégro-différentielle précédente.
Alors, nous avons :

v(t,z) = Yto’t’x,

ot la famille (Y*t® (O(k)> €(k)))o<k<n est définie de maniere récursive et chaque Yk’t’x(ﬂ(k), €(k))
est solution d’une EDSR brownienne.

De plus, nous avons la décomposition suivante de v :
v(t,z) = wvo(t,x),

ot la famille (v (., O, €(k)) Jo<k<n est définie de maniére récursive et chaque vi(., 0, e(r))

est solution d’une équation auxr dérivées partielles.

Nous donnons deux exemples d’utilisation d’EDSRS :

— évaluation et couverture d’une option européenne dans un marché complet,

— détermination du prix d’indifférence d’un actif contingent non duplicable dans un

marché incomplet.

On considére un marché financier constitué d’un actif sans risque S° et de deux actifs
risqués S1 et S2. On suppose que sur ce marché, il existe un temps de défaut 7. L’actif sans
risque suit I’équation :

dsp = r.Spdt,

et les actifs risqués suivent I’équation :

dS} = S (pdt + o dWy + BdM;)
dS? = S?(fudt + 5, dW;) .
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On considére que chaque coefficient a une valeur constante avant I'instant de défaut 7 et une
valeur constante aprés l'instant de défaut. L’évaluation d’une option européenne & revient

A résoudre 'EDSRS suivante :

_dy, = [T (” “HE LN - M)Ut _ rth}dt — Z,dW; — UydN, ,
o 15} Boy

t
Yp=¢.

En utilisant les techniques précédentes on donne une solution explicite du prix de cette

option.

Nous considérons un marché constitué d’un actif sans risque constant et égal a 1, et d’un

actif risqué S. On suppose que le processus de prix suit la dynamique suivante :

S, = S, (utdt—iratth + / Be(e) u(de, dt)),
E

ou l'on suppose, de plus, que les coefficients sont uniformément bornés et que f(e) > —1.

Une stratégie m = (m¢)o<t<7 correspond a la somme d’argent investie dans 'actif risqué a
x . < . ., < s . .

la date ¢ et on note X;”" la richesse a l'instant ¢ associée a une stratégie m et une richesse

initiale . Nous cherchons a résoudre le probléme de maximisation d’utilité exponentielle :

V(z) = :lelg]E[— exp (— a(X7" = B))],

ol B est un actif contingent borné, et C' un ensemble compact.
Pour résoudre ce probléme, nous utilisons un théoréme de vérification qui permet alors de

dire que :

V(z) = —exp(—a(z — Yp)),
avec Y la valeur initiale de la solution de ’EDSRS suivante :
T T T
Y;=B +/ f(s,Zs,Us)ds —/ ZedWy — / / Us(e)u(de, ds),
t t t JE

ou

o t exp(—a(mf(e) —u(e))) — 2
f(t,z,u) = inf {2|7Ttgt_(z+i)}2+/E p(—a(mBi(e) () 1”(616)}—9%—‘92[.

el «

Grace aux techniques précédentes, nous prouvons que cette équation admet une unique
solution, ce qui permet de caractériser la fonction valeur ainsi que la stratégie optimale,
celle-ci étant définie comme 'argument minimum du générateur f. On peut alors déterminer

le prix d’indifférence comme dans le chapitre un.
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0.3 Modélisation du spread bid-ask : une approche perturba-
tive

Généralement, dans les modéles classiques en mathématiques financiéres, les auteurs
considérent une parfaite élasticité des actifs, en supposant que les transactions n’ont aucun
impact sur le prix de 'actif. Cependant, la littérature sur la microstructure du marché a
montré théoriquement et empiriquement que les grosses transactions influencent significa-
tivement le prix de l'actif sous-jacent, démontrant ainsi l’existence du risque de liquidité.
Par conséquent, comprendre le fonctionnement des marchés financiers est un enjeu fonda-
mental pour les praticiens de la finance. Une question importante que se posent les agents
sur le marché concerne la fagon de liquider un portefeuille de NV actifs, avec N relativement
important. En effet un dilemme se pose : soit ’agent décide de tout vendre en une seule
opération, auquel cas il est soumis & des cotts élevés dus & I’épuisement du carnet d’ordre,
soit il vend en plusieurs opérations espacées d’'un certain temps, mais, dans ce cas, I’agent
est soumis aux variations du marché. Dans cette troisiéme partie, nous essayons d’expliquer
le phénomeéne de liquidité, en utilisant la théorie des erreurs, comme une propriété intrin-
seque du marché et nous étudions un probléme de liquidation optimale d’un portefeuille en

temps discret et déterministe.

On trouve dans la littérature trois approches pour modéliser le risque de liquidité. La
premiére approche consiste a utiliser des fonctions d’impact pour modéliser la dépendance
du prix d’un actif en fonction de la stratégie de trading. L’impact de la stratégie de trading
sur la dynamique du prix peut étre permanente, par exemple pour de gros investisseurs —
on peut citer sans étre exhaustif Frey [60], Platen et Schweizer [112] et He et Mamaysky [65]
— ou temporaire pour de petits investisseurs — on peut citer Cetin, Jarrow et Protter [34],
Cetin et Rogers [35] et Cetin, Soner et Touzi [36]. La seconde approche consiste a consi-
dérer la structure du marché et de modéliser le carnet d’ordre (voir par exemple Alfonsi,
Schied et Schulz [1] et Cont, Stoikov et Talreja [37]). La troisiéme approche consiste non
pas & modéliser le carnet d’ordre, mais uniquement la fourchette Bid-Ask ; généralement la
modélisation de la fourchette Bid-Ask est associée a des fonctions d’impact (on peut citer
Kharroubi et Pham [82] et Schied et Schoneborn [122]).

Dans cette troisiéme partie, nous essayons d’expliquer le risque de liquidité de maniére
différente en utilisant la théorie des erreurs développée par Bouleau [25] 26] 27] et ses tra-
vaux avec Hirsch sur les formes de Dirichlet [24], ce qui nous permet d’expliquer I’existence
d’une fourchette Bid-Ask comme une propriété inhérente au marché. Une fois la modélisa-
tion de la fourchette Bid-Ask réalisée, comme dans Bertsimas et Lo [I1], Almgren et Chriss
[2], Obizhaeva et Wang [101] et Alfonsi et al. [I], nous étudions un probléme de liquidation

optimale d’un portefeuille en temps discret et déterministe. Afin de résoudre complétement
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ce probléme, nous ne prenons pas uniquement en compte la fourchette Bid-Ask, mais éga-
lement la profondeur dans le carnet d’ordre en rajoutant une fonction d’impact.
Nous considérons un marché financier comportant un actif risqué de processus de prix

X suivant I’équation différentielle stochastique (EDS) :
dXt = ’FXtdt + O'(t, Xt, W)Xtth,

mais on suppose que cet actif n’est pas échangeable (comme le CAC 40 par exemple). Par
contre, il existe sur le marché un actif échangeable qui le réplique (un tracker par exemple)

dont le processus de prix S suit ’EDS suivante :
dS; = rSydt + U(t, St, w)StdBt,

ol B est un mouvement brownien, qui n’est pas tout a fait égal & W a cause d’une incerti-
tude :

Bi=ve W;++vV1— €7€Wt,

avec € un petit paramétre et W un mouvement brownien indépendant de W et non obser-
vable. La théorie des erreurs nous permet de savoir comment l'incertitude sur le mouvement
brownien B se répercute sur le processus de prix S. Pour chaque réalisation @ du processus

X au temps t, S¢(w) est une variable aléatoire décrite par :

Si(@,0) = Xu(@) + eA[S] (@) + VT[S (@) N (@),

oit NV est une variable aléatoire gaussienne centrée réduite indépendante de W, et T'[Sy] et

Al[S;] sont donnés par :

( t 2 2
T[S zer/ Mdﬁr[&)wﬁ,
0 Ms
t J—
A[St]:Mt/ s Xoy )T1Ss] = 0Xs0 (8 Xos) ryyy (4 %, )],
0 2Ms
t
Mtzg{/ C(s,XS,w)dWS+rt},
0

\

ou & est 'exponentielle de Doleans-Dade.

Nous considérons que, sur le marché, il existe plusieurs agents; ils sont tous informés
sur I’évolution du prix du benchmark, mais n’ont aucune information sur la perturbation
engendrée par . Nous supposons que tous les agents sont averses aux risques et peuvent
estimer la distribution du prix S & tout instant ¢ avec la formule de S;. Parmi tous les
agents, il en existe un qui a une aversion au risque minimale par rapport aux autres. Cet
agent accepte d’acheter I'actif & un prix SP plus élevé que les prix proposés par les autres
agents, donc le prix proposé par cet agent est le prix Bid et est noté StB . Ce prix est

caractérisé uniquement par la loi de S; et 'aversion au risque de cet agent. On définit de
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la méme maniére le prix Ask noté S{‘. Nous supposons, par la suite, que 'agent qui a
I’aversion au risque minimale est toujours le méme, et qu’il propose le meilleur prix d’achat

et de vente. Nous définissons les prix Bid et Ask de la maniére suivante (x4 + xp < 1) :

SB = X + €A[Si] + /€T[SN L (xB),
St = Xy + eA[S] + Vel [SUN 1 — xa).

Par la suite, on suppose que x4 = xB = X. Pour déterminer la fourchette Bid-Ask, il nous
reste a choisir la dynamique de I’aversion au risque de 1’agent ; pour cela, nous avons choisi
de prendre N ~'(x) = exp(¥;) avec Y un processus d’Ornstein-Uhlenbeck. Ce modéle a été
choisi en particulier parce qu’il posséde les propriétés suivantes :

— le prix Ask est toujours plus grand que le prix Bid,

— tous les termes excepté X ont une forme explicite,

— le prix Mid est différent du prix du benchmark, ce qui explique le biais systémique,

— si le prix du benchmark est stable, la fourchette Bid-Ask a un comportement de retour

a la moyenne.

Maintenant que nous avons défini les prix Bid et Ask, nous nous intéressons au probléme de
liquidation d’un portefeuille. Nous considérons un agent possédant N actifs dont il souhaite
se débarrasser, mais, pour cela, il ne peut vendre qu’a des dates déterminées t1,...,%,.
On dit qu'une stratégie m = (my,...,7,) est admissible si 7 est (F3,)1<i<n-adapté avec F
la filtration engendrée par le prix X du benchmark, 0 < m; < N et >.' ; m = N. Nous
supposons que, lorsque 'agent vend x actifs a U'instant ¢, le prix moyen auquel il vend ses
actifs est égal a SP(z) = g(x)SP, avec g une fonction vérifiant certaines hypothéses. L’agent

cherche alors & maximiser l’espérance de ses gains futurs

n

E[Z e_ptimgf(m) .

=1

Pour résoudre ce probléme, nous définissons & chaque instant t; et pour chaque p, nombre

d’actifs restant a vendre a I'instant ¢;, ’ensemble des stratégies admissibles A(t;,p) par :
n
Al(ti,p) = {Tr = {m,...,wn}, 7 >0Vje{i,...,n}tet Zﬂ'j :p}.
j=i

Pour un état z de la variable Z;, = (Xy,, A[St,],T'[S4,],Yz,) et un état p de la variable Py,
représentant le nombre d’actifs restant & vendre a l'instant ¢;, on définit la fonction gain

pour chaque stratégie m € A(t;, p) par :

n

J(i,z,p,m) =E [ Z e*p(tﬂ'*ti)Wijg(Wj)} )

j=i
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et nous définissons également la fonction valeur par :

v(i,z,p) = sup (J(i,2,p,m)).
WEA(ti,p)

Nous disons, pour un état (i, z,p), que la stratégie 7 € A(t;, p) est optimale si :
v(i, z,p) = J (i, z,p, 7).

En utilisant le principe de la programmation dynamique, nous prouvons qu’il existe une

unique stratégie optimale & notre probléme de liquidation et celle-ci est donnée par ’argu-

A}

ment maximum de :

v(i, z,p) = esssup {mslBg(m) + E{e_p(ti“_ti)v(i +1, Z;fl,p - m)
0<m;<p

v(n, z, p) = psk g(p).

Puis, nous étudions numériquement le cas des modéles Black-Scholes et constant elasticity
of variance (CEV). Dans le cas Black-Scholes, on voit que le nombre d’actifs & vendre a
chaque date est indépendant de la valeur du sous-jacent (on retrouve le résultat d’Alfonsi
et al. [1]), il est décroissant par rapport a la valeur de la fourchette Bid-Ask et est croissant
par rapport au nombre d’actifs restant & vendre. Dans le cas CEV, on voit que le nombre
d’actifs & vendre a chaque date dépend de la valeur du sous-jacent, il est décroissant par
rapport a la valeur de la fourchette Bid-Ask et est croissant par rapport au nombre d’actifs
restant a vendre. Nous comparons également nos résultats a ceux obtenus avec la stratégie

“1/m”, qui consiste a vendre a chaque date N/n actifs.
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Chapter 1

Exponential utility maximization and
indifference pricing in an incomplete

market with defaults

Joint paper with Marie-Claire Quenez.

Abstract: In this paper, we study the indifference pricing of a contingent claim via the
maximization of exponential utility over a set of admissible strategies. We consider a fi-
nancial market with a default time inducing a discontinuity in the price of stocks. We first
consider the case of strategies valued in a compact set. Using a verification theorem, we
show that, in the case of bounded coefficients, the value function of the exponential utility
maximization problem can be characterized as the solution of a Lipschitz BSDE (backward
stochastic differential equation). Then, we consider the case of non constrained strategies.
By using dynamic programming techniques, we state that the value function is the mazimal
subsolution of a BSDE. Moreover, the value function is the limit of a sequence of processes,
which are the value functions associated with some subsets of bounded admissible strate-
gies. In the case of bounded coefficients, these approximating processes are the solutions of
Lipschitz BSDEs, which leads to possible numerical computations. These properties can be
applied to the indifference pricing problem. They can be generalized to the case of several

default times or a Poisson process.

Keywords: Indifference pricing, optimal investment, exponential utility, default time, default

intensity, dynamic programming principle, backward stochastic differential equation.
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1.1 Introduction

In this paper, we study the indifference pricing problem in a market where the underlying
traded assets are assumed to be local martingales driven by a Brownian motion and a default
indicating process. We denote by S; = (S!)1<i<p for all t € [0, 7] the price of these assets
where T' < oo is the fixed time horizon and n is the number of assets. The price process
(S¢) is defined on a filtered space (2, G, (Gt)o<t<7,P). Following Hodges and Neuberger
[66], we define the (buying) indifference price p(§) of a contingent claim &, where ¢ is a

Gr-measurable random variable, as the implicit solution of the equation

sng[U(az + /OT ﬂtdStﬂ = sng[U(m —p(&) + /OT medS; + 5)}, (1.1.1)

where the suprema are taken over admissible portfolio strategies w. x € R is the initial
endowment and U is a given utility function. In other words, the price of the contingent
claim is defined as the amount of money p(§) to withdraw to his initial wealth x that allows
the investor to achieve the same supremum of the expected utility as the one he would have
had with initial wealth  without buying the claim. A lot of papers study the indifference
pricing problem. Among them, we quote Rouge and El Karoui [117] for a Brownian filtra-
tion, Biagini et al. [12] for the case of general semimartingales, Bielecki and Jeanblanc [17]
for the case of a discontinuous filtration. An extensive survey of the recent literature on

this topic can be found in Carmona [33].

Throughout this paper, the utility function U is assumed to be the exponential utility.
By , the study of the indifference pricing of a given contingent claim is clearly linked
to the study of the utility maximization problem.

Recall that concerning the study of the maximization of the utility of terminal wealth,

there are two possible approaches:

— the first one is the dual approach formulated in a static way. This dual approach
has been largely studied in the literature. Among them, in a Brownian framework,
we quote Karatzas et al. [77] in a complete market and Karatzas et al. [78] in an
incomplete market. In the case of general semimartingales, we quote Kramkov and
Schachermayer [84], Shachermayer [I121] and Delbaen et al. [45] for the particular case
of an exponential utility function. For the case with a default in a markovian setting
we refer to Lukas [94]. Using this approach, these different authors solve the utility
maximization problem in the sense of finding the optimal strategy and also give a

characterization of the optimal strategy via the solution of the dual problem;

— the second approach is the direct study of the primal problem(s) by using stochastic
control techniques such as dynamic programming. Recall that these techniques had

been used in finance but only in a markovian setting for along time. For example the
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reference paper of Merton [98] uses the well known Hamilton-Jacobi-Bellman verifi-
cation theorem to solve the utility maximization problem of consumption/wealth in
a complete market. The use in finance of stochastic dynamic techniques (presented
in El Karoui’s course [53] in a general setting) is more recent. One of the first work
in finance using these techniques is that of El Karoui and Quenez [54]. Also, recall
that the backward stochastic differential equations (BSDEs) have been introduced by
Duffie and Epstein [49] in the case of recursive utilities and by Peng [107] for a general
Lipschitz coefficient. In the paper of El Karoui et al. [56], several applications to fi-
nance are presented. Also, an interesting result of this paper is a verification theorem
which allows to characterize the dynamic value function of an optimization problem
as the solution of a Lipschitz BSDE. This principle stated in the Brownian case has
many applications in finance. One of them can be found in Rouge and El Karoui [117]
who study the exponential utility maximization problem in the incomplete Brownian
case and characterize the dynamic indifference price as the solution of a quadratic
BSDE (introduced by Kobylanski [83]). Concerning the exponential utility maximiza-
tion problem, there is also the nice work of Hu et al. [67] still in the Brownian case.
By using a wverification theorem (different from the previous one), they characterize

the logarithm of the dynamic value function as the solution of a quadratic BSDE.

The case of a discontinuous framework is more difficult. One reason is that there are
less results on BSDEs with jumps than in the Brownian case. Concerning the study of the
exponential utility maximization problem in this case, we refer to Morlais [99]. She supposes
that the price process of stock is modeled by a local martingale driven by an independent
Brownian motion and a Poisson point process. She mainly studies the interesting case
of admissible strategies valued in a compact set (not necessarily convex). Using the same
approach as in Hu et al. [67], she states that the logarithm of the associated value function is
the unique solution of a quadratic BSDE (for which she shows an existence and a uniqueness
result). In the non constrained case, she obtains formally a quadratic BSDE. She proves
the existence of a solution of this BSDE by using an approximation method but she does
not obtain uniqueness result. Hence, in this case, this does not allow to characterize the
value function in terms of BSDEs.

In this paper, we first consider the case of strategies valued in a compact set. By using a
verification theorem, which is a generalization of that of El Karoui et al. [50] to the case of
jumps, we show that the value function of the exponential utility maximization problem can
be characterized as the solution of a Lipschitz BSDE. Second, we consider the case of non
constrained strategies. We use the dynamic programming principle to show directly that
the value function is characterized as the maximal solution or the mazimal subsolution of a
BSDE. Moreover, we give another characterization of the value function as the nonincreasing
limit of a sequence of processes, which are the value functions associated with some subsets

of bounded admissible strategies. In the case of bounded coefficients, these approximating
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processes are the solutions of Lipschitz BSDEs. As a direct consequence, this suggests
some possible numerical computations in order to approximate the value function and the
indifference price. Also, we generalize these results to the case of several default times and
several stocks, and to the case of a Poisson process instead of a hazard process.

The outline of this paper is organized as follows. In Section 2, we present the market
model and the maximization problem in the case of only one risky asset (n = 1). In Section
3, we study the case of strategies valued in a compact set. In Section 4, we consider the
non constrained case and state a first characterization of the value function as the maximal
subsolution of a BSDE. In Section 5, we give a second characterization of the value function
as the nonincreasing limit of a sequence of processes. In Section 6, we consider the classical
case where the coefficients are bounded which simplifies the two previous characterizations of
the value function. In Section 7, we study the case of unbounded coefficients which satisfy
some exponential integrability conditions. Finally in Section 8, we study the indifference
price for a contingent claim. In the last section, we generalize the previous results to the
case of several assets (n > 1) and several default times, and we also extend these results to

a Poisson jump model.

1.2 The market model

Let (£2,G,P) be a complete probability space. We assume that all processes are defined on a
finite time horizon [0, T]. Suppose that this space is equipped with two stochastic processes:
a unidimensional standard Brownian motion (W;) and a jump process (NNV¢) defined by
Ny = 1,<; for any t € [0,T], where 7 is a random variable which modelizes a default time
(see Section for several default times). We assume that this default can appear at
any time, that is P(7 > ¢) > 0 for any ¢ € [0,7]. We denote by G = {G;,0 <t < T'} the
completed filtration generated by these processes. The filtration is supposed to be right-
continuous and (W;) is a G-Brownian motion.

We denote by (M;) the compensated martingale of the process (N;) and by (A;) its
compensator. We assume that the compensator (A;) is absolutely continuous with respect
to Lebesgue’s measure, so that there exists a process (A;) such that A, = fot Asds. Hence,
the G-martingale (M;) satisfies

t
M, :Nt_/ A\ods . (1.2.1)
0

We introduce the following sets:
— 8§t is the set of positive G-adapted P-essentially bounded cad-lag processes on [0, 7.

— L%* is the set of positive G-adapted cad-lag processes on [0, 7] such that E[Y;] < oo
for any t € [0,77].
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~ L*(W) (resp. L3 .(W)) is the set of G-predictable processes on [0, 7] under P with
T T
IE[/ |Zt\2dt] < oo (resp. / | Z,2dt < o0 a.s. ).
0 0

~ L*(M) (resp. L} (M), L},.(M)) is the set of G-predictable processes on [0,7] such
that

T T T
E[/ At\Utht} < oo (resp. / Ae|U|2dt < oo,/ A|Ubldt < o0 a.s. ).
0 0 0

We recall the useful martingale representation theorem (see for example Jeanblanc et
al. [73]):

Lemma 1.2.1. Any (P, G)-local martingale has the representation

t t
my = mo+/ asdW, +/ bsdM,, V't € [0,T] a.s., (1.2.2)
0 0

where a € L2 (W) and b € L} (M). If (m¢)o<i<r is a square integrable martingale, each

loc

term on the right-hand side of the representation 1s square integrable.

We now consider a financial market which consists of one risk-free asset, whose price
process is assumed for simplicity to be equal to 1 at any date, and one risky asset with price
process S which admits a discontinuity at time 7 (we give the results for n assets and p
default times in Section . In the sequel, we consider that the price process S evolves

according to the equation
dSt == St_ (,U,tdt + O'tth + ﬁtht), (123)
with the classical assumptions:

Assumption 1.2.1.

(1) (ut), (o) and (B:) are G-predictable processes such that o; > 0 and
T T
/ O't|2dt+/ M| Be|?dt < 00 a.s.,
0 0

(ii) the process (f;) satisfies B; > —1 (this assumption implies that the process S is
positive).
We also suppose that E[exp(— fOT adW; — %fOT aZdt)] = 1 with ap = (e + MBe) /oy,

which gives the existence of a martingale probability measure and hence the absence of

arbitrage.
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A G-predictable process m = (m¢)o<t<7 is called a trading strategy if fOT é:—t_dSt is well
defined, e.g. fOT |0 |2dt + fOT Me|mBe|?dt < oo a.s. The process (m)o<i<r describes the
amount of money invested in the risky asset at time ¢. The wealth process (X;”") associated
with a trading strategy m and an initial capital x, under the assumption that the trading

strategy is self-financing, satisfies the equation

{ dX7™ = m(pedt + oy dWy + BdNy), (1.2.4)

Xg’ﬂ:m

For a given initial time ¢ and an initial capital x, the associated wealth process is denoted
by X&5T.

We assume that the investor in this financial market faces some liability, which is modeled
by a random variable £ (for example, £ may be a contingent claim written on a default event,
which itself affects the price of the underlying asset). We suppose that ¢ € L?(Gr) and it
is non-negative (note that all the results still hold under the assumption that £ is only
bounded from below).

Our aim is to study the classical optimization problem

V(z,§) = sggE[U(X;’Hg)], (1.2.5)

where D is a set of admissible strategies (independent of z) which will be specified in the

sequel. U is an exponential utility function
U(z) = —exp(—yx), z € R,

where v > 0 is a given constant, which can be seen as a coefficient of absolute risk aversion.
Hence, the optimization problem ((1.2.5) can be clearly written as

Vi, &) = eV (0,8).

Hence, it is sufficient to study the case x = 0. To simplify notation we will denote X (resp.
XY™ instead of X (resp. X4%™). Also, note that

V(0,6) = — inf E[exp (- v(X] +¢))]. (1.2.6)

1.3 Strategies valued in a given compact set (in the case of
bounded coefficients)

In this section, we study the case where the strategies are constrained to take their values

in a compact set denoted by C' (the admissible set will be denoted by C instead of D).



1.3. STRATEGIES VALUED IN A COMPACT SET 41

Definition 1.3.1. The set of admissible strategies C is the set of predictable R-valued

processes 7w such that they take their values in a compact set C' of R.

We assume in this part that:

Assumption 1.3.1. The processes (1), (0¢), (8¢) and the compensator (\;) are uniformly
bounded.

This case cannot be solved by using the dual approach because the set of admissible
strategies is not necessarily convex. In this context, we address the problem of character-
izing dynamically the value function associated with the exponential utility maximization
problem. We give a dynamic extension of the initial problem (with D = C). For
any initial time ¢ € [0, 7], we define the value function J(¢, &) (also denoted by J(t)) by the

following random variable

J(t,€) :eSSeiCHfE[eXp(—V(X}’”Jrg))‘gt]’ (1.3.1)

where C; is the set of predictable R-valued processes m beginning at ¢ and such that they
take their values in C. Note that V' (0,&) = —J(0,&).
In the sequel, for ¢ fixed, we want to characterize this dynamic value function J(t)

(= J(t,€)) as the solution of a BSDE.

For that, for each 7 € C, we introduce the cad-lag process (JJ) satisfying
JI = E[exp ( — ’y(Xélﬂ + 5))\@], Vtel0,T].

Since the coefficients are supposed to be bounded and the strategies are constrained to
take their values in a compact set, it is possible to solve very simply the problem by using
a verification principle in terms of Lipschitz BSDEs in the spirit of that of El Karoui et al.
[56].

Note first that for any m € C, the process (J{') can be easily shown to be the solution
of a linear Lipschitz BSDE. More precisely, there exist Z™ € L2(W) and U™ € L?(M), such
that (J™, Z™,U™) is the unique solution in S™°° x L2(W) x L?(M) of the linear BSDE with

bounded coefficients
—dJT = fT(t, JT, Z7, UT)dt — ZTdW; — U dM; ; JF = exp(—~§), (1.32)

with f7(s, vy, z, u) = 772713039 - 7775(#3:‘/ +052) — )‘s(l - eivﬂsﬁs)(y +u).
Using the fact that J(t) = essinfrec, JI for any t € [0,T], we state that (J(t)) corre-

sponds to the solution of a BSDE, whose driver is the essential infimum over 7 of the drivers

of BSDEs ((1.3.2). More precisely,

Proposition 1.3.1. The following properties hold:
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~ Let (Y, Z,U) be the solution in ST°° x L*(W) x L*(M) of the following BSDE
2
—dY; =ess iélf {?ﬂtzat?}/} — (Y + 04 Zy) — (1 — e‘wtﬂt)(Y} + Ut)}dt
TE

— Z,dW, — UpdM;, (1.3.3)

Yr =exp(—7¢) .
Then, for any t € [0,T], J(t) =Y; a.s.

— There ezists a unique optimal strategy © € C for J(0) = infrec Elexp(—y(XT + €))],

and this strategy is characterized by the fact that it attains the essential infimum in

dt @ dP — a.e.

Proof. Let us introduce the driver f which satisfies ds ® dPP — a.e.
f(s,y,z,u) = essinf f"(s,y, z,u).
el

Since the driver f is written as an infimum of linear drivers (f™)rec w.r.t (y,z,u) with
uniformly bounded coefficients (by assumption), f is clearly Lipschitz (see Lemma
in Appendix . Hence, by Tang and Li’s results [126], BSDE with Lipschitz
driver f

—dY, = f(t, Yy, Z, Up)dt — ZydWy — UgdM, 5 Yp = exp(—v€)

admits a unique solution denoted by (Y, Z,U).

Since, we have
[t oy, z,u) — fT(ty, z,u') = M(u —u)y, (1.3.4)

with 'yt = e bt _ 1, and since there exist some constants —1 < C7 < 0 and 0 < (5 such
that C; < ~' < Cy, the comparison theorem in case of jumps (see for example Theorem
2.5 in Royer [118]) can be applied and implies that ¥; < JF, Vt € [0,7] a.s. As this
inequality is satisfied for any 7= € C, it is obvious that Y; < essinfrcc JI' a.s. Also, by
applying a measurable selection theorem, one can easily show that there exists 7 € C such

that dt ® dP-a.s.

2
eS7rS€1élf {%7‘(?0}2}/} - ’Yﬂt(ﬂt}/t + UtZt) - )\t(l — eifymﬁt)(}/t + Ut)}

2
_ %ﬁfont — (e + 01 Z) — M (1 — e 7PN (Y, 4 Uy).
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Thus, (Y, Z,U) is a solution of BSDE ([1.3.2)) associated with 7. Therefore, by uniqueness of
the solution of BSDE (1.3.2)), we have Y; = JJ, Vt € [0,T] a.s. Hence, Y; = essinf ec, JT =
JF,Vt€[0,T] as., and 7 is an optimal strategy. It is obvious that the optimal strategy is

unique because the function x — exp(—~yz) is strictly convex. O

Remark 1.3.1. The proof is short and simple thanks to the verification principle of BS-
DEs and optimization. Note that this verification principle is similar to the one stated in
the Brownian case by El Karoui et al. [56] but needs some particular conditions on the

coefficients (see (1.3.4])) due to the presence of defaults.

Remark 1.3.2. Note that this problem has already been studied by Morlais [99]. By using
a verification theorem similar to that of Hu et al. [67], she states that the logarithm of the
value function is the unique solution of a quadratic BSDE. In order to obtain this character-
ization, she proves the existence and the uniqueness of a solution for this quadratic BSDE
with jumps by using a quite sophisticated approximation method in the spirit of Kobylanski
[83].

Note that by making a change of variables, the above proposition (Proposition cor-

responds to Morlais’s result [99]. Indeed, put

1
Yt :*log(}/t)?
Y
1z
Zt _’Y Y;g’
1 U,
u =— log (1+—>,
"y Y-

it is clear that the process (y, z,u) is the solution of the following quadratic BSDE

—dy = g(t, z, up)dt — 2, dWy — wdMy 5 yr = =€,

with
3 s + /\s s 2 s + /\s ; 2
gls,2u) = int (5]mo = (= + Mvﬂﬂ lu =Bl ) = (s + M)z - P‘%B‘
exp(y(u=mf)) 1=y (u=mp)

which corresponds exactly to Morlais’s result [99] with [u—7 8], = A 5

This characterization of the value function as the solution of a Lipschitz BSDE leads to
possible numerical computations of the value function (see for example Bouchard and Elie

[22]) and of the indifference price defined via this utility maximization problem (see Section

)



44 CHAPTER 1. EXPONENTIAL UTILITY MAXIMIZATION

Moreover, this property will be used to state that in the non constrained case, the value

function can be approximated by a sequence of Lipschitz BSDEs (see Theorem [1.7.2)).

1.4 The non constrained case: characterization of the value

function by a BSDE

In this section, the coefficients are no longer supposed to be bounded. We now study the
value function in the case where the admissible strategies are no longer required to satisfy
any constraints (as in the previous section). Since the utility function is the exponential
utility function, the set of admissible strategies is not standard in the literature. The
next subsection studies the choice of a suitable set of admissible strategies which will allow
to dynamize the problem and to characterize the associated value function (and even the

dynamic value function).

1.4.1 The set of admissible strategies

Recall that in the case of the power or logarithmic utility functions defined (or restricted) on
R, the admissible strategies are the ones that make the associated wealth positive. Since
we consider the exponential utility function U(x) = — exp(—~x) which is finitely valued for
all z € R, the wealth process is no longer required to be positive. However, it is natural to
consider strategies such that the associated wealth process is uniformly bounded by below
(see for example Schachermayer [I12I]) or even such that any increment of the wealth is

bounded by below. More precisely,

Definition 1.4.1. The set of admissible trading strategies A consists of all G-predictable
processes m = (m;)o<¢<7, Which satisfy fOT \Wt0t|2dt+f0T M\¢|miBe]?dt < oo a.s., and such that
for any 7 fixed and any s € [0,T], there exists a real constant K, such that X7 — X7 >

—Ksr, s <t<T as.

Recall that in their paper, Delbaen et al. [45] also consider the two following sets of

strategies:
— the set O3 of strategies such that the wealth process is bounded,
— the set ©2 defined by
Oy 1= {7r, Elexp (= v(XF +¢€))] < +o0 and X is a Q — martingale for all Q € IP’f},

where IP; is the set of absolutely continuous local martingale measures Q such that
its entropy H (P|Q) is finite.
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Note that ©3 C A. Of course, there is no existence result neither for the space ©3 nor
for A whereas there is one on the set ©9 stated by Delbaen et al. [45]. More precisely, by
using the dual approach, under the assumption that the price process is locally bounded,
these authors show the existence of an optimal strategy on the set ©9. Also, they stress
on the following important point: under the assumption that the price process is locally
bounded (which is satisfied if for example 3 is bounded), the value function associated with
Oy coincides with that associated with ©3. From this, we easily derive that these value

functions also coincide with that associated with A. More precisely,

Lemma 1.4.1. Suppose that the process ([3;) is bounded. The value function V(0,§) asso-
ciated with A defined by

V(0.6) = — inf E[exp (~ (X7 + )] (L41)
is equal to the one associated with ©2 (and also the one associated with Os).

Proof. By the result of Delbaen et al. [45], the value function associated with ©y coincides
with that associated with ©3 denoted by V?3(0,&). Now, since O3 C A, we have V(0,£) >
V3(0,€). By a localization argument (such as in the proof of Lemma [1.4.3)), one can easily

show the equality, which gives the desired result. O

Our aim is mainly to characterize and even to compute or approximate the value function
V(0,¢).

Our approach consists in giving a dynamic extension of the optimization problem and
in using stochastic calculus techniques in order to characterize the dynamic value function.
In the compact case (with the set C), the dynamic extension was easy (see Section [1.3)).
At any initial time ¢, the corresponding set C; of admissible strategies was simply given by
the set of the restrictions to [t,T] of the strategies of C. In the case of A or O3, it is also
very simple (see below for A). However, in the case of the set ©9, things are not so clear.
Actually, this is partly linked to the fact that, contrary to the set ©s, the set A is closed by

binding. More precisely, we clearly have:

Lemma 1.4.2. The set A is closed by binding that is: if m', 7% are two strategies of A and
if s € [0,T], then the strategy 7 defined by

5 n} ift <s,
7Tt -
72 ift>s,

belongs to A.
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Also, the set O is clearly not closed by binding because of the integrability condition
Elexp(—y(X7 4 €))] < 4o0. One could naturally think of considering the space @, :=
{m, X7 is a Q — martingale for all Q € Py} (instead of ©3) but this set is not really
appropriate: in particular it does not allow to obtain the dynamic programming principle
since the Lebesgue theorem cannot be applied (see Remark .

However, there are some other possible sets which are closed by binding as for example
— the set O3 of strategies such that the wealth process is bounded,

— the set A’ defined as the set of G-predictable processes m = (m¢)o<t<7 With fOT |0y |2 dt+
fOT Me|miBe|?dt < oo a.s., and such that for any ¢ € [0,T] and for any p > 1, the fol-

lowing integrability condition

E[ sup exp ( — fprﬁ”r)} < 00 (1.4.2)
s€(t,T)

holds.

Note that ©3 c A c A’

Remark 1.4.1. Note that in general, there is no existence result for the set A’

For the proof of the closedness by binding of the set A’ one is referred to Appendix
Note that in this proof, we see that the integrability condition E[exp(—v (X7 + &))] < +o0
is not sufficient to derive this closedness property by binding. It is the assumption of p-
integrability for p > 1 (and not only the integrability) which allows to derive the
desired property. Note that this type of p-exponential integrability condition appears in
some papers related to quadratic BSDEs.

Let us now give a dynamic extension of the initial problem associated with A given by
(1.4.1). For any initial time ¢ € [0, T], we define the value function J(¢,£) by the following

random variable

J(t, &) :essJi‘{rlfIE[exp(f'y(X%7T+§))|gt]7 (1.4.3)
TEAL
where the set A; consists of all G-predictable processes m = (mg)¢<s<7, which satisfy

ftT |Tsos|?ds + ftT As|msBs|2ds < oo a.s., and such that for any 7 fixed and any s € [t,T]
there exists a constant K, such that X" > —Ks» , s <u <T as.

Note that J(0,£) = —V(0,&). Also, for any ¢t € [0,T7], J(t,&) is also equal a.s. to the essinf
in but taken over A instead of A;. This clearly follows from the fact that the set A;
is equal to the set of the restrictions to [t,T] of the strategies of A.

For the sake of brevity, we shall denote J(t) instead of J(¢,&). Note that the random vari-
able J(t) is defined uniquely only up to P-almost sure equivalent. The process (J(t)) will

be called the dynamic value function. This process is adapted but not necessarily cad-lag
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and not even progressive.

Similarly, a dynamic extension of the value function associated with A’ (or also ©3) can
be easily given. Under the assumption that the price process is locally bounded (which is
satisfied if for example 3 is bounded), the corresponding value functions can be easily shown

to coincide a.s. More precisely,

Lemma 1.4.3. Suppose that the coefficient (5;) is bounded. The dynamic value function
(J(t)) associated with A coincides a.s. with the one associated with A" (or also ©3).

Proof. We give here the proof for A’ (it is the same for ©3). Fix t € [0,T]. Put J (t) :=
essinf__ Al IE[eXp(—fy(X;Tr +€))|Gi], where A; is the set defined similarly as A" but for initial
time ¢. Note that A; can be seen as the set of the restrictions to [t,T] of the strategies of
A'. Since A; C A, we get J'(t) < J(t). To prove the other inequality, we state that for
any m € A;, there exists a sequence (7"),en of A such that 7 — 7, dt ® dP a.s. Let us
define 7™ by

e =msls<r,, Vs €t,T],

where 7, is the stopping time defined by 7,, = inf{s > ¢, |X§’7T >n}.

It is clear that for each n € N, 7" € A;. Thus, exp(—'yX;J”n) = exp(—’yXéfArTn) 25

exp(—yX%™) as n — +oo. By definition of A}, E[sup,e(e, exp(—yX5™)] < oo. Hence,
by the Lebesgue theorem, E[exp(—v(Xélwn + NG — Elexp(—y(X5™ + €)|Gi] as. as
n — +o00. Therefore, we have J(t) < J (t) a.s., which ends the proof. O

Hence, concerning the dynamic study of the value function, if (3;) is supposed to be
bounded, it is equivalent to choose A, A’ or O3 as set of admissible strategies. We have
chosen the set A because it appears as a natural set of admissible strategies from a financial
point of view.

After this dynamic extension of the value function, we will use stochastic calculus tech-
niques in order to characterize the value function via a BSDE. However, it is no longer
possible to use a verification theorem like the one in Section because the associated
BSDE is no longer Lipschitz and there is no existence result for it. One could think to use
a verification theorem like that of Hu et al. [67]. But because of the presence of jumps,
it is no longer possible since again there is no existence and uniqueness results for the as-
sociated BSDE as noted by Morlais [99]. In her paper, Morlais proves the existence of a
solution of this BSDE by using an approximation method but she does not obtain unique-
ness result, even in the case of bounded coefficients. Hence, this does not a priori lead to a

characterization of the value function via a BSDE.
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Therefore, as it seems not possible to derive a sufficient condition so that a given process
corresponds to the dynamic value function, we will now directly study some properties of
the dynamic value function (J(¢)) (in other words some necessary conditions satisfied by
(J(t))). Then, by using dynamic programming techniques of stochastic control, we will
derive a characterization of the value function via a BSDE. This is the object of the next

section.

1.4.2 Characterization of the dynamic value function as the maximal

subsolution of a BSDE

The dynamic programming principle holds for the set A:

Proposition 1.4.1. The process (exp(—yX[)J(t))o<i<T is a submartingale for any ™ € A.

To prove this proposition, we use the random variables (J])rzea, which are defined for
any m € A; by
JE=Elexp (= 1(X7" +€))|G].
As usual, in order to prove the dynamic programming principle, we first state the following
lemma:
Lemma 1.4.4. The set {JI', m € A} is stable by pairwise minimization for any t € [0,T].
That is, for every ', 7% € Ay, there exists m € Ay such that JT = Jt’rl A Jt’r2.

Also, there exists a sequence (1")pen € A¢ for any t € [0,T], such that

J(t)= lim | J* a.s.

n—oo

Proof. Fix t € [0,T]. Let us introduce the set £ = {Jt’rl < Jt”2} which belongs to G;. Let
us define 7 for any s € [t,T] by 75 = milp + 72l ge. It is obvious that © € Ay, since the
sum of two random variables bounded by below is bounded by below. By construction of
, it is clear that JJ = Jt”1 A JZTQ.

The second part of lemma follows by classical results on the essential infimum (see Appendix

1.10.1). O

Let us now give the proof of Proposition [1.4.1]
Proof. Let us show that for t > s,

Elexp (— (X[ — X]))J()|Gs] = J(s) a.s.
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Note that XJ — X™ = X;”". By Lemma there exists a sequence (7, )nen € A; such
that J(t) = lim | JJ" as

n—oo
Without loss of generality, we can suppose that 7% = 0. For each n € N, we have JJ~ <
Jfo < 1 a.s. Moreover, the integrability property Elexp(—yX;"™)] < oo holds because
m € A. This with the Lebesgue theorem give

E[ lim exp (—~X")J7"|G] = lim Efexp (—~X7)J7|G.]. (1.4.4)

Recall that X;"" = f; g=dSy. Now, we have a.s.

oo (=7 [ gras ) =lew (- [ Fhasire))a], 0

where the strategy 7" is defined by

m, if0<u<t,

=
£3

my ift<u<T.

Note that by the closedness property by binding (see Lemma|l.4.2)), 7™ € A for each n € N.
By (1.4.4) and ([1.4.5)), we have a.s.

t

e ([ Fas)o0

gs} _ hmEexp( 7/ “dS +5)) }

= lim JT > J(s),

n—oo

because by definition of J(s), we have JT" > J(s) a.s., for each n € N. Hence, the process

(exp(—yX[)J(t)) is a submartingale for any = € A. O

Remark 1.4.2. Note that the integrability property E[exp(—yX;™)] < oo is essential in
the proof of this property. Indeed, if it is not satisfied, equality does not hold since
the Lebesgue theorem cannot be applied. One could argue that the monotone convergence
theorem could be used but since the limit is decreasing, it cannot be applied without an
integrability condition. Moreover, Fatou’s lemma is not relevant since it gives an inequality
but not in the suitable sense. Actually, the importance of the integrability condition is due
to the fact that we study an essential infimum of positive random variables. In the case of an
essential supremum of positive random variables, the dynamic programming principle holds
without any integrability condition (see for example the case of the power utility function

in Lim and Quenez [93]).
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Also, the value function can easily be characterized as follows:

Proposition 1.4.2. The process (J(t)) is the largest G-adapted process such that (e~ J(t))
is a submartingale for any admissible strategy m € A with J(T') = exp(—v§). More precisely,

if (jt) is a G-adapted process such that (exp(—vXZr)jt) is a submartingale for any m € A

with Jp = exp(—~€), then we have J(t) > J; a.s., for any t € [0,T).

Proof. Fixt € [0,T]. For any 7 € A, E[exp(—yXF)Jr|Gi] > exp(—yX])J; a.s. This implies

essinfE[exp ( — fy(X%ﬂ + f)) \gt] > J; a.s.,

TEAL

which gives clearly that J(t) > J; a.s. O

With this property, it is possible to show that there exists a cad-lag version of the value

function (J(t)). More precisely, we have:

Proposition 1.4.3. There exists a G-adapted cad-lag process (Jy) such that for any t €
[0, 77,

A direct proof is given in Appendix [1.10.4]

Remark 1.4.3. Note that Proposition can be written under the form: (J;) is the
largest G-adapted cad-lag process such that the process (exp(—yX[)J;) is a submartingale
for any m € A with Jp = exp(—~¢).

We now prove that the process (J;) is bounded. More precisely, we have:
Lemma 1.4.5. The process (J;) verifies

0<J; <1, Vte[0,T] a.s.

Proof. Fix t € [0,T]. The first inequality is easy to prove, because it is obvious that

0<L E[exp ( - W(Xf,lﬂ —|—§))’Qt] a.s.,

for any 7 € A;, which implies 0 < J;.
The second inequality is due to the fact that the strategy defined by w5 = 0 for any s € [t, T
is admissible, which implies J; < E[exp(—~v¢)|G;] a.s. As the contingent claim ¢ is supposed

to be non negative, we have J; <1 a.s. O
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Remark 1.4.4. Note that if £ is only bounded by below by a real constant —K, then (J;)

is still upper bounded but by exp(vK) instead of 1.

In our setting, it is not possible to use the verification theorem of Section [I.3] or even
the verification theorem of Hu et al. [67] in the Brownian case. Using the previous charac-
terization of the value function (see Proposition , we will show directly that the value
function (J;) is characterized by a BSDE. Since we work in terms of necessary conditions
satisfied by the value function, the study is more technical than in the cases where a verifi-
cation theorem can be applied.

Since (J;) is a cad-lag submartingale and is bounded (see Lemma [1.4.5), and hence of
class D, it admits a unique Doob-Meyer decomposition (see Dellacherie and Meyer [46],
Chapter 7)

dJy = dmy + dAy,

where (my) is a square integrable martingale and (A;) is an increasing G-predictable process
with Ag = 0. From the martingale representation theorem (see Proposition , the

previous Doob-Meyer decomposition can be written under the form

dJy = ZidWy + Upd My + dA; , (146)

with Z € L>(W) and U € L*(M).

Using the dynamic programming principle, it is possible to precise the process (A) of .
This allows to show that the value function (J;) is a subsolution of a BSDE. For that, we
define the set A% of the increasing adapted cad-lag processes K such that Ky = 0 and
E|K7|? < 0co. More precisely,

Proposition 1.4.4. There exists a process K € A% such that the process (J,Z,U,K) €
ST x LE(W) x L}(M) x A? is a subsolution of the following BSDE

2
- th = eSSEi}‘lf {%W?O’?Jt — "Y?Tt(,U,tJt + O'tZt) - )\t(l - ei’yﬂ-t’at)(Jt + Ut)}dt

— dK; — Z;dW,; — UdM; (1.4.7)

Jr = exp(—§).

Proof. The proof of this proposition is based on the dynamic programming principle: the
process (exp(—yX/[)J;) is a submartingale for any m € A (see Proposition [1.4.2)). First, we

write the derivative of exp(—yXJ')J; under the following form

d(e X0 ) = dAT + dm7T,
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with Af = 0 and

2
dAT = e 7X0 {dAt + { 5 miofdy — (1 — e’”’”ﬁt)(Ut + Ji) — ymi(o Zy + MtJt)}dt}a
dm] = e (2 — ymorJ)dWe + (Uy + (€77 = 1)(Uy + J,- ) )dMy].

Since for any m € A the process (exp(—yX[)J;) is a submartingale, we have

2
dA; > esssup {)\t(l — e_VWt’gt)(Ut + Ji) +yme(or Zy + e Jy) — é 7Tt o Jt}dt (1.4.8)
TeA

We define the process (K;) by Ko =0 and
A2
th = dAt — esssup {)\t(l — e_yﬂtﬁt)(Ut + Jt) + ")/7Tt< tZt + MtJt) 2 T O’?Jt}d
TeA
It is clear that the process (K;) is nondecreasing from (1.4.8]). Since the strategy defined
by 7 = 0 for any ¢ € [0, 7] is admissible, we have
~2
ess sup {)\t(l — e‘wtﬂt)(Ut + Ji) + yme(orZy + peJy) — ?wt of Jt}
TeEA
Hence, 0 < K; < A; as. As E|A7|? < oo, we have K € A?. Thus, the Doob-Meyer
decomposition (|1.4.6]) of (J;) can be written as follows
A2
dJy = esssup {)\t(l — e*w”ﬁt)(Ut + ) +ym(orZy + i) — 2 o Jt}d
TeA

+ dK; + Z:dWy + Upd My,

with Z € L>(W), U € L?(M) and K € A?. This ends the proof. O

The fact that (J, Z, U, K) is a subsolution of BSDE (1.4.7)) does not allow to characterize
the value function, since the subsolution of BSDE ([1.4.7)) is not unique. However, we have

the following characterization of the value function:

Theorem 1.4.1. (Characterization of the value function)

(J, Z,U, K) is the maximal subsolution in ST*° x L?2(W) x L*(M) x A% of BSDE .
That is for any subsolution (J,Z,U,K) of the BSDE in ST x L*(W) x L*(M) x A?, we
have Jy < Jy, Vt € [0,T] a.s.

Remark 1.4.5. If £ and the coefficients are supposed to be bounded, we will see, in Section
that (J, Z,U) is the mazimal solution of BSDE (1.4.7), that is with K; = 0 for any
t €10,T] (see Theorem[1.6.9).
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Proof. Let (J,Z,U, K) be a subsolution of (1.4.7) in St°° x L2(W) x L?*(M) x A?. Let us
prove that the process (exp(—yX[)J;) is a submartingale for any 7 € A.

From the product rule, we can write the derivative of this process under the form
d(e ™ J) = dMT + dAT + e N dE,,

with Ag =0 and
2

dA; = — essinf {%wfo’fjt — (s + 0¢ Zy) — )\t(l — 6_7”@) (J; + Ut)}dt,

TeA

2
dAT :e_VXtﬂ{ [%W?U?jt — (s + ¢ Zy) — /\t(l — e_wtﬁt) (J; + Ut)} dt + d[lt},

AMT = X [(Zy — ymon ) AWy + (T + (€77 = 1)(Ty + J,- ) ) dM;].

Since the strategy 7 is admissible, there exists a constant C such that exp(—yX[) < Cx
for any ¢ € [0,T]. With this, one can easily derive that E[sup,c(o 7y exp(—vX])Ji] < +o0
and that IEUOT exp(—yX[)dK;] < 4oo. It follows that the local martingale (M) is a
martingale and that the process (exp(—yXF)J;) is a submartingale.

Now recall that (J;) is the largest process such that (exp(—vyX[)J;) is a submartingale for
any m € A with Jp = exp(—~&) (see Proposition . Therefore, we get

jt < Ji, Vte [O,T] a.S.
O

Remark 1.4.6. Note that the integrability property E[supycpo 7 exp(—vX{")] is essential in
this proof.

1.5 The non constrained case: approximation of the value
function

In this section, we do not make any assumptions on the coefficients of the model.
In the sequel, the value function is shown to be characterized as the limit of a nonincreasing
sequence of processes ((JF))ren as k tends to +oo, where for each k € N, (JF) corresponds
to the value function over the set of admissible strategies bounded by k.

Note that in the classical case of bounded coefficients, we will see in the next section that
for each k € N, (JF) can be characterized as the solution of a Lipschitz BSDE.
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For each k € N, we denote by AF the set of strategies of A; uniformly bounded by k,

and we consider the associated value function J*(t) defined by

JE(t) :essLnfE[exp(—W(X;Tr—l—g))‘gt]_ (1.5.1)
S f

By similar argument as for (J;), there exists a cad-lag version of (J¥(t)) denoted by (JF).
As previously, the dynamic programming principle holds:
Proposition 1.5.1. The process (exp(—yX[)JF) is a submartingale for any = € A*.

We now show that the sequence of value functions ((JF))ren converges to the value
function (J;). More precisely, we have:
Theorem 1.5.1. (Approximation of the value function)
For any t € [0,T], we have

Jy=lim | JF a.s.
k—o0
Proof. Fix t € [0,T]. It is obvious with the definitions of sets A; and A} that AF C A; for
each k € N, and hence
Jy < JF as.

Moreover, since AF C A for each k € N, it follows that the sequence of positive random

variables (JF)pen is nonincreasing. Let us define the random variable
J(t) = lim | J¥ a.s.
k—oo

It is obvious from the previous inequality that J; < .J(t) a.s., and this holds for any ¢ € [0, T7.
It remains to prove that J; > J(t) a.s. for any ¢ € [0, T]. This will be done by the following
steps.

Step 1: Let us now prove that the process (J(t)) is a submartingale. Fix 0 < s <t < T.
From Proposition (JF) is a submartingale, which gives for each k € N

]E[th‘gs] > Jf > J(s) a.s.

The dominated convergence theorem (which can be applied since 0 < JF < 1 for each k € N)

gives
E[J(t)|Gs] = klim E[Jf!gs} > J(s) a.s.,

which gives step 1.
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Step 2: Let us show that the process (exp(—vyX[)J(t)) is a submartingale for any bounded
strategy m € A.

Let m be a bounded admissible strategy. Then, there exists n € N such that 7 is uni-
formly bounded by n. For each k > n, since 7 € AF, (exp(—yXF)JF) is a submartin-
gale from Proposition [[.5.1] Then, by the dominated convergence theorem, the process

(exp(—yX[)J(t)) can be easily proven to be a submartingale.

Step 3: Note now that the process (J(t)) is a submartingale not necessarily cad-lag. How-
ever, by a theorem of Dellacherie-Meyer [46] (see VI.18), we know that the nonincreasing
limit of a sequence of cad-lag submartingales is indistinguishable from a cad-lag adapted
process. Hence, there exists a cad-lag version of (J(t)) which will be denoted by (.J;). Note

that (J;) is still a submartingale.

Step 4: Let us show that J; < J;, Vt € [0,T] a.s. Since by steps 1 and 3, (J;) is a cad-lag

submartingale of class D, it admits the following Doob-Meyer decomposition
dJy = ZydW; + UpdM; + dA,,

where Z € L?2(W), U € L?*(M) and (4;) is a nondecreasing G-predictable process with
Ag=0.

As before, we use the fact that the process (exp(—vX[)J;) is a submartingale for any
bounded strategy 7 € A to give some necessary conditions satisfied by the process (A).

Let m € A be a uniformly bounded strategy. The product rule gives
d(e ¥ J) = dMT + dAT,

with AT = 0 and
_ - _ 72 _ _ _ _ _
dAzr = 67%)(’S {dAt + [?Wfoth + )\t(ei’yﬂt’gt — 1)(Ut + Jt) - ’Yﬂ't(HtJt + UtZt)} dt},
thﬂ— = e_VXZL [(Zt — ’YWtUtjt)th + (Ut + (6_77”’& - 1) (Ut + jt_))th] .
Let A be the set of uniformly bounded admissible strategies. Since the process (e~7X¢ J;)
is a submartingale for any 7 € A, we have dAT > 0 a.s. for any 7 € A. Hence, there exists

a process K € A? such that

2
dz‘_lt = — eSSij{lf {%ﬂ?o‘?jt — ’yﬂt(utjt + UtZt) — )\t(l — e_vﬂtﬁt)(jt + ﬁt)}dt -+ dkt
TE
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Now, the following equality holds dt ® dP — a.e. (see Appendix [1.10.5| for details)

2
ess ij}f {%thafjt — ymi(pedy + 04 Z4) — )\t(l — e—vmﬁt)(jt + Ut)} -
e
2

essinf {%Wfo’fjt — ymi(pedy + 04 Zy) — )\t(l — e‘””tﬁt) (J; + Ut)}. (1.5.2)

TeA

Hence, (J, Z,U, K) is a subsolution of BSDE ((1.4.7) and Theorem implies that
Jy < Jy, Yt €10,T] a.s.,

which ends the proof. O

In the next section, we will see that in the classical case of bounded coefficients, for each
k € N, (JF) can be characterized as the solution of a Lipschitz BSDE.

1.6 Case of bounded coefficients

In this section, the coefficients of the model (u¢), (0¢), () and (\;) are supposed to be
bounded. We will see that in this case, the two previous theorems (Theorem and
Theorem will lead to more precise characterizations of the dynamic value function.

For each k € N, we define the set B* as the set of all strategies (not necessarily in A)
such that they take their values in [k, k]. Also, we denote by BF the set of all strategies
beginning at ¢ and such that they take their values in [k, k].

Note that for each k € N, Vp > 1 and V¢ € [0, T] the following integrability property

sup E[exp ( — 'prZr)] < 00 (1.6.1)
reBk

clearly holds.

We state the following lemma:

Lemma 1.6.1. The following equality holds for any k € N and for any t € [0, T

Jk = essinfE[exp ( — 'y(X%” + f)) \gt] a.s.,

neBE

with (JF) defined in the previous section by :

Proof. Fix k € N and t € [0,T]. Put JF := essinf, ¢ Elexp(—y(X4™ + €))|Gi]. Since

.A,’f - Bf, we get jtk < th. To prove the other inequality, we state that there exists a
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sequence (") en of AF such that 7" — 7, dt ® dP a.s., for any 7 € BF. Let us define 7"
by

e =msls<r,, Vs €t,T],

where 7, is the stopping time defined by 7, = inf{s > ¢, | X&"

> n}.

It is clear that for each n € N, 7" € AF. Thus, exp(—'yX;’”") = exp(—'yXfp’Ln) 22

exp(—yX ;") as n — +oo. By (1.6.1), the set of random variables {exp(—yX4"), © € B}

is uniformly integrable. Hence, E[exp(—’y(X;lﬂn +))|Gi] — Elexp(—y(X2™ +€))|G] as. as

n — +oo. Therefore, we have JF < JF a.s. which ends the proof. O]
Now by Proposition [1.3.1} we have that for each k € N, the process (JF) is characterized

as the solution of a Lipschitz BSDE given by (1.3.3) with C replaced by B*. Hence, we have

that:

Theorem 1.6.1. (Approximation of the value function)

The value function is characterized as the nonincreasing limit of the sequence (JF)ren as k

tends to +oo, where for each k, (JF) is the solution of Lipschitz BSDE with C = BF.

Remark 1.6.1. Note that this allows to approximate the value function by numerical
computations (by applying for example Bouchard and Elie’s results [22]).

We now recall a result of convergence stated by Morlais [99]. For each k € N, let us
denote by (ZF, UF) the pair of square integrable processes such that (J*¥, Z¥, U*) is solution
of the associated Lipschitz BSDE (1.3.3) with C replaced by B¥. We make the following

change of variables

1
yr = log(JF),
r 1Zf
Zt —*7,
v Ji
1 Uk
k t
uy =—1lo <1+—).
t y g th;

It is clear that the process (y*, 2%, u¥) is a solution of the following quadratic BSDE
—dyF = g"(t, 2F ul)dt — 2Faw, —uFdMy o = —¢
with

k . Y
)~ = f (7
9°(s,z,u) inf {5

y |:UJs + )\sﬁs|2
2y

MO g — (z+ +|u_775138|’y) — (s + As3s)

s + Asﬁs) ‘2
Y
_ )\texp(w(u—wﬁt))—l—v(u—wﬁz)
5 .
Recall that by using Kobylanski’s techniques [83] on monotone stability convergence theo-

and |u — 70|

rem, Morlais [99] shows the following nice result:
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Proposition 1.6.1. (Morlais’s result) Suppose that the coefficients are bounded and that £

is bounded. Then, (y¥, zF, uf) converges to (yi, z,us) in the following sense

E( sup [yf — wel) + |2* - 22wy + u* — ul 2y — 0,
t€[0,T]

where (y, z,u) is solution of
—dye = g(t, yt, 2t, up)dt — 2 dWy — wgdMy 5 yr = =¢,

with

Us + )\sﬁs . |,us + )‘sﬂs|2

)| = mabil) = (e Az =

9(s,z,u) = inf (% TsOs — (z—i—

TeB

)

and B = U B".

By similar arguments as in the proof of the above lemma (Lemma [1.6.1)) or as in Ap-
pendix [1.10.5] the set B can be replaced by A or even by A.
Using this proposition and our characterization of (J;) as the nonincreasing limit of

((JF))ren, we can identify the limit (y;). More precisely, let us define the following processes

Jt* - e’}’yt’
Z; = /YJt*Ztv
U = (7 —1)J7 .

Since J; = limg .o JF by Theorem (or , Jf = Ji, Vt € [0,T] a.s., and the
uniqueness of the Doob-Meyer decomposition of J; implies that Z; = Z; and U} = U,
dt ® dP — a.e. Also, by using Morlais’s result (Proposition , we derive that (J, Z,U) is
a solution to BSDE ([1.4.7)), and not only a subsolution. This, with the characterization of
(Ji) of Theorem [L.4.1] give:

Theorem 1.6.2. (Characterization of the value function)
Suppose that & and the coefficients are bounded. Then, the value function (J,Z,U) is the
mazximal solution of BSDE (that is with Ky = 0 for any t € [0,T1]).

Remark 1.6.2. Moreover, if there is no default, our result corresponds to that of Hu
et al. [67] in the complete case (by making the simple exponential change of variable
Y = %log(Jt)). Also, in this case, the optimal strategy belongs to the set A’. Indeed, the
optimal terminal wealth is given by X7 = I(AZy(T)), where I is the inverse of U’, X is a
fixed parameter, Zo(T) := exp{— fOT ardWy — %fOT aZdt} and oy 1= %;\tﬁt (supposed to
be bounded).
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1.7 Case of coefficients which satisfy some exponential inte-
grability conditions

In this section, we will study the case of coefficients not necessarily bounded but satisfying
some integrability conditions. We will first study the particular case of strategies valued in
a convex-compact set. Then, we will see that the approximation result of the value function

in the non constrained case (Theorem [1.5.1)) can be specified.

1.7.1 Case of strategies valued in a convex-compact set

We suppose that the set of admissible strategies is given by C (see Section where C is
a convex-compact (not only compact) set. Here, it simply corresponds to a closed interval
of R because we are in the one dimensional case. However, the following results clearly still
hold in the multidimensional case (see Section [L.9). Let (J(t)) be the associated dynamic
value function with C; defined as in Section (see ) Using some classical results
of convex analysis (see for example Ekeland and Temam [52]), we easily state the following

existence property:

Proposition 1.7.1. There exists an optimal strategy ® € C for the optimization problem

, that is
J(0) = inf Eexp (= v(XF +€))] = E[exp (= 7(XF +¢))].

Proof. Note that C is strongly closed and convex in L2([0,T] x Q). Hence, C is closed for
the weak topology. Moreover, since C is bounded, C is compact for the weak topology.

We define the function ¢(m) = E[exp(—v(XF + £))] on L%([0,T] x ). This function is
clearly convex and continuous for the strong topology in L2([0, T] x Q). By classical results
of convex analysis, it is s.c.i for the weak topology. Now, there exists a sequence (7"),en
of C such that ¢(7™) — mingec ¢(m) as n — oo.

Since C is weakly compact, there exists an extracted sequence still denoted by (7™) which
converges for the weak topology to 7 for some © € C. Now, since ¢ is s.c.i for the weak

topology, it implies that

¢(7) < liminf p(7") = Inelél o(m).

Therefore, ¢(7) = inf e ¢(m) and the proof is ended. O
We now want to characterize the value function J(¢) by a BSDE. For that, we cannot

apply the same techniques as in the case of bounded coefficients. Indeed, since the co-

efficients are not necessarily bounded, the drivers of the associated BSDEs are no longer
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Lipschitz. Hence, the existence and uniqueness results and also the comparison theorem do
not a priori hold. Therefore, as in Section [1.4] we will use dynamic programming techniques
of stochastic control but also the existence of an optimal strategy.

First, one can show easily that the set {JJ, m € C;} is stable by pairwise minimization.
In order to have the dynamic programming principle, we now suppose that the coefficients

satisfy the following integrability condition:

Assumption 1.7.1. () is uniformly bounded and

Blow (o [ tlar)] + e (0 [ of2ar)] < .
where a = 27||C||s and b= 8v?||C||%.

By classical computations, one can easily derive that for any ¢ € [0,7] and any 7 € Cy,

the following inequality holds

E[ sup exp ( — 'ng’”)} < 0. (1.7.1)
s€[t,T)

Using this integrability property and similar arguments as in the proof of Proposition
the process (J(t)) can be shown to satisfy the dynamic programming principle over C
that is: (J(t)) is the largest G-adapted process such that (exp(—yX[)J(t)) is a submartin-
gale for any m € C with J(T') = exp(—v§).

Also, the following classical optimality criterion holds:
Proposition 1.7.2. Let # € C. The two following assertions are equivalent:
(i) # € C is optimal that is J(0) = Elexp(—v(XF + €))].

(i) The process (exp(—yXF)J(t)) is a martingale.

The proof is given in Appendix [1.10.6

Corollary 1.7.1. There exists a cad-lag version of (J(t)) which will be denoted by (Jy).

Proof. The proof is simple here because we have an existence result. More precisely, from
Proposition there exists # € C which is optimal for Jy. Hence, by the optimality
criterium (Proposition , we have J(t) = exp(—yX[)E[exp(—y(XF + £))|Gi] for any
t € [0, 7] (in other words, 7 is also optimal for J(t)). By classical results on the conditional

expectation, there exists a cad-lag version denoted by (.J;). O



1.7. COEFFICIENTS SATISFYING SOME INTEGRABILITY CONDITIONS 61

Note that the process (J;) verifies 0 < J; < 1, Vt € [0,T] a.s. Using the dynamic

programming principle and the existence of an optimal strategy, we state the following

property:

Proposition 1.7.3. There exist Z € L*(W) and U € L*(M) such that (J, Z,U) is the
mazimal solution in St x L2(W) x L*(M) of BSDE (1.5.9).

The proof is given in Appendix

Remark 1.7.1. It can be noted that the optimal strategy @« € C for Jy is characterized by
the fact that 7; attains the essential infimum in ([1.3.3)), dt ® dP — a.e.

With Assumption it is possible to prove the unicity of the solution to BSDE (|1.3.3)).

Theorem 1.7.1. (Characterization of the value function)
The value function (J,Z,U) is characterized as the unique solution in ST x L2(W) x

L*(M) of BSDE :

Proof. Let (J,Z,U) be a solution of BSDE ((1.3.3). Using a measurable selection theorem,
we know that there exists at least a strategy @ € C such that dt ® dP — a.e.
2

es;rsei(rzlf {%Wfafjt — ymi(pe Jy + 04 Zy) — )\t(l — e*W‘ﬁt)(jt + Ut)}

2 — — — — — —
= %_20'152!],5 — ’Yﬁt(ﬂtjt + O'tZt) — )\t(]- — G_WWtBt)(Jt + Ut)

Thus ([1.3.3) can be written under the form
2

djt = {Wﬁt(ﬂtjt + O'tZt) + )\t(l — 6_’yﬁtﬁt)(jt + Ut) — %ﬁzdfjt}dt + thWt + Utht.

Let us introduce by By = exp(—yX[). [t6’s formula and rule product give
d(Btjt) = (BtZt — ’)/O't’ﬁ'tBtjt)th + [(ei’ﬂatﬁt — 1)Bt* jt + ei’yﬁtﬁtBtf Ut] th

By Assumption and since (J;) is bounded, one can derive that the local martingale
(ByJy) satisfies E[supg;<r |BrJy|] < co. Hence, (ByJy) is a martingale. Thus,
- BT —€ t,T
Ji=E[ZLe |G| = E[exp (—2(Xf +)) 6],
t
Thus,

Jo z essinfE[exp (= 5(X7" +€))|Gi] = i
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Now, by the previous Proposition (J¢) is the maximal solution of BSDE (1.3.3)). This
gives that for any t € [0,T], J; < J;, P — a.s. Hence, J; = J;, Vt € [0,T], P —a.s., and 7

is optimal and the proof is ended.

1.7.2 The non constrained case

In this section, the set of admissible strategies is given by A. Under some exponential
integrability conditions on the coefficients, we can also precise the characterization of the

value function (J;) as the limit of ((JF))ren as k tends to +oo.

Assumption 1.7.2. (f;) is uniformly bounded, E[fOT Aidt] < oo and for any p > 0 we have

e (v [ lulit)] +B[exo (b [ looar)] <o

Again, for each k € N, we consider the set BF of strategies beginning at ¢ and valued
in [k, k]. Since Assumption is satisfied, the integrability condition ([1.6.1)) holds and
hence, for each k € N,

JE = ess infE[exp ( — ’y(X;fr + 5)) \gt] a.s.

TEBY

In this case, for each k£ € N, the process (th) is characterized as the unique solution of
BSDE ([1.3.3) with C = B*. Therefore, we have:

Theorem 1.7.2. (Characterization of the value function)
The value function is characterized as the nonincreasing limit of the sequence ((JF))ren as k

tends to 400, which are the unique solutions of BSDFEs with C = B* for each k € N.

1.8 Indifference pricing via the maximization of exponential
utility

We first present a general framework of the Hodges and Neuberger [66] approach with some
strictly increasing, strictly concave and continuously differentiable mapping U, defined on
R. We solve explicitly the problem in the case of exponential utility.

The Hodges approach to pricing of unhedgeable claims is a utility-based approach and
can be summarized as follows the issue at hand is to assess the value of some (defaultable)
claim £ as seen from the perspective of an investor who optimizes his behavior relative to

some utility function, say U. The investor has two choices
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— he only invests in the risk-free asset and in the risky asset, in this case the associated

optimization problem is

V(z,0) = supE[U(X77)],

— he also invests in the contingent claim, whose price is p at 0, in this case the associated

optimization problem is

V(iez—p,&) = SI;1FpIE[U(X%7p’7r + 5)]

Definition 1.8.1. For a given initial endowment x, the Hodges buying price of a defaultable
claim £ is the price p such that the investor’s value functions are indifferent between holding

and not holding the contingent claim &, i.e.
V(z,0) = V(z - p,¢).

Remark 1.8.1. We can define the Hodges selling price p, of £ by considering —p, where p
is the buying price of —¢&, as specified in the previous definition.
In the rest of this section, we consider the case of an exponential utility function. With

our notation, if the investor buys the contingent claim at the price p and invests the rest of

his money in the risk-free asset and in the risky asset, the value function is equal to

V(z —p,§) = exp(—y(z — p))V(0,§).

If he invests all his money in the risk-free asset and in the risky asset, the value function is
equal to
V(.CL‘, 0) - exp(—’y:n)V(O, O)

Hence, the Hodges price for the contingent claim ¢ is given by the formula

(0,0) (0,0)
= 11“(5(8,2)) = 11“(?(8,2))'

v

Y

since J(0,£) = —V(0, ).
In the case of Section that is where the strategies take their values in a compact set

C, we have:

Proposition 1.8.1. (Compact case) Suppose that the coefficients are bounded. Let (Jf) be
the solution of Lipschitz BSDE and (J?) be the solution of Lipschitz BSDE

with & = 0. The Hodges price for the contingent claim & is given by the formula

p= ’lyln (“J’ZZ) (1.8.1)
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Remark 1.8.2. Consequently, the indifference price is simply given in terms of two Lip-
schitz BSDEs. This leads to possible numerical computations by applying the results of
Bouchard and Elie [22].

Note that in the case where the coefficients are not supposed to be bounded but only sat-
isfy some exponential integrability conditions (see Section , Proposition still holds
except that BSDE ([1.3.3)) is no longer Lipschitz (but still admits a unique solution).

In the non constrained case, without any assumptions on the coefficients, we have

Proposition 1.8.2. (Non constrained case) Let (Jf) (resp. (JP)) be the mazimal subso-
lution of BSDE (resp. with & = 0). The Hodges price for the contingent claim &
associated with A is given by formula .

Note that if the coefficient [ is bounded (but not necessarily the others), the indifference
price associated with the set ©9 of Delbaen et al. [45] and that associated with the set A

coincide because the value functions V(z,0) and V(z — p, &) are the same for O2 or A.
Recall that in the case of bounded coefficients, (Jf) is the maximal solution of BSDE

(1.4.7). Also, in this case, we have:

Proposition 1.8.3. (Approzimation of the indifference price) Suppose that the coefficients
are bounded. The Hodges price p for the contingent claim & associated with ©9 (or equiva-
lently with A) satisfies

p=lim 1"
where for each k, p* is the Hodges price associated with the simple set B* of all strategies

bounded by k. For each k, p* is given by

where (th,g) (resp. (Jf’o)) is the solution of Lipschitz BSDE (resp. with & = 0) with
C = B*.

Remark 1.8.3. This leads to possible numerical computations in order to approximate
the indifference price. Also, note that in the case where the coefficients are not supposed
to be bounded but only satisfy some exponential integrability conditions (see Section ,
Propositionmstﬂl holds except that BSDE ([1.3.3)) is no longer Lipschitz (but still admits

a unique solution).
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1.9 Generalizations

In this section, we give some generalizations of the previous results. The proofs are not
given, but they are identical to the proofs of the case with a default time and a stock. In all
this section, elements of R™, n > 1, are identified to column vectors, the superscript ’ stands
for the transposition, ||.|| the square norm, 1 the vector of R™ such that each component of
this vector is equal to 1. Let U and V be two vectors of R™, U x V' denotes the vector such
that (U xV); = U;V; for each i € {1,...,n}. Let X € R", diag(X) is the matrix such that
diag(X)i; = X; if i = j else diag(X);; = 0.

1.9.1 Several default times and several stocks

We consider a market defined on the complete probability space (€2, G, P) equipped with two
stochastic processes: an n-dimensional Brownian motion (W;) and a p-dimensional jump
process (N) = ((Nf),1 < i < p) with N} = 1, where (7%)1<;<p are p default times. We
denote by G = {G;,0 <t < T} the completed filtration generated by these processes.

Assumption 1.9.1. We make the following assumptions on the default times:

(i) The defaults do not appear simultaneously: P(7¢ = 77) = 0 for i # j.

(ii) Each default can appear at any time: P(7¢ > t) > 0.

We consider a financial market which consists of one risk-free asset, whose price process
is assumed for simplicity to be equal to 1 at any time, and n risky assets, whose price
processes (S!)1<i<, admit p discontinuities at times (77);<j<p. In the sequel, we consider

that the price processes (Sf)lgign evolve according to the equation

dS, = diag(S,-)(pudt + o, dWy + BidNy), (1.9.1)
with the classical assumptions:
Assumption 1.9.2.

(1) (ut), (or) and (B;) are G-predictable processes such that oy is nonsingular for any

t € [0,7] and
T T
/ \|at\|2dt+2/ |32t < o0 as.,
0 — Jo
,L?-]

(ii) there exist d coefficients 6!, ...,6¢ that are G-predictable processes such that
M —i—Z)\gﬁ;’J = Zaz’mi, Vte[0,T] a.s., 1 <i<mn;
j=1 j=1

we suppose that 67 is bounded,
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iii) the processes ﬂi’j satisf ﬂi’.j > —1 a.s., for each i and j.
t Y PO J

Using the same techniques as in the previous sections, we can generalize all the results
stated in the previous sections to this framework. In particular, in the classical case of
bounded coefficients, if (J;) denotes the dynamic value function associated with the admis-

sible sets A or A’ which are equal, we have:

Theorem 1.9.1. There exist Z € L>(W) and U € L*(M) such that (J, Z,U) is the mazximal
solution in ST>° x L2(W) x L?*(M) of the BSDE

2
—dJy = esseijllf {%Hm’eatHQJt — (e dy + 00 Z) — (1 — e TP (N Jy + Ng Ut)}dt

— Z:dW, — U,dM,,
Jr = exp(—%).

Remark 1.9.1. The value function Jy coincides with the value function associated with

the set Os.

1.9.2 Poisson jumps

We consider a market defined on the complete probability space (€2, G, P) equipped with two
independent processes: a unidimensional Brownian motion (W;) and a real-valued Poisson
point process p defined on [0,7] x R\{0}, we denote by N,(ds,dx) the associated count-
ing measure, such that its compensator is Np(ds,dx) = n(dx)ds, and the Levy measure
n(dx) is positive and satisfies n({0}) = 0 and fR\{O}(l A |z|)?n(dx) < co. We denote by
G = {G;,0 <t < T} the completed filtration generated by the two processes (W;) and
(N,). We denote by N,(ds,dz) (Ny(ds,dx) = Ny(ds,dx) — Ny(ds,dz)) the compensated
measure, which is a martingale random measure. In particular, for any predictable and
locally square integrable process (Uy), the stochastic integral [ Us(z)N,(ds,dz) is a locally
square integrable martingale. Let us introduce the classical set L2(N,) (resp. L? (N,))

loc

given by the set of G-predictable processes on [0, 7] under P with

E[/OT /]R\{O} |Ut(:17)|2n(d33)dt] < 0o (resp. /OT /R\{O} Uy (x)Pn(dz)dt < oo a.s.).

The financial market consists of one risk-free asset, whose price process is assumed to be
equal to 1, and one single risky asset, whose price process is denoted by S. In particular,

the stock price process satisfies

dSt = Stf (utdt + Utth + /

Br() Ny (dt, de) ).
R\(0}
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All processes (ut), (0¢) and (3;) are assumed to be G-predictable, the process (oy) satisfies
o¢ > 0 and the process (3;) satisfies B;(x) > —1 a.s. Moreover we suppose that

T t T\ e+ Be(z)n(dz)ds 2
/ |Ut‘2dt+/ / Wt(x)Pn(d:r)dt+/ ‘ ! fR\{O} Hzin(de) dt < oo a.s.
0 0 JR\{0} 0

Ot

Using the same techniques as in the previous sections, we can generalize all the results
stated in the previous sections to this framework. In particular, in the classical case of
bounded coefficients, if (J;) denotes the dynamic value function associated with the admis-

sible sets A or A’ which are equal, we have:

Theorem 1.9.2. There exist Z € L*(W) and U € L*(N,) such that (J, Z,U) is the mazimal
solution in ST x L*(W) x L*(N,) of the BSDE
. 2

— i = essint { Dimo 2, — il i + 0,21) - / (1 = &) (s + Us()n(d)
TeA 2 R\{O}

— ZydW,; — / Ui (z)Ny(dt, dx) ,
R\{0}

Jr = exp(—§).
Remark 1.9.2. The value function Jy coincides with the value function associated with

the set Os.

1.10 Appendix

1.10.1 Essential supremum
Recall the following classical result (see Neveu [100]):
Theorem 1.10.1. Let F be a non empty family of measurable real valued functions f :

Q — R defined on a probability space (0, F,P). Then there exists a measurable function
g:Q — R such that

(i) forall f € F, f <g a.s.,
(ii) if h is a measurable function satisfying f < h a.s., for all f € F, then g < h a.s.

This function g, which is unique a.s., is called the essential supremum of F' and is denoted
esssupscp f-
Moreover there exists at least one sequence (fy) in F' such that ess SUpfep f=lim, o fn

a.s. Furthermore, if F is filtrante croissante (i.e. f, g € F then there exists h € F such
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that both f < h a.s., and g < h a.s.), then the sequence (f,) may be taken nondecreasing

and esssupscp f = limp oo 1 fn a.s.

1.10.2 A classical lemma of analysis

Lemma 1.10.1. The supremum of affine functions, whose coefficients are bounded by a
constant ¢ > 0, is Lipschitz and the Lipschitz constant is equal to c.
More precisely, let A be the set of [—c,c]™ X [—k,k]. Then, the function f defined for any
y € R™ by
fly) = sup {a.y+0b}
(a,b)eA

1s Lipschitz with Lipschitz constant c.

Proof.

sup {a.y+b} < sup {a.(y—y")}+ sup {a.y +b}.
(a,b)eA (a,b)eA (a,b)eA

Which implies
f) = @) <clly =yl
By symmetry, we have also

fW) = fly) <clly =91,

which gives the desired result. O

1.10.3 Proof of the closedness by binding of A’

Lemma 1.10.2. Let 7', 7% be two admissible strategies of A and s € [0,T]. The strategy
73 defined by

n} ift <s,
Ty ift > s,

belongs to A’
Proof. For any w € [0,T], we have for any p > 1
(i) if w > s, then

E[ sup exp(— vaff’Wg)] =E[ sup exp(— pr;f’”Z)] < 00,
refu,T] r€[u,T]
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(i) if u < s, then

E[ sup exp(—pX!™)] <E[ sup exp(—pX")]
refu,T] refu,T)]

+ IE[ sup exp ( — yp(X;"Wl + X;?’”Q))].
r€[s,T]
By Cauchy-Schwarz inequality,

E[ sup exp ( — ’yp(ij’Wl + Xf’”Q))] < IE[ sup exp ( — 2'pr},"7r1)}1/2
rels,T) r€u,T)

X E[ sup exp ( — 2’pr;f”T2)]1/2.
re(s,T)

Hence, E[supre[u,;r] eXP(—’YpX:f’ﬁ)] < 0.

1.10.4 Proof of the existence of a cad-lag modification of (.J;)

The proof is not so simple since we do not know if there exists an optimal strategy in A.
Let D = [0,7]NQ, where Q is the set of rational numbers. Since (J(¢)) is a submartingale,
the mapping ¢t — J(t,w) defined on D has for almost every w €  and for any ¢ of [0, a

finite right limit

J(t" w) = sam I (s,w),

(see Karatzas and Shreve [79], Proposition 1.3.14 or Dellacherie and Meyer [46], Chapter 6).
Note that it is possible to define J(t*,w) for any (t,w) € [0,T] x Q by J(T,w) := J(T,w)

and
J(tT,w) = limsup J(s,w), t € [0,T].
seD,s|t

From the right-continuity of the filtration (G;), the process (J(t1)) is G-adapted. It is possi-
ble to show that (J(t1)) is a G-submartingale and even that the process (exp(—yX7)J(t1))
is a G-submartingale for any = € A. Indeed, from Proposition [[.4.2] for any s < ¢t and for

each sequence of rational numbers (t,),>1 converging down to ¢, we have
Elexp (- ’yXZ;)J(thgS] > exp (—vX])J(s) a.s.

Let n tend to +o00. By the Lebesgue theorem, we have that for any s < t,
E[exp (— v X[)J(t)|Gs] = exp (—1XT)J(s) a.s. (1.10.1)

This clearly implies that for any s < t, E[exp(—yX[)J(t1)|Gs] > exp(—yXT)J(sT) a.s.,
which gives the submartingale property of the process (exp(—yX[)J(t1)). Using the right-
continuity of the filtration (G;) and inequality applied to 7 = 0 and s = ¢, we
get

JAT) =E[J(t1)|G] = J(t) a.s.
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On the other hand, by the characterization of (J(t)) (see Proposition [I.4.2)), and since
the process (exp(—yX7)J(t")) is a G-submartingale for any 7 € A, we have that for any
t€10,77,

J(tT) < J(t) a.s.

Thus, for any t € [0, 7],
J(tT) = J(t) a.s.

Furthermore, the process (J(t1)) is cad-lag. The result follows by taking J; = J(tT).

1.10.5 Proof of equality ((1.5.2))

For any 7 € A, we define the strategy 7} = Tl <k for each k € N. The strategy 7 is
uniformly bounded but not necessarily admissible. For that we define for each (k,n) € NxN
the stopping time
Thm = inf{t, | X7"| > n}
and the strategy Wf’n = Wfﬂtgq—k,n. By construction, it is clear that the strategy 7*m" e A*
for each (k,n). Since my = limy lim,, Wf " dt @ dP a.s., the following equality
7’ 5 o7 T T
essinf {?ﬂfath — (e e + o1 Zy) — )\t(l — e*'y’”ﬁt) (Je + Ut)} =

TeA
2
eisel‘}‘lf {%W?O’?Jt’}/ﬂ't — (/Lteft + O'tZt) — )\t(l — ef'yﬂ-tﬁt) (Jt + Ut)}

holds dt @ dP a.s.

1.10.6 Proof of optimality criterion (Proposition [1.7.2])

Suppose (7). Hence,
J(0) = TifgiE[exp (—v(XF+¢€))] =E[exp(— ’y(X% +))].

As the process (exp(—yX[)J(t)) is a submartingale and as J(0) = Elexp(—y(X7% + £))], it
follows that (exp(—vyX[)J(t)) is a martingale.

To show the converse, suppose that the process (exp(—vyX/[).J(t)) is a martingale. Then,
Elexp(—yXX)J(T)] = J(0). Also, since the process (exp(—yX7)J(t)) is a submartingale
for any m € A and since J(T') = exp(—v£), it is clear that J(0) < ;gfétE[exp(—'y(X% +))].
Consequently,

7(0) = inf E[exp (~ (X + €))] = Eexp (- 7(XF + )],

thus 7 is an optimal strategy.
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1.10.7 Characterization of the value function as the maximum solution

of BSDE ({i.3.3)

Step 1: Let us show that there exist Z € L2(W) and U € L?(M) such that (J, Z,U) is a
solution in St*° x L2(W) x L?(M) of BSDE (1.3.3).

From the Doob-Meyer decomposition, since the process (J;) is a bounded submartingale,
there exist Z € L2(W), U € L?>(M) and (A;) a nondecreasing process with Ag = 0 such
that

dJy = ZydWy + Upd My + dAy.
By the same techniques as in the proof of Proposition [1.4.4], since for any 7 € C the process
(exp(—yXT)J(t)) is a submartingale, we have
2
dAt > ess sup {’}/ﬂ't(,utjt + O'tZt) + )\t(]- - 6_77”’&) (Jt + Ut) - Eﬂ'tz(fgg]t}dt
wel

Since there exists an optimal strategy @ € C from Proposition the optimality criterion
gives

2
dA; = {’yfrt(utJt + O'tZt) + )\t(l — e_vﬂtﬁt)((]t + Ut) — %ﬁ'?dfjt}dt,

which implies

2
dA; = esssup {'ym(utJt + o1 Z) + )\t(l — e_w’fﬁt) (Je +Uy) — %W?O’?Jt}dt,
el

and (J, Z,U) is solution of BSDE ((1.3.3)).

Step 2: Using similar arguments as in the proof of Theorem [I.4.1] one can derive that
(J, Z,U) is the mazimal solution in SH>° x L?(W) x L?>(M) of BSDE (1.3.3)).
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Chapter 2

Portfolio Optimization in a Default

Model under Full/Partial Information

Joint paper with Marie-Claire Quenez.

Abstract: In this paper, we consider a financial market with assets exposed to some risks
inducing jumps in the asset prices, and which can still be traded after default times. We use
a default-intensity modeling approach, and address in this incomplete market context the
problem of maximization of expected utility from terminal wealth for logarithmic, power
and exponential utility functions. We study this problem as a stochastic control problem
both under full and partial information. Our contribution consists in showing that the
optimal strategy can be obtained by a direct approach for the logarithmic utility function,
and the value function can be determined as the minimal solution of a backward stochastic
differential equation for the power utility function. For the partial information case, we
show how the problem can be divided into two problems: a filtering problem and an op-
timization problem. We also study the indifference pricing approach to evaluate the price
of a contingent claim in an incomplete market and the information price for an agent with

insider information.

Keywords: Optimal investment, default time, filtering, dynamic programming principle,
backward stochastic differential equation, indifference pricing, information price, logarithmic

utility, power utility, exponential utility.
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2.1 Introduction

One of the important problems in mathematical finance is the portfolio optimization prob-
lem when the investor wants to maximize the expected utility from his terminal wealth. In
this paper, we study this problem by considering a small investor on an incomplete finan-
cial market who can trade in a finite time interval [0,7] by investing in risky stocks and
a riskless bond. We assume that there exist some default times on the market, and each
default time generates a jump of stock prices. The underlying traded assets are assumed to
be some local martingales driven by a Brownian motion and a default indicating process.
In such a context, we solve the portfolio optimization problem when the investor wants to
maximize the expected utility from his terminal wealth. We assume that in the market there
are two kinds of agents: the insider agents (the agents with insider information) and the
classical agents (they only observe the asset prices and the default times). These situations
are referred as full information and partial information. We will be interested not only in
describing the investor’s optimal utility, but also the strategies which he may follow to reach
this goal.

The utility maximization problem with full information has been largely studied in the
literature. In the framework of a continuous-time model the problem was studied for the
first time by Merton [98]. Using the methods of stochastic optimal control, the author de-
rives a nonlinear partial equation for the value function of the optimization problem. Some
papers study this problem by using the dual problem, we can quote, for instance, Karatzas,
Lehoczky and Shreve [77] for the case of complete financial models, and Karatzas et al. [7§]
and Kramkov and Schachermayer [84] for the case of incomplete financial models, they find
the solution of the original problem by convex duality. These papers are useful to prove
the existence of an optimal strategy in the general case, but in practice it is difficult to find
the optimal strategy with the dual method. Some others study the problem by using the
dynamic programming principle, we can quote Jeanblanc and Pontier [7I] for a complete
model with discontinuous prices, Bellamy [9] in the case of a filtration generated by a Brow-
nian motion and a Poisson measure, Hu, Imkeller and Muller [67] for an incomplete model
in the case of a Brownian filtration, and Jiao and Pham [76] in the case with a default, in
which the authors study the case before the default and the case after the default.

Models with partial observation are essentially studied in the literature in a complete
market framework. Detemple [47|, Dothan and Feldman [48|, Gennotte [63] use dynamic
programming methods in a linear gaussian filtering. Lakner [86, [87] solves the optimiza-
tion problem via a martingale approach and works out the special case of linear gaussian
model. We mention that Frey and Runggaldier [61] and Lasry and Lions [88] study hedging
problems in finance under restricted information. Pham and Quenez [I10] treat the case
of an incomplete stochastic volatility model. Callegaro, Di Masi and Runggaldier [32] and
Roland [I16] study the case of a market model with jumps.
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We first study the case of full information. For the logarithmic utility function, we use
a direct approach, which allows to give an expression of the optimal strategy depending
uniquely on the coefficients of the model satisfied by the stocks. For the power utility func-
tion, we look for a necessary condition characterizing the value function which is solution
of the maximization problem. We show that this value function is the minimal solution of
a BSDE. We also give an approximation of the value function by a sequence of solutions
of BSDEs. These solutions are the value functions of the maximization problem restricted
to some bounded subsets of strategies. For the exponential utility function, we refer to the
companion paper Lim and Quenez [91].

In order to solve the partial information problem, the common way is to use the filtering
theory, so as to reduce the stochastic control problem with partial information to one with
full information as in Pham and Quenez [I10] or Roland [I16]. Then, we can apply the
results of the full information problem.

The outline of this paper is organized as follows. In Section 2, we describe the model and
formulate the optimization problem. In Section 3, we solve the maximization problem for
the logarithmic utility function with a direct approach. In Section 4, we consider the power
utility function by giving a characterization of the value function by a BSDE thanks to the
dynamic programming principle, then we approximate the value function by a sequence of
solutions of Lipschitz BSDEs. In Section 5, we use results from filtering theory to reduce
the stochastic control problem with partial information to one with full information, then
we apply the results of the full information problem to the partial information problem.
Finally, we study the indifference pricing for a contingent claim and the information price

linked to the insider information.

In all this paper, elements of R™, n > 1, are identified to column vectors, the superscript
" stands for the transposition, ||.|| the square norm, 1 the vector of R™ such that each
component of this vector is equal to 1. Let U and V two vectors of R"™, U % V denotes the
vector such that (UxV); = U;V; foreach i € {1,...,n}. Given a vector X € R", |X|? denotes
the vector of R” such that |X|? = |X;|? for each i € {1,...,n}. For a function f : R — R
and a vector X € R", we denote by f(X) the vector of R such that f(X); = f(X;) for
each i € {1,...,n}. Let X € R", diag(X) is the matrix such that diag(X);; = X; if i = j
else diag(X);; = 0. Given a matrix M of R™*? we denote by M/ the vector of R" such
that sz’j = M;; for each i € {1,...,n}.

2.2 The model

We start with a complete probability space (2, F,P) and a time horizon T" € (0,00). We
assume throughout that all processes are defined on the finite time interval [0, T]. Suppose

that this space is equipped with two stochastic processes: an n-dimensional Brownian mo-
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tion (W;) and a p-dimensional jump process (N;) = ((Nf),1 < i < p) with N} = 1<,
where (7;)1<i<p are p default times. We make the following assumptions on the default

times:

Assumption 2.2.1. (i) The defaults do not appear simultaneously: P(r; = 7;) = 0 for
i #7.
(ii) Each default can appear at any time: P(7; > t) > 0.

We denote by F = {F;,0 < t < T} the filtration generated by these processes, which
is assumed to satisfy the usual conditions of right-continuity and completeness. We denote
for each i € {1,...,p} by (M}) the compensated martingale of the process (N}) and by
(AY) its compensator in the filtration F. We assume that the compensator (A%) is absolutely
continuous with respect to the Lebesgue measure, so that there exists a process (\) such
that Af = fg Mids. We can see that for each i € {1,...,p}

M;:Ng—/ Aeds (2.2.1)
0

is an F-martingale. We assume that the process (\!) is uniformly bounded. It should be
noted that the construction of such process (N}) is fairly standard; see, for example, Bielecki
and Rutkowski [16].

We introduce some sets used throughout the paper

— LY is the set of positive F-adapted cad-lag processes on [0, 7] such that E[Y;] < oo
for any t € [0, 7.

— 8% is the set of F-adapted cad-lag processes on [0, T such that E[sup,cpo 7y [Yi|*] < oo.

~ L*(W) (resp. L} (W)) is the set of F-predictable processes on [0, 7] such that
T T
E[/ 1Zi]1%dt] < o0 (resp. / 12| 2dt < 00, P— a.s. ).
0 0
— L*(M) (resp. Li,.(M)) is the set of F-predictable processes on [0, 7] such that
T T
E[/ )\;]Ut|2dt} < oo (resp. / N |U|dt < 00, P —a.s. ).
0 0

We consider a financial market consisting of one risk-free asset, whose price process is
assumed for simplicity to be equal to 1 at each date, and n risky assets with n-dimensional

price process S = (S!,...,S™)" evolving according to the following model

dSy = diag(S,- ) (pedt + oo dWy + BdN;), 0 <t <T. (22.2)

We shall make the following standing assumptions:
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Assumption 2.2.2. — u (resp. o, §) is a R™ (resp. R™*™ R™*P)-valued uniformly

bounded predictable stochastic process.

— For all ¢t € [0,7], the n x n matrix o; is nonsingular, and we assume that oo’ is

uniformly elliptic, i.e. eI, < oo’ < KI,, P — a.s., for constants 0 < € < K.
— We suppose that the process (S;) is positive V¢ € [0,T], P — a.s.

Remark 2.2.1. The assumption oo’ is uniformly elliptic implies that the predictable R"-

valued process p; = o, L1, is uniformly bounded.

An n-dimensional F-predictable process m = (m)o<t<7 is called trading strategy if
WtXt dS! is well defined for each i € {1,...,n}. For i € {1,...,n}, the process mi de-

scrlbes the part of the wealth invested in asset ¢ at time ¢. The number of shares of asset

S iX
1 is given by 7;3 ¢

. The wealth process X®™ associated with a trading strategy = and an

t
initial capital x, under the assumption that the trading strategy is self-financing, satisfies

t / 2 p .
xem = e ([ Gt~ 5By [ o) L0 2t (229
0 j=1

For a given initial time ¢ and an initial capital x, the associated wealth process is denoted
by XL5T,

Now let U : R — R be a utility function. The optimization problem consists in maximiz-
ing the expected utility from terminal wealth over the class A(z) of admissible portfolios
(which will be defined in the sequel). More precisely, we want to characterize the value

function of this problem, which is defined by

V(z)= sup E[UXF)], (2.2.4)
reA()

and we also want to give the optimal strategy when it exists. We begin by the simple case

when U is the logarithmic utility function, then we study the case of power utility function.

2.3 Logarithmic utility function

In this section, we specify the meaning of optimality for trading strategies by stipulating
that the agent wants to maximize his expected utility from his terminal wealth X7 with

respect to the logarithmic utility function

U(z) =log(z), z > 0.
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Our goal is to solve the following optimization problem (we take n = p = 1 for the sake of

simplicity)

V(z) = sup E[log(X7™)], (2.3.1)
TeA(x)

with A(x) the set of admissible portfolios defined by:

Definition 2.3.1. The set of admissible trading strategies A(z) consists of all F-predictable
processes (m;)o<¢<7 satisfying E[f(;f |0 |2 dt] +E[fOT At| log(1+mf¢)|dt] < oo, and such that
mfe > —1, P—a.s., forany 0 <t < 7.

We can see from that V(z) = log(z) + V(1). Hence, we only study the case

x = 1. And for the sake of brevity, we shall denote X[ instead of th ™ and A instead of
A(1).

Remark 2.3.1. The condition m G > —1, P — a.s., for any 0 < ¢t < 7 is stronger than
X" >0, P—a.s., for any 0 <t < T, but it is necessary to be able to write log(X]) under
the form

t

t 2 t
log(X]") :/0 <7T3/J,5 — |7TS;S‘ )ds +/0 TsosdW +/0 log(1 + ms0s)(dMs + Asds),

(2.3.2)

this form is useful to solve the maximization problem with a direct approach.

As in Kramkov and Schachermayer [84], we assume that sup, ¢ 4 E[log(X7)] < oc.

We add the following assumption on the coefficients to be able to solve the optimization

problem ([2.3.1)) directly:

Assumption 2.3.1. The process (3, 1) is uniformly bounded.

With this assumption, we get easily the value function V(x) and the optimal strategy:

Theorem 2.3.1. The solution of the optimization problem s given by

|04

V(z) =log(x) + E[/OT (frtut -yt At log(1 + ﬁtﬁt))dt};

with 7 the optimal trading strategy defined by

ot 1 (b + 0})? +4NfEo?

—5 — =t ift <7 and By #0,
. ) 202 25 203,02 !
M—; ift<tand By =0 ort>rT.
0y

(2.3.3)
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Proof. With (12.3.2]) and Definition we get the following expression for V(1)

T ’Wt0t|2
V(1) = SUPE[/ (Wtﬂt - + At log(1 + Wtﬁt))dt}y
TeA 0 2
which implies that
T ‘7Tt0't’2
V(1) < E[/ ess sup {Wtﬂt — + A log(1 + Wtﬂt)}dt}. (2.3.4)

0 mfBe>—1 2
For any ¢ € [0,7] and any w € Q, we have

2 N

ess sup {Wt,ut — ’Wt;” + A log(1 + Wtﬁt)dt} = Tepiy — ’Wt;” + A log(1 + 74 3),

B >—1

with 7y defined by (2.3.3]). Then, from inequality (2.3.4), we can see that

T . o 2 .
V(l) < E[/O (ﬂ—tﬂt - ‘t2t’ + At log(l + Wtﬁt))dt} .

It now is sufficient to show that the strategy (7;) is admissible. It is clearly the case with

Assumption Thus, the previous inequality is an equality

V() =Ef /0 " (= 2 o1+ ) ]

and the strategy () is optimal. O

Remark 2.3.2. Assumption [2.3.1] can be reduced to

T T
E[/ |ﬁtat|2dt]+E[/ Nl Tog(1+ 7,8,)|dt] < oo.
0 0

Remark 2.3.3. Recall that in the case without default, the optimal strategy is given by
7T,9 = /0,52. Thus, in the case of default, the optimal strategy can be written under the
form

ﬁt = 7T? — €¢,
where €; is an additional term given by

A 1 (B + 0})? + ANfi o}
207 26 28,07

ift <7 and G #0,

€ =
0 ift<7andBr=0o0rt>r.

Note that if we assume that (3; is negative (resp. [(; is positive), i.e. the asset price (S;) has

a negative jump (resp. a positive jump) at default time 7, € is positive (resp. negative),

i.e. the agent has to invest less (resp. more) in the risky asset than in the case of a market

without default.
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2.4 Power utility

In this section, we keep the notation of Section and we shall study the case of the power
utility function defined by

U(z) =27, 220, 7€ (0,1),

where 7 is a given constant, which can be seen as a coefficient of absolute risk aversion.

In order to formulate the optimization problem, we first define the set of admissible
trading strategies.
Definition 2.4.1. The set of admissible trading strategies A(z) consists of all F-predictable
processes m = (m;)o<¢<7 such that fOT ||7hoy| |2t + fOT |71 B \dt < 0o, P — a.s., and such

that Tr’Tj 'T’jj > —1, P—a.s., for each j € {1,...,p}.
Remark 2.4.1. From expression 1) it is obvious that the condition 7r’Tj B'T’jj > -1, P—
a.s., for each j € {1,...,p} is equivalent to X;”" > 0, P — a.s., for any ¢ € [0, 7.

The portfolio optimization problem consists in determining a predictable portfolio 7 =

(7}, ..., 7)" which attains the optimal value
V(z)= sup E[(X7™)7]. (2.4.1)
TEA(z)
Problem (2.4.1)) can be clearly written as V(z) = 7V (1). Therefore, it is sufficient to study

1,7

the case z = 1. As in [84], we assume that sup,c 4q) E[(X7")7] < o0.

To solve the optimization problem, we give a dynamic extension of the initial problem.
For any initial time ¢ € [0,7], we define the value function J(¢) by the following random
variable

J(t) = esssupE [(Xf,ll’ﬂ)v‘]-}] ,
meA (1)
with A;(1) the set of F-predictable processes m = (ms)i<s<7 such that ftT ||wlos||?ds +
ftT |7l Bs| Asds < 00, P — a.s., and such that W;jﬂ;jj > -1, P—a.s., for each j € {1,...,p}.

For the sake of brevity, we shall denote X7 (resp. X5™) instead of X" (resp. X&™)
and A (resp. A;) instead of A(1) (resp. A¢(1)). And to simplify the notation, we suppose
in the sequel of this section that n = p = 1, we give the generalization of the results in Part
243l
In the sequel, we will use the martingale representation theorem (see for example Jeanblanc

et al. [73]) to characterize the value function J(t):

Lemma 2.4.1. Any (P,F)-local martingale has the representation

¢ ¢
my = mg +/ asdW +/ bsdMs, ¥Vt € [0,T], P — a.s., (2.4.2)
0 0
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2
loc

where a € L

on the right-hand side of the representation 18 square integrable.

(W) and b € L}, (M). If (my) is a square integrable martingale, each term

2.4.1 Optimization over bounded strategies

Before studying the value function J(t), we study the value functions (J*(t))ren defined by
JE(t) = ess supE[(X;ﬂ)”]-}], Vtel0,T], P—a.s., (2.4.3)
TEAF

where Af is the set of strategies of A; uniformly bounded by k. This means that the part
of the wealth invested in the asset has to be bounded by a constant k& (which makes sense
in finance, because the ratio of the amount of money invested or borrowed to the wealth
must be bounded according to the financial legislation).

Let us fix k¥ € N. We want to characterize the value function J*(t) by a BSDE. For that,
we introduce for any m € AF the cad-lag process (JJ) defined for all ¢ € [0, T] by

T =E[(x7")"|7].
The family ((J]))rc4r is uniformly bounded:

Lemma 2.4.2. For any © € A*, the process (JT) is uniformly bounded by a constant

independent of .

Proof. Fix t € [0,T]. We have

- T |O's7r5‘2 T N
Jt = E[exp ('7 (Msﬂ—s - 9 )dS + ’Yasﬂdes) (1 + 777—/87—]115<7—§T) ’ft] )
t t

since the coefficients u;, o+ and 3 are supposed to be bounded, we have

2 (k]o|o0)?

JE < (1 k1Bloo)” exp (7K |loo + 7200 T).

O

Classically, for any m € A¥ the process (JJ) can be shown to be the solution of a linear
BSDE. More precisely, there exist Z™ € L?(W) and U™ € L?(M), such that (J7, Z™,U™) is
the solution in 8% x L2(W) x L?(M) of the linear BSDE with bounded coefficients

1
—dJ7 == Z7 AW, — UFdMy + {ym (7 + o Z7) + 'V(VQ)F,?UEJ,;’

A +mB) = V)T + Ut”)}dt, (2.4.4)

LS
T =

Using the fact that J*(t) = ess sup e 4r Ji for any ¢ € [0,T], we derive that (J*(t))
corresponds to the solution of a BSDE, whose driver is the essential supremum over 7 of

the drivers of (J{),c4x. More precisely,
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Proposition 2.4.1. The following properties hold
— Let (Y, Z,U) be the solution in S? x L>(W) x L?(M) of the following Lipschitz BSDE

-1
—dY; = — ZidWy — UydM; + ess sup {th(uth + o1 Z) + ﬁy(72>7rt20t2Yt
reAk

+ ML+ )T = 1)(Ye+ Uy ft, (2:45)

Yr=1.

Then, J*(t) =Y;, P —a.s., for any t € [0,T].
— There exists a unique optimal strategy for J*(0) = sup,c 4 E[(XT)7].

— A strategy 7« € A* is optimal for J*(0) if and only if it attains the essential supremum

of the driver in dt ® dP — a.e.

Proof. Since for any 7 € AF there exist Z™ € L2(W)and U™ € L?(M) such that (J™, Z™,UT)
is the solution of the BSDE

—dJF = fr(t, JF, ZF,UT)dt — ZFdW, — UFdM, 5 JF =1,

with f™(s,y,z,u) = %ﬂzaf(y + s (psy + 0s2) + As((1 + w50s)7 — 1)(y + u). Let us
introduce the driver f which satisfies ds ® dPP — a.e.

f(s,y,z,u) =esssup f"(s,y, 2z, u).
TeAk

Note that f is Lipschitz, since the supremum of affine functions, whose coefficients are
bounded by a constant ¢ > 0, is Lipschitz with Lipschitz constant ¢. Hence, by results of
Tang and Li [126], the BSDE with Lipschitz driver f

—dYy = f(y, Y4, Zy, Up)dt — ZydWy — UpdMy 5 Y =1

admits a unique solution denoted by (Y, Z,U).

By the comparison theorem in case of jumps (see for example Royer [118]) Y; > J, Vt €
[0,T], P — a.s. As this inequality is satisfied for any = € AF, it is obvious that ¥; >
esssup ¢ 4+ Ji', P — a.s. Also, by applying a predictable selection theorem, one can easily

show that there exists # € A* such that for any ¢ € [0, T], we have
T(v=1) 5 5 v _
esssup § Yme(peYs + 01 Zs) + ————7mio; Y + Me((L+ meB)” — 1) (Ve + Uy)

reAk 2
1y —1)
2

= Y Ye + 0¢ Zy) + F7o7Ys + M((L+ 7:8)7 — 1)(Y; + Uy).
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Thus (Y, Z,U) is a solution of BSDE ([2.4.4]) associated with 7. Therefore, by uniqueness
of the solution of BSDE 1} we have Y; = JJ and thus Y; = ess SUP e 4R JF = Jf,
Vtel0,T], P—a.s.

The uniqueness of the optimal strategy is due to the strict concavity of the function z +—

z7. O

2.4.2 (General case

In this part, we characterize the value function J(t) by a BSDE, but the general case is more
complicated than the case with bounded strategies, and it needs more technical tools. Note
that the random variable J(t) is defined uniquely only up to P-almost sure equivalent, and
that the process (J(t)) is adapted but not necessarily progressive. Using dynamic control

techniques, we derive the following characterization of the value function:

Proposition 2.4.2. (J(t)) is the smallest F-adapted process such that ((X[)YJ(t)) is a
supermartingale for any m € A with the terminal condition J(T) = 1. More precisely, if
(J;) is an F-adapted process such that ((XF)?(J;)) is a supermartingale for any ™ € A with
the terminal condition Jp = 1, then for any t € [0,T], we have J(t) < J;, P — a.s.

From [84], there exists an optimal strategy 7 € A such that J(0) = E[(X%)?]. And with

the dynamic programming principle, we have the following optimality criterion:
Proposition 2.4.3. The following assertions are equivalent:

i) @ is an optimal strategy, that is E[(X%)7] = sup,c4 E[(XF)].

ii) The process ((X[)VJ(t)) is a martingale.
The proof of these propositions is given in Appendix

By Proposition [2.4.2, (J(t)) is a supermartingale. Hence, E[J(t)] < J(0) < oo for any
t>0.

Proposition 2.4.4. There exists a cad-lag modification of J(t) which is denoted by (Jy).

Proof. By Proposition we know that J(t) = E[(X7)7|F]/(X[)?, P — a.s. Which

implies the desired result. O

This cad-lag process is characterized by a BSDE. More precisely,
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Theorem 2.4.1. There exist Z € L} (W) and U € L}, (M) such that the process (J,Z,U)

loc
is the minimal solutiorﬂ in LYt x L2 (W) x L} (M) of the following BSDE

loc loc

—1
—dJ; =— ZydWy — Upd My + esssup {’ywt(,utJt + 01 Z) + ’Y(g)ﬂ?afjt
TEA

M1+ BT = 1)(Jh+ Us) (2:4.6)
Jr =1

There exists a unique optimal strategy for Jo = supre4 E[(XT)Y]. Moreover, @ € A is

optimal if and only if it attains the essential supremum of the driver in dt@dP —a.e.

The proof of this theorem is postponed in Appendix [2.6.2]

There exists another characterization of the value function (J;) as the limit of processes
(J*(t))ren as k tends to +oo, where (J¥(t)) is the value function in the case where the

strategies are bounded by k:
Theorem 2.4.2. For any t € [0,T], we have

Jy = lim 1 J%(t), P —a.s.

k—o0

The proof of this theorem is given in Appendix [2.6.3]

This allows to approximate the value function J; by numerical computations, since the
value functions (J*(t))xen are the solution of Lipschitz BSDEs and the results of Bouchard
and Elie [22] can be applied.

2.4.3 Several default times and several assets

In this part, we only give the BSDEs in the case of several default times and several assets.

The proofs are not given, but they are identical to the proofs for n = p = 1.

— BSDE ([2.4.5)) is written

-1
—dY; = — Z;dW; — U/dM; + ess sup {Vﬂé(Yiut + 01 Zs) + ’Y(Fy2)|7r£‘7t||2yt
reAk
F(L )Y — (Vi + e U) e,
Yr :17

!That is for any solution (.J, Z,U) of BSDE (2.4.6) in L x L2, .(W) x Li,.(M), we have J; < Ji, Vt €
[0, 7], P—a.s.
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— and BSDE ([2.4.6)) is written

—1
—dY; == Z{dW, — UldM; + ess sup { ) (Yo + 01 1) + “”Q)uw;atu?n
TEA

P+ 78)7 — 1] (Yihe + A Ut))}dt,
Yy =1.

2.5 The partial information case

The difference between this section and the previous sections is that here we require the
investment process to be adapted to the natural filtration generated by the price process
and the default times process. This requirement means that the only available information
for agents in this economy at a certain time are the price of the financial assets up to that
time and the default times. The underlying Brownian motion, the drift process and the
compensator process in the system of equations for the asset prices are not directly observ-
able.

Let (2, F,P) a probability triplet and F = {F;,0 < t < T'} a filtration in F satisfying
the usual conditions (augmented and right continuous). Suppose that this space is equipped
with (W;) and (IV¢) as in Section We also assume there are one risk-free asset and n
risky assets on the market. As in Section we assume that the price process (S¢)o<t<T

evolves according to the following model

dS; = diag(S,- ) (pedt + o0 dW; + BdNy), 0<t<T, (2.5.1)

moreover, we assume that oy = o(t,S;-,t A7) and By = B(t,S;-,t A7), with t A7 =
(tATi,...,t A7p)". The known functions o(t, s, h) and [((t, s, h) are measurable mappings
from [0,7] x R™ x R into R™*™ and R"*P. We make the hypotheses of Assumption

and we add the following assumption:

Assumption 2.5.1. The functions so(t, s, h) and s(3(t,s,h) are Lipschitz in s € R" |
uniformly in ¢ € [0,7] and h € RP.

We now consider an agent in this market who can observe neither the Brownian motion
(Wi) nor the drift (u;) and the process (A:), but only the asset price process (S;) and
the default times (7;)1<i<p. We shall denote by G = {G;,0 < t < T} the P-filtration
augmented by the price process (S;) and the default process (NNV;). The trading strategies
are defined as in Section but we add the condition that they are G-predictable. We
now want to solve the problem of maximization of expected utility from terminal wealth
for logarithmic, power and exponential utility functions. It is not possible to use directly

the results of the full information case because we do not know the Brownian motion, the
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drift and the compensator. Moreover, there exists no martingale representation theorem
for the G-martingales. Thus, before to study the problem of maximization, we begin by an

operation of filtering as in Pham and Quenez [110].

2.5.1 Filtering

Consider the positive local martingale defined by Ly = 1 and dL; = —L; pidW,;. Tt is
explicitly given by

t’ L 2 2.5.2
L=exp (- [ paw, 0||p3||ds). (2.5.2)

Since with Assumption the process (p;) is uniformly bounded, we have:

Lemma 2.5.1. The process (L) is a martingale.

Therefore, one can define a probability measure equivalent to P on (2, F) characterized

by
dQ
dP

By Girsanov’s theorem, the n-dimensional process defined by

=1, 0<t<T. (2.5.3)

Fi

t
W, = W, +/ psds (2.5.4)
0

is a (Q, F)-Brownian motion and the compensated martingale (M) is still a (Q, F)-martingale.

The dynamics of (S¢) under Q is given by
dS; = diag(S,-)(o(t, Sy—, t A T)dW; + B(t, S4—, t A T)dNy). (2.5.5)
We begin by proving a proposition which will be of paramount importance in the sequel:

Proposition 2.5.1. Under Assumption[2.2.9 and with Lemma[2.5.1], the filtration G is the
augmented filtration of (W, N).

Proof. Let W'V be the augmented filtration of (W, N). From 1' we have
B t t
Wi= [ oy ding(s;)as, ~ [ oA,
0 0

for all ¢ € [0, 7], which implies that (W;) is G-adapted and FW.N  G. Conversely, under
the assumptions on the coefficients, by a classical result of stochastic differential equation
(see Protter [I15], Theorem V 3.7), the unique solution of is FW.N -adapted, hence
G c FWN and finally G = FW-V, O
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Since the processes (p;) and (M) are not G-predictable, it is natural to introduce the

G-conditional law of the random variables p; and A4, say
S\t = ]E[)\t}gt] and ﬁt = E[pt‘gt] .
Consider the couple of processes (W;, M;) defined by
- ~ t
Wy =Wy — / psds,
0
i : (2.5.6)
Mt = Nt — / )\st.
0

These are the so-called innovation processes of filtering theory. By classical results in filtering

theory (see for example Pardoux [102], Proposition 2.27), we have:

Proposition 2.5.2. The process (M) is a (Q,G)-martingale.

Proof. Since the process (N;) and the intensity ()\;) are G-adapted, the process (M;) is
G-adapted. We can write from (2.2.1))

t
M, = M, +/ (As — As)ds.
0

By the law of iterated conditional expectation, it is easy to check that (M) is a (Q,G)-

martingale. O

Remark 2.5.1. From Proposition [2.5.1] and (2.5.6)), the filtration G is equal to the aug-
mented filtration of (W, M), since [M]; = N;.

We have also the following property about the process (W;):

Proposition 2.5.3. The process (W;) is a (P, G)-Brownian motion.

Proof. We can write with ([2.5.4])

t
Wy =Wy + / o7 (s — fis)ds, (2.5.7)
0

where ji; = E [,ut‘gt]. By Proposition[2.5.1, W is G-adapted. Moreover, we have [W*, W], =
d;5t for all t € [0,T], where d;; is the Kronecker notation. By the law of iterated conditional
expectation, it is easy to check that (W) is a G-martingale. We then conclude by Levy’s

characterization theorem on Brownian motion (see, e.g., Theorem 3.3.16 in Karatzas and

Shreve [79]). O
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Denote by (A¢), the (Q,F)-martingale given by Ay = 1/L;. We then have

dP

— | =A, 0<t<T.
d@ft ! -

Let (A;) be the (Q, G)-martingale given by A; = Eg [At‘gt} . Recall the classical proposition
(see for example Lakner [87] or [I10]), which gives the expression of (A;):

Lemma 2.5.2. Since with Assumption the process (pt) is uniformly bounded, we have

B t ~ B 1 t _
Ay = exp (/ pLdWs — 2/ Hps||2ds>. (2.5.8)
0 0
Proposition 2.5.4. The process (M) is a (P, G)-martingale.

Proof. Since % G, = Ay, we can apply Girsanov’s theorem and we get that the process

(M) is a (P, G)-martingale. O

By means of innovation processes, we can describe from (2.5.1)) and (2.5.7) the dynamics

of the partially observed model within a framework of full observation model

{ dS, = diag(S,-)(fudt + o (t, S, t AT)dW, + B(t, Si—, t AT)AN,) 259

dM; = dN; — \dt,

where (ji;) and ();) are G-predictable processes.

Hence, the operations of filtering and control can be put in sequence and thus separated.

2.5.2 Optimization problem for the logarithmic and power utility func-
tions

To apply the results of Section[2.4] it is sufficient to have a martingale representation theorem

for (P, G)-martingales with respect to W and M. Notice it cannot be directly derived from

the usual martingale representation theorem since G is not equal to the filtration generated
by W and M.

Lemma 2.5.3. Any (P, G)-local martingale has the representation
t - t
my = my +/ al,dWs +/ v.dMs, YVt €1[0,T], P—a.s., (2.5.10)
0 0

where a € L2 (W) and b € L}, (M). If (mi)o<i<r is a square integrable martingale, each

loc

term on the right-hand side of the representation (2.5.10]) is square integrable.
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The proof of this lemma is postponed in Appendix [2.6.4]

It is now possible to apply the previous results because the price process evolves accord-

ing to the equation

dS; = diag(S,- ) (fuedt + o (t, S4—, t AT)dW; + B(t, S4—, t A T)dNy),
dM, = dN; — M\dt,

where each coefficient is G-predictable, and there exists a martingale representation theorem
for (P, G)-martingales. We get the following characterization for the value functions and
the optimal strategies when they exist.

For the logarithmic utility function, we assume that the process (87 1(¢,S,—,t A 7)) is

uniformly bounded, and we have:

Theorem 2.5.1. The solution of the optimization problem for the logarithmic utility func-

tion is given by

_ [fon?

Vi) = togia) +E[ [ " (e -

+ N\ log(1 + ﬁ'tﬁt))dt} ,

with 7 the optimal trading strategy defined by

fit 1 \/(ﬂtﬂt +07)2 + 4\ o}

— ==+ ift <71 and B #0,
= 2%2 2034 2ﬂt0t2

'u—; ift<tand fr=0o0rt>r.

0y

Therefore, we can see that the optimal portfolio in the case of partial information can
be formally derived from the full information case by replacing the unobservable coefficients

e and A; by theirs estimates f; and :\t.

For the power utility function, we have:

Theorem 2.5.2. — Let (Y, Z,U) be the minimal solution in LY+ x L?

loc(W) X Llloc(M)
of BSDE with (W, M, u, \) replaced by (W, M, fi, 5\), then

Y; = ess supE[(X;”)”\gt], P — a.s.
TEAL
— If a strategy © € A is optimal for Jy = sup,c 4 E[(X])"], then T attains the essential
supremum in the driver of BSDE dt @ dP a.s. with py and A replaced by [is
and ;\t.
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~ Moreover the process (Y;) is the nondecreasing limit of the sequence of processes
(YY) ren, where for each k € N, (Y* ZF UF) is the solution in 8% x L>(W) x L*(M)
of BSDE with (W, M, u, \) replaced by (W, M, fi, 5\)

2.5.3 Optimization problem for the exponential utility function and in-

difference pricing

We can also apply the results of Lim and Quenez [91] for the exponential utility function.
In this case, we assume that the agent faces some liability, which is modeled by a random
variable £ (for example, £ may be a contingent claim written on some default events affecting
the price of the underlying assets). We suppose that £ is a non-negative Gr-adapted process
(note that all the results still hold under the assumption that £ is only lower bounded).
Without loss of generality, we can use a somewhat different notion of trading strategy: ¢
corresponds to the amount of money invested in the assets. The number of shares i at time
t is equal to ¢¢/S?_. With this notation, under the assumption that the trading strategy is
self-financing, the wealth process (X}’ ’¢) associated with a trading strategy ¢ and an initial

capital z is equal to

t t t
XP0 =z + / Fufisds + / dsosdW + / ¢PadNs
0 0 0

Our goal is to solve the optimization problem for an agent who buys a contingent claim &
cA(x

where A(z) is defined by:

Definition 2.5.1. The set of admissible trading strategies A (z) consists of all G-predictable
processes ¢ = (¢)o<t<7, which satisfy fOT ||@hoe|[2ds + fOT |948¢|* edt < 00, P — a.s., and
such that for any ¢ fixed and any ¢ € [0, 77, there exists a constant K 4 such that for any
s € [t,T), we have X¢ — Xtd) > Ky, P—a.s.

To solve this problem, it is sufficient to study the case x = 0. For the sake of brevity,
we denote A instead of A(0) and X{ (resp. X5?) instead of X (resp. X™?). For that,

we give a dynamic extension of the initial problem as in Section 2.4 For any initial time

t € [0,T7], we define the value function J(t, &) by the following random variable

J(t, &) = egz%fE[exp (- W(Xfp’d) +€))|G],

with A; the admissible portfolio strategies set defined by:
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Definition 2.5.2. The set of admissible trading strategies A; consists of all G-predictable
processes ¢ = (¢s)i<s<7, which satisfy ftT ||phos||?ds + ftT |0 85|? Xsds < 00, P — a.s., and
such that for any ¢ fixed and any s € [t, T, there exists a constant K 4 such that for any
u € [s,T], we have X¢ - x> K4, P—a.s.

We introduce the set ST which corresponds to the set of positive G-adapted P-
essentially bounded cad-lag processes on [0, T.
By applying the results of the companion paper [91], we get the following characteriza-

tions of the value function:

Theorem 2.5.3. ~ Let (Y, Z,U) be the maximal solutionlﬂ in ST x L2(W) x L*(M)
of
— — — — — ’)/2 — — —
— d¥; = — ZiaW, - UaNt; + essint { L \6ioul PY: — 0} (Fiju + 0120
— (L= e B (VA + A Ut)}dt, (2.5.12)
Yr = exp(—7¢),

then Yy = J(t, &), P —a.s., for any t € [0,T).

= J(,€) =limy oo | JE(t,€), with J¥(t,€) = essinf e 4 Elexp(—y(X5” +€))|G], and
Al is the set of strategies of Ay uniformly bounded by k.

— Let (Y*, ZF,U¥) be the unique solution in S*> x L?(W) x L?>(M) of the following BSDE
_ — 1. — — 1/ _ 2 _ _ _
— AV = = 2 W, — OF dt, + essinf { 11610l PYF 26,V + 022)
— (1 — e B (VEN + Ny Uf)}dt, (2.5.13)
Vi = exp(—€),
then YF = Jk(t,€), P — a.s., for any t € [0,T].

We can now define the indifference pricing of the contingent claim &. The Hodges
approach to pricing of unhedgeable claims is a utility-based approach and can be summarized
as follows: the issue at hand is to assess the value of some (defaultable) claim & as seen from
the perspective of an investor who optimizes his behavior relative to some utility function,

in our case we use the exponential utility function. The investor has two choices:

2That is for any solution (J, Z,U) of BSDE (2.5.12)) in ST x L*(W) x L*(M), we have J; < Ji, Vt €
[0, 7], P—a.s.
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— he only invests in the risk-free asset and in the risky assets, in this case the associated

optimization problem is

V(2,0)= sup E[—exp(—v(X3%))],
PEA(x)

— he also invests in the contingent claim, whose price is p at 0, in this case the associated

optimization problem is

Vie—p.6) = sup E[—exp(—~v(X5 " +¢))].
pEA(z—D)

Definition 2.5.3. For a given initial capital x, the Hodges buying price of a defaultable
claim £ is the price p such that the investor’s value functions are indifferent between holding

and not holding the contingent claim, i.e.

V(z,0)=V(zx—p,§).

The Hodges price p can be derived explicitly by applying the results of Theorem [2.5.3]
If the agent buys the contingent claim at the price p and invests the rest of his wealth in

the risk-free asset and in the risky assets, the value function is equal to

V(- p,€) = —exp(—y(z — ) J(0,).

If he invests all his wealth in the risk-free asset and in the risky assets, the value function
is equal to
V({L’, O) - - exp(—’yx)j(o, 0)

Proposition 2.5.5. The Hodges price for a contingent claim £ is given by the formula

i J(0,0)
p=im<ﬂ3%>

where J(t, &) is the mazimal solution to BSDE[2.5.13,

Proposition 2.5.6. (Approzimation of the indifference price) Suppose that the set of the
admissible strategies is given by the bounded set A*. Let p* be the indifference price defined

by the same method. Then, we have

1. J%0,0
# =5 (Feae)
where J*(t,€) is defined in Theorem .
Also, we have
p= lim p*.

k—o0
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Remark 2.5.2. That allows to approximate the indifference price by numerical computa-
tions. In particular, J¥(t,£) is the solution of a Lipschitz BSDE and the results of Bouchard
and Elie [22] can be applied.

We assume that there are two kinds of agents in the market: the insider agents and the
classical agents. We define the information price d for a contingent claim as the difference
between the buying price for a classical agent and the buying price for an insider agent.

The buying price, if the agent knows the full information, is defined by (see [91])

(0,0)
_11(i&%)

n
~y
where (J(.,€), Z,U) is the maximal solution of BSDE ({2.5.12) with (W, M, fi, \) replaced
by (W, M, p, \).

Then, the benefit of an insider agent who has a full information is the information price

d=p—p.

This price can be computed as the limit of the information prices (d*)ren, where d* is the

information price if we restrict the admissible strategies set to the bounded set AF

7k 7k
# =3 (0 CGro) -~ (Grog))

where (J¥(.,€),Z%,U¥) is the solution of BSDE (2.5.13) with (W, M, fi, \) replaced by
(W, M, u, A).
Then, we have

d= lim d*.

k—oo

2.6 Appendix

2.6.1 Proof of Propositions and

The proof of these propositions is based on the following lemma:

Lemma 2.6.1. The set {J[, m € A} is stable by supremum for any t € [0,T], i.e. for any
7l 7% € Ay, there exists m € Ay such that JF = Jt’Tl \Y Jt’rz.

Furthermore, there exists a sequence (m")pen € Ay for any t € [0,T], such that

J(t)= lim 1 J5, P—a.s.
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Proof. Let us introduce the set B = {JJ b > Jgrz} which belongs to F;. Let us define the
strategy 7 by the formula 7g = 7wl 1 g + 721 g for any s € [t, T]. It is obvious that = € A;.
And by construction of 7, it is clear that J = Jt’r1 V Jt”Q.

The second part of the lemma follows by classical results on the essential supremum (see

Neveu [100]). O

We first prove that the process ((X[)YJ(t)) is a supermartingale for any = € A. For
that, it is sufficient to show for any s <t that

E[(X;™)J(t)|Fs] < J(s), P—a.s.

By Lemma there exists a sequence (7"),cn of A; such that J(t) = lim T JI", P—a.s.
We define the strategy 7" by 7, = my 1[5 (u) + 7 1}, 7y (u), which is clearly admissible. By
the monotone convergence theorem and using the definition of J(s), one can easily show
that

E[(X/ ™)V J(t)|Fs] = Jim. TE[(X5™) MNFs] < J(s), P—a.s.

Hence, the process ((X7)7J(t)) is a supermartingale for any = € A.

Second, we prove that (J(t)) is the smallest process satisfying ((X[7)7J(t)) is a super-
martingale for any 7 € A. For that, we suppose that (.J;) is an F-adapted process such
that ((XF)7(J;)) is a supermartingale for any m € A with the terminal condition Jr = 1.
Fix t € [0,T]. For any 7 € A, we have E[(XT)?| 5] < (XF)?J;, P — a.s. This inequality is
equivalent to E[(X2™)7|F;] < J;. Which implies

esssupE[(XélW)v‘ft] <J, P—a.s.,
TI'E.At

which clearly gives that J; < J;, P — a.s.

At last, we prove the optimality criterion, that is Proposition 2.4.3] Suppose that the

strategy 7 is an optimal strategy, hence we have
J(0) = sup E[(XF)"] = E[(XF)"].
TeA

As the process ((XF)7J(t)) is a supermartingale by Proposition 2| and that J(0) =
E[(XX)7], the process ((X[)YJ(t)) is a martingale.
To show the converse, suppose that the process ((X7)?J(t)) is a martingale, then E[(X )] =
J(0). Moreover E[(X])YJ(t)] < J(0) for any m € A by Proposition [2.4.2, 'Which implies
that

J(0) = swp E[(XF)"] = E[(XF)"].
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2.6.2 Proof of Theorem [2.4.1]

The proof of this theorem is based on Propositions 2.4.2] and 2.4.3] on Doob-Meyer’s de-

composition and on the martingale representation theorem.

Since the process (J;) is a supermartingale, it can be written under the following form

by using Doob-Meyer’s decomposition (see [46]) and the martingale representation theorem

th - thWt + Utht — dAb (261)

with Z € L2 (W), U € L} (M), and (4;) is a nondecreasing F-adapted process and Ag = 0.

loc loc
From product rule, the derivative of process ((X[')?J;) can be written under the form

A((XTY ) = (XJ )7 (dAT + dMy),
with Af = 0 and

—1
dAT = |ymi(peJe + 01 Zy) + ’)/(’}/2)|7Tt0t|2<]t + (1 + 7)Y — 1) (Je + Ut)}dt — dAy,
thﬂ = (’)’TFtJtJt + Zt)th + (Ut + ((1 + 7Tt,8t)’y — 1)(Jt + Ut))th

(2.6.2)

From Proposition we have dA] < 0 for any 7 € A, which implies
(v —1) 2 5
dAy > esssup s ym(pe s + 01 Zy) + T\matl Je + (1 + m8)T — 1) (Je + Uy) pdt.
TeEA
From [84], there exists an optimal strategy @ € A to the optimization problem, and from
Proposition 2.4.3] we get

. -1
dA; = [’ym(utJt + O'tZt) + M

o+ (L4 )T = 1)+ Up)dt.

Which imply that

-1
dA; = esssup {’}/TI't(,utJt + 01 Z4) + -1

) B ‘FtO'tIQJt—F)\t((]_—}—ﬂ't/Bt)’y— 1)(Jt+Ut)}dt
S

(2.6.3)
Therefore the process (J, Z,U) is a solution of BSDE ([2.4.6)).

We now prove that it is the minimal solution. Let (J,Z,U) be a solution of BSDE
(2.4.6). Let us prove that ((X[)7J;) is a supermartingale for any = € A. From the product

rule, we can write the derivative of this process under the form

d (X[ ) = (XE) [dM] + dAT — dA,] (2.6.4)
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where A; (resp. M]") is given by (2.6.3) (resp. [2.6.2) with (J, Z,U) replaced by (J, Z,U),
and flg =0 and

_ _ _1 _ L
dz‘l;r = [’yTrt(,ungt + O'tZt) + ’)/(’}’2)7_‘_?0_]521% + )\t((l + Wtﬂt)’y — 1)(Jt + Ut) dt.
By integrating (2.6.4), we get
t t
X7 ijt_jO: X™ Y dMT — Xy dAS—dAW .
t s s s s
0 0

As dAg > dAT, we have fg(X;[ VAMT > (X[)'Jy — Jo > —Jo. It implies that (M]) is a
supermartingale, since it is a lower bounded local martingale. Hence, the process ((X[)7.J;)
is a supermartingale for any m € A, because it is the sum of a supermartingale and a
nonincreasing process. Proposition implies that J; < J;, Vt € [0,T], P — a.s., which
ends this proof.

2.6.3 Proof of Theorem [2.4.2]

We first remark that (J*(t)) satisfies the following property:

Lemma 2.6.2. The process (J*(t)) is the smallest F-adapted process such that ((X[)7J5(t))

is a supermartingale for any m € AF with terminal condition J*(T) = 1.

To prove this lemma, we use exactly the same arguments as in the proof of Proposition

since Lemma is still true with Af instead of Ay.

Fix t € [0,T]. It is obvious with the definition of sets A; and A¥ that A} C A; for each
k € N, and hence

JEt) < Jp, P—as. (2.6.5)
Moreover, since AF ¢ A1 for each k € N, it follows that the positive sequence (J*(t))pen
is nondecreasing. Let us define the random variable

J(t) = lim 1 J*(t), P —a.s.

k—o0

It is obvious that the process J(t) < J;, P — a.s., from and this holds for any
t € [0,77]. It remains to prove that J; < J(t), P—a.s., for any t € [0,T]. As in the proof of
Theorem 5.1 of the companion paper [91], we first prove that the process J(tT) is cad-lag
and satisfies J(tT) < J(t), P — a.s. The process ((X[)Y.J(t)) is a supermartingale for any
bounded strategy m € A. In the sequel, we shall denote J; instead of J (t*). We now prove
that J; > J;, Vt € [0,T], P — a.s. Since (J;) is a cad-lag supermartingale, it admits the

following Doob-Meyer’s decomposition

djt = thWt + Utht — dAt,
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with Z € L2 (W), U € L} (M) and (4;) is a nondecreasing G-adapted process with
Ay = 0. As before, we use the fact that the process ((X[)?.J;) is a supermartingale for any
bounded strategy m € A to give some conditions satisfied by the process (A;). Let 7 € A

be a uniformly bounded strategy, the product rule gives
d(X[)J) = (X )Y (dAT + dMT), (2.6.6)

where (AT) and (M) are given by (2.6.2) with (J, Z, U, A) replaced by (J, Z, U, A).
Let A; be the subset of uniformly bounded strategies of A;. Since the process ((X[)7.J;)

is a supermartingale for any © € A, we have

_ _ _ 1 _ L
dA; > esssup {'yﬂt(,utjt + o1 Zy) + 7(72)‘7”@’2!]15 + (1 + 7 B)T — 1) (J + Ut)}dt.
TeA

(2.6.7)

It is not possible to give an exact expression of A; as in the previous proof, because we
do not know if # € A. But this inequality is sufficient for the proof. Now, the following
equality holds dt ® dP a.s.

1y =1) Ty
2

ess sup {’Y?Tt(utjt + 01 Z;) + |moe > e 4+ A (1 + ) — 1)(Jy + Ut)} =

TeEA

_ _ 1 _ L
ess SXP {VWt(MtJt +0vZ;) + PY(PY2)|7TtUt|2Jt + M (L +7mB) — 1) (J; + Ut)}- (2.6.8)
e

We now want to show that ((X7)?.J;) is a supermartingale for any 7 € A. Fix 7 € A (not

necessarily uniformly bounded), we get
o= h= [y + [ oaaar,
with (AT) and (M) given by with (J, Z, U, A) replaced by (J, Z, U, A).
Inequality and equality imply that dAT < 0, P — a.s. Therefore, we have
[y = o= bz -

Thus, (M]") is a supermartingale, since it is a lower bounded local martingale. As (M]") is
a supermartingale and (AT) is nonincreasing, the process ((X[7)?.J;) is a supermartingale,
and this holds for any = € A. Since (J;) is the smallest process (see Proposition
satisfying these properties, we have J; < J;, P — a.s. Which ends the proof.

2.6.4 Proof of Lemma [2.5.3]
First, recall Bayes formula: for all ¢ € [0,7] and X € L'(Q, 7, P), one has

Eq[AX|Gi]

i (2.6.9)

E[X[G] =
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Let (&) be the optional projection of the P-martingale (L) to G, so
& = E[L.|G].

By applying relation 1} to X = L;, we immediately obtain & = 1/ A; and thus

t~ B 1 t ~
ft:eXP<_/() pldeS_Q/O HPSHst)'

Let (my) be a (P, G)-local martingale. From Bayes rule, the process (m;) given by
iy =me; ", 0<t<T,

is a (Q, G)-local martingale. From Remark and Lemma there exists a couple of
processes (dg, by) with @ € L2 (W) and b € L} (M) such that

loc loc
t N t _
mt:/ a;dWs+/ BN, 0<t<T.
0 0

By Ito’s formula applied to m; = 1m,&;, definition of (W;) and (M;) (see (2.5.6)), we obtain
that

t ¢
™me :/ al,dWs —i—/ b.d M,
0 0

with a; = &ar — & pr and by = &by,
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Chapter 3

Progressive enlargement of filtrations

and Backward SDEs with jumps

Joint work with Idris Kharroubi.

Abstract: This work deals with backward stochastic differential equation (BSDE) with ran-
dom default times, and their applications to default risk. We show that these BSDEs are
linked with Brownian BSDEs through the decomposition of processes with respect to the
progressive enlargement of filtrations. We show that the BSDEs have solutions if the as-
sociated Brownian BSDEs have solutions. We also give a uniqueness theorem, and a new
Feynman-Kac formula for integral partial differential equations. As applications, we study
the pricing and the hedging of a European option in a complete market, then the indifference

pricing of defaultable claims in an incomplete market.

Keywords: Backward SDE, multiple random default times, progressive enlargement of filtra-
tions, decomposition in the reference filtration, uniqueness theorem, Feynman-Kac formula,

indifference pricing.
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3.1 Introduction

In recent years, credit risk has come out to be one of most fundamental financial risk.
The most extensively studied form of credit risk is the default risk. Many people, such as
Bielecki, Jarrow, Jeanblanc, Pham, Rutkowski (|16} [15] [70, [72] [76l, 111]) and many others,
have worked on this subject. In several papers (see for example Ankirchner et al. [3],
Bielecki and Jeanblanc [17], Lim and Quenez [91] and Peng and Xu [109]), related to this
topic, backward stochastic differential equations (BSDEs) with random default times have
appeared. Unfortunately, the results relative to these latter BSDEs are far from being
as numerous as for Brownian BSDEs. In particular, there is not any general result on
the existence of solution to quadratic BSDEs, except Ankirchner et al. [3], where the
assumptions on the driver are strong. In this paper, we study BSDEs with random default
times. We give an existence and uniqueness result for the solutions to BSDEs, in particular
for quadratic BSDEs.

A standard approach of credit risk modeling is based on the powerful technique of fil-
tration enlargement, by making the distinction between the filtration F generated by the
Brownian motion, and its smallest extension G that turns default times into G-stopping
times. This kind of filtration enlargement has been referred to as progressive enlargement
of filtrations. This field of enlargement of filtrations is a traditional subject in probability
theory initiated by fundamental works of the French school in the 80s, see e.g. Jeulin [74],
Jeulin and Yor [75], and Jacod [69]. For an overview of applications of progressive enlarge-
ment of filtrations on credit risk, we refer to the books of Duffie and Singleton [50], of Bielecki
and Rutkowski [I6], or the lecture notes of Bielecki et al. [15]. A classical assumption in
the enlargement of filtrations is the stability of the class of semimartingales, usually called
(H”) hypothesis, and meaning that any F-semimartingale remains a G-semimartingale. This
assumption is a fundamental property both in probability and finance where it is closely

related to the absence of arbitrage.

The purpose of this paper is to combine both Brownian BSDEs and progressive en-
largement of filtrations in view of giving results about BSDEs with random default times.
We consider a progressive enlargement with multiple random times and associated marks.
These marks represent for example the name of the firm which defaults or the jump sizes of
asset values. Our approach consists in using the recent results of Pham [I11] on the decom-
position of predictable and optional processes with respect to the progressive enlargement
filtrations to decompose a BSDE with random default times into a sequence of Brownian
BSDEs. By combining the solutions of Brownian BSDEs, we get a solution to the BSDE
with random default times. Using this method, we get in particular an existence result
for quadratic BSDEs. This approach also allows to obtain a uniqueness theorem which is
based on a comparison theorem. The same technique can be applied to the integral partial

differential equations, and this gives a decomposition of Feynman-Kac formula for these
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equations. This decomposition of Feynman-Kac formula is written as a recursive system of
partial differential equations. We illustrate our methodology with two financial applications
in default risk management: the pricing and the hedging of a European option in a com-
plete market, and the problem of indifference pricing of defaultable claims in an incomplete
market. A similar problem (without marks) was recently considered in Ankirchner et al. 3|
and Lim and Quenez [91].

The paper is organized as follows. The next section presents the general framework of
progressive enlargement of filtrations with successive random times and marks, and states
the decomposition result for G-predictable and optional processes. In Section 3, we use this
decomposition to make a link between Brownian BSDEs and BSDEs with random default
times. That allows to give an existence and uniqueness result. We also give a first example
with the pricing and the hedging of a European option in a complete market. In Section 4,
we give a new Feynman-Kac formula for IPDE, which could be regarded as a decomposition
of Feynman-Kac formula given by Barles, Buckdahn and Pardoux [7]. Finally, in Section
5, we use the results of existence and uniqueness to solve the problem of maximization
of exponential utility and we study the indifference pricing of defaultable claims in an

incomplete market.

3.2 Progressive enlargement of filtrations with successive ran-
dom times and marks

We fix a probability space (2,G,P), and we start with a reference filtration F = {F;, 0 <
t < T'} satisfying the usual conditions (Fp contains the P-null sets and F is right continuous:

Fi = Fp+ := Ng>1Fs). We consider a finite sequence (7%, Ck)1<k<n Where
— (Tk)1<k<n is a sequence of random times (i.e. nonnegative G-random variables),
— (Ck)1<k<n is a sequence of random marks valued in some Borel subset E of R™.

We denote by g the random measure associated with the sequence (7%, (k) 1<k<n :

n
w([0,t] x B) = Z]l{rkgt,ckeB} .
k=1
For each k = 1,...,n, we consider D* = (DF)o<i<r the smallest right-continuous fil-
tration for which 74 is a stopping time and (j is D’ﬁk—measurable. D* is then given by
DF = biﬂ, where ﬁf =o0(lr<s,5 <t)Vo(Cls<s,s <t). The global information is then
defined by the progressive enlargement G = {G;, 0 < t < T'} of the initial filtration F where
G:=FvD!Vv...vD". The filtration G = {G;, 0 < t < T} is the smallest filtration contain-
ing F, and such that for each £ = 1,...,n, 7 is a G-stopping time, and ¢, is G, -measurable.

We first remark that an enlargement of the free default filtration F by unordered random
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times is equivalent to the enlargement with the associated ordered random times and ran-
dom marks. Indeed, let (7,...,7,) be the order statistics of (71,...,7,). Call (¢1,...,¢n)

the corresponding permutation which satisfies
(715, Tn) = (T¢1s -, 7¢), P—a.s. (3.2.1)

Hence, for simplicity of presentation, we only consider in the sequel the case where the

random times are ordered, i.e. 71 < ... < 7,, and so valued in A, on {7, < oo}, with

Api={(01,....00) € R)F + 61 <... <)}, 1<k<n
We introduce some notations used throughout the paper:

— P(F) (resp. P(G)) is the o-algebra of F (resp. G)-predictable measurable subsets
on ) x Ry, i.e. the o-algebra generated by the left-continuous F (resp. G)-adapted
processes. We also denote by Pp (resp. Pg) the set of F (resp. G)-predictable

processes, i.e. P(IF) (resp. P(G))-measurable processes,

— O(F) (resp. O(G)) is the o-algebra of F (resp. G)-optional measurable subsets on
Q x Ry, i.e. the o-algebra generated by the right-continuous F (resp. G)-adapted
processes. We also denote by O (resp. Og) the set of F (resp. G)-predictable

processes, i.e. O(F) (resp. O(G))-measurable processes,

— for each k = 1,...,n, we denote by PE(Ay, E¥) (resp. Ok(Ay, E¥)) the set of indexed
processes Y*(.) such that the map

(w,t,&l,...,Qk,el,...,ek) = Y;k(o.),el,...,Qk,el,...,ek)
is P(F) ® B(Ag) ® B(E*) (resp. O(F) ® B(A,) ® B(E¥))-measurable,
— for 0 =(01,...,0,) € A, and e = (eq,...,e,) € E™ we denote by

H(k) = (91,...,9k) and 6(k) = (61,...,ek), k= 1,...,71.
In the sequel, we will denote Y}*(w, 0(k), €(x)) instead of YE(w,01,...,0k e1,...,¢eL).

The following result, given by Pham [III], provides the basic decomposition of pre-

dictable and optional processes with respect to this progressive enlargement of filtrations:

Lemma 3.2.1. — Any G-predictable process Y = (Yi)o<t<T 15 represented as
n—1
Y, = Y;fo]ltﬁ‘l'l + Z Yrtk('r(k)a C(k))]lfk<t§‘l‘k+1 + thn('r(n)a C(n))]lTn<t7 (322)
k=1

for all0 <t < T, where YO € Pg, and Y* € PI]F“(Ak,Ek), fork=1,....,n.



3.2. PROGRESSIVE ENLARGEMENT OF FILTRATIONS 105

— Any G-optional process Y = (Y;)o<i<T 15 represented as

n—1

Yy =Y ier, + O Y (1), ) hr<tareis + Y7 (T Cny) Lt (3.2.3)
h=1

for all0 <t < T, where Y° € Op, and Y* € Ok(Ay, E¥), fork=1,...,n.

In view of the decomposition (3.2.2)) or , we can then identify any Y € Pg (resp.
Og) with an n+1-tuple (Y?,...,Y") € Ppx...xPR(Ap, E") (resp. OpX...x OR(A,, E")).

We shall make in the sequel the standing assumption of the semimartingale invariance
property, also called (H’) hypothesis, i.e. any F-semimartingale remains a G-semimartingale.
This result is related in finance to no-arbitrage conditions, and is thus also a desirable prop-

erty from an economical viewpoint.

We now introduce a density assumption on the random times and their associated jumps
by assuming that the distribution of (7y,...,7,,(1,...,(,) is absolutely continuous with
respect to a positive measure dfn(de) on B(A,) ® B(E™), with n a measure on B(E™).
More precisely, we assume that there exists a B(A,,) ® B(E™)—measurable map - such that

(DH) Pl(T1,-+y T, Cly vy Cn) € dOde] = ~y(b1,...,0n,€1,...,e,)d0; ...dOxn(de) .

The assumption of a density w.r.t the Lebesgue measure for A is made for simplicity, and

includes usual cases of application.

Remark 3.2.1. If the unordered times (71, ...,T,) satisfy the density assumption:
Elf(rom)] = [ F(s)(s)ds P—as.,
R%
then, the ordered times (with marks) (T1,...,Tn,C1,-..,Cn) Satisfy also the density assump-

tion with densitylﬂ

E[f(F1, oo Gl )] = / S f(s,0)3(s,0)ds, P—as.,

n 0'6671.

where v is defined by

(W, 81, 380,0) = (W, 85-1(1)5 -+ So-1(n))-

! &, is the set of permutations of {1,...,n}.
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3.3 Decomposition of BSDEs with jumps

In this section, we use the previous decomposition results to solve BSDEs with jumps. We
use a similar approach to Ankirchner et al. [3]: one can explicitly construct a solution by
combining solutions of Brownian BSDEs. But contrary to them, we suppose that there exist
n default times and n random marks. Our assumptions on the driver are also weaker.

We first introduce some notations:

— S&° (resp. Sp°) is the set of processes Y € Og (resp. Y € OF) essentially bounded:

HYHSEO (resp. HY||SI<F,O) = esssup Y| < 0.
te[0,T

~ LA(W) (resp. L&(W)) is the set of P(G) (resp. P(F))-measurable processes Z such
that

T
12l aan) esp 1 Zllzny) = E| /0 1zt < .
— L?(u) is the set of P(G) ® B(E)-measurable processes U such that

T
Ol = B[ [ [ 100 Putdeds)] < oo
0o JE
Throughout this section, we will consider one dimensional BSDEs of the form
T T T
Y, = §+/ f(s,YS,Zs,Us)ds—/ ZSdWS—/ /Us(e)u(de,ds), 0<t<T.(33.1)
t t t JE
3.3.1 Existence of a solution

We first define what is a solution to BSDE (3.3.1)):
Definition 3.3.1. A solution in S x L4 (W) x L?(u1) to BSDE (§3.3.1)) is a triple of processes
(Y, Z,U) in S x LEL(W) x L*(u) satisfying the equality
T T T
Vi = e+ [ pevizavgds— [ zaw.- [ [ viontdeds),
t t t JE

for all t € [0,T], P — a.s. [}
Using the decomposition of Lemma we link these BSDEs with Brownian BSDEs.

For this purpose we first introduce the basic decompositions of £ and f:

n
f = go]lTSTl + Z gk(Th <oy Tk Cl? ey Ck’)]lTk<TSTk+17 (332)
k=1

2The symbol f; stands for the integral on the interval (s, ] for all s, € R..
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where ¢¥ is Fr-measurable and &* is Fr ® B(Ay) ® B(E¥)-measurable for each k = 1,...,n,

with the convention that 7,41 = oo, and
n
f(tv Y, z, U) = fo(tv Y, z, u)]lt<7'1 + Z fk(tv Yy Zy Uy T1y e ooy Tk, Cla DI Ck)]lTkSt<Tk+1a (333)
k=1

where [0 is O(F) ® B(R) ® B(RY) @ B(RF)-measurable and f* is O(F) @ B(R) ® B(RY)
B(RF)®B(Ar)® B(E*)-measurable for each k = 1,...,n. To alleviate notation, we shall of-
ten denote £ and f*(t,y, 2, u) instead of fk(T(k), (k) and ity z,u, T(k)» G(k))> and YE(t,e)
instead of Ytk(Q(k,l), t,e(k—1),€)

The link between Brownian BSDEs and BSDEs with jumps is given by the following
result.

Theorem 3.3.1. Assume that for all (6,€) € A,, x E™, the Brownian BSDE

T
Y(0,e) = f”(H,e)—i—/t f"(s,YS”(Q,e),Zg(@,e),0,0,6>ds

T
—/ Z0(0,e)dW,, 0<t<T, (3.3.4)
t
admits a solution (Y™(0,¢), Z™(0,¢)) € S x LA(W), and that for each k = 0,...,n — 1,
the BSDE
k k 4 k k k
Y (0w, ewy) = € (0w ew)) +/t f <5,Ys (Ok) ek))s Zs (O(k)s €k))s
YE 01y, 5, €. -) — Y (O, e(k)))ds (3.3.5)
T
—/ ZEOgy, er)dWs, 0<t<T,
t
admits a solution (Yk(ﬁ(k), (k) Zk(O(k), e))) € Si° x Lg(W). Assume moreover that each

Y* (resp. ZF) is Op @ B(Ag) @ B(E*)-measurable (resp. Pr @ B(Ar) ® B(EF)-measurable).

If all these solutions satisfy

sup Y *(0), eo)llse < o0,
(k,0,e)€{0,....,n} x Ay X E™

and

01T n 9k+1/\T
[ B[z S [ (26 e Pas@ s nide) < oo
ApXE™ 0 k=1 Gk/\T
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then, BSDE (3.3.1)) admits a solution (Y, Z,U) € 8 x L&(W) x L*(u) given by

n
Y, = Yler, + ZYtk(T(k)’ Cley) U<ty
k=1

Zy = Z{li<n + ZZf(T(k)7C(k))]lTk<t§Tk+1a (3.3.6)
k=1
n—1
Ut() = Uto()]ltg‘rl + Z Utk(T(k)’ C(k)a ')]]'Tk<t§Tk+1a
k=1

with UP(.) = Y (t,.) = Y, and UF (71, Sy ) = Y (T £ Sy -) = YiE (k) Ciiy) for each
k=1,...,n—1.

Proof. For the simplicity of notation, we shall omit the dependence of processes on (61, e(1))-

We prove that (Y, Z,U) defined by (3.3.6) satisfied the equation

Y, = §+/ fSYS,ZS,U)ds—/ ZdW, — / / u(de,ds), 0<t<T.
t
We distinguish three cases.

Case 1: there are n defaults before t. Hence, 7, < ¢ and from (3.3.6) we get ¥; = Y.
Using BSDE , we can see that

T T
Y = &+ f"(s,Y;",Zg,O)ds—/ ZYdWs .
t t
Since 7, < T, we have £" = ¢ from (3.3.2). And in the same way, we have Y; = Y,

Zs =272 Us=0forall s € (t,T] from (3.3.6)), and f"(s, Y, Z7,0) = f(s,Ys, Zs, Us) for all

s € (t,T] from (3.3.3]), then

Y, — §+/ sts,Zs,U)ds—/t Z.dW, — // u(de. ds)

Case 2: there is no default after ¢ and i defaults before t (i < n). Hence, ¥; = Y}, and
using BSDE (3.3.5)), we can see that

T T
Vo= g [ P YLz ) - Yias - [ Ziaw..
t t
Since there is no default after ¢, we have Yy = Y7, Z, = Z! Ui(.) = Yit!(s, )— €& =¢and

fi(s,Yi, 28 UY = f(s,Ys, Zs,Us) for all s € (¢,T], and moreover ft [ Us(e)p(de,ds) =0

s L s

because there is no default on (¢, 7], thus we have

Y, = §+/ st;,ZS,U)ds—/t Z,dW, — // pi(de, ds) .
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Case 3: there are k defaults after ¢ and 7 defaults before ¢. Since 7y, is the last default
time, we have Y, . = Y**? And since Y**? is a solution of BSDE lb if k+i=mnor

k+1 Tl+i "

(3.3.5)) if &+ < n, we can see in the first case that

T T
YA g [ i 2 ods - [ Zk v,

Tk+i
Thk+i Thk+i
or in the second case that
k k r k k k k k r k
i ekt +i i ki yrhitl +i +i
YTHZ_ = £ +/ (s, Y7 20T Y (s,.) =Y, )ds—/ Z;TdWs .
Thti Th+i

With the same techniques, we get for Yz, .,

Tk+i
k+i—1 __ k+i—1 k+i—1 k+i—1 k+i—1 k+1 k+i—1
YT]C+Z',1 - YT]C+Z' + / f (87 Y; ) ZS 7YS (87 ) - )/8 )ds
Tk+i—1
Tk+i ki1
i—
- / ZFi=taw,
Tk+i—1

Using the equality Y=l = YE+i(r, ;) — [T+ [ UFi=1(e)u(de, ds), we get

Tk41 Tk41 Thk+i—1
ki1 ket Thet kti—1 TR krio
11— 3 11— 11—
Yot o= Y (Teeris ) —/ / U, (e)u(de, ds) —/ Z, AW
Th4i—1 E Tk+i—1

Tk+1 . . . . .
+/ fk‘-l—l—l(s’ Ytgk:-‘y—l—l7 Z;c-f—l—l’ Y;k—H(S, ) _ }/;k:-‘rz—l)ds .
Tk

+i—1
By iteration until 7;41, we get
+1 +2 e 1 i
il = Y, ) - / / U (e)u(de, ds) — / Zi+aw,
Tit1 JE Tit1

Tit2 . . . ;
+/ fz+1(8’}/31+172;+17ysz+2(87') _Y*Serl)dS )

41
Since 7; < t < Ti11, we have Y; = Y. Using that Y is a solution of (3.3.5)), we get
. , Ti+l S ‘ Titl
Y;EZ = Y7?i+1 +/ fz(va:sZﬂ Z;Y;_'—l(sv ) - Y;Z)ds - / Z;dWS :
t t
Using the equality Y =Yt (r,.) = [ [ Ul(e)u(de, ds), we get

Ti+1 Ti+1 t

Ti+1 S

Titl Tit1 )
—/ ZdWs —/ / Ui(e)u(de,ds) .
t t E

If we sum all these equations, and with the expressions of Y, Z and U given by ({3.3.6)), and

. . Titl . . . .
Y = YZ+1(TZ'+1,.)+/ fils, Y, ZL Y (s, ) — Yi)ds
t

the decompositions of £ and f given by (3.3.2)) and (3.3.3)), we get

T T T
Y, = §+/ f(s,Ys,Zs,Us)ds—/ stWS—/ /Us(e),u(de,ds).
t t t JE
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We now prove that the solution satisfies the integrability conditions. By definition of Y, we

have
n
esssup [V < ess sup YP%ico, + O YO0, ee) Loy<t<tpas |»
t€[0,T (t,0,e)€[0,T]xApxE™ =1
n
< ess sup {‘Yto‘]lt<91 + Z ‘Ytk(@(k), 6(k))}]16k§t<9k+1 },
(¢,0,e)€[0,T| X Ap X E™ 1
n
< esssupV+Y esswp V(O em)l
te[0,7) k=1 (t,e(k>,e(k))E[O,T]XAkXEk

Thus, Y € S since the processes (Yk(H(k), €(k)))kefo,....n} Satisty

sup 1Y "0y, eo)llsee < oo
(k,0,e)€{0,...,n} XAy X E™

In the same way,

9k AT

E| /OTythdt}— /AEIE[ /9 zwds+z / 125 O )P ds | 10, €) a9 n(de).

Thus, Z € L% (W) since the processes (Zk(‘g(k)ae(k)))ke{o,..,n} satisfy

01NT Ok NT
/ E[/ 1202 ds+Z/ 1256, (k))|2d5]7(9,e)d9 n(de) < oo
ApxE™ 0 O NT'

O]

We now give some explicit examples where the previous general theorem can be applied
to provide existence of solution to BSDEs with jumps.

Corollary 3.3.1. Suppose that the random wvariable £ is bounded. Suppose also that the

generator f: Q x [0,T] x R x R x RF — R satisfies one of those two conditions

(i) [ is deterministic and Lipschitz: there exists a constant C such that

’f(t, y7z7u(e) _y)EEE_f(t7 ylazlau(e) _y/)eeE‘ < C(’y_y,‘ =+ ’Z_Z/’) )
for all (t,y,y/, 2,2 ,u) € [0,T] x [R]* x [RY)? x R¥,
(ii) f is quadratic in z: there exists a constant C such that

[f(ty,z,0)] < CL+[2?),

for all (t,y,z,u) € [0,T] x R x R? x R¥.
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Then, BSDE (3.3.1)) admits a solution in S& x LE(W) x L*(p).

Proof. Step 1. First notice that since £ is a bounded random variable, we can choose
fk(T(k), C(k)) bounded for each £ = 1,...,n. Indeed, if C is a positive constant such that we
have || < C, P — a.s., then we have
n
¢ = Qlrcn +D Lm0 Cl e G <<
k=1

with €8 (1, 1, Cly ey Go) = (€5 (1, oo e 1o G AC) YV —C for each k= 1,...,n.

Step 2. We then prove the existence in the two previous cases.

(i) Since f is Lipschitz and deterministic, it is possible to choose for each k € {0,...,n}
the function f*(., O(k), €(k)) Lipschitz continuous by taking e, O(k), €(k)) = f. Choosing %
bounded as in Step 1, we get from El Karoui and Quenez [57], the existence of a solution
for each Brownian BSDE. Applying Theorem we get the existence of a solution to
BSDE (3:3.1).

(ii) Since f is quadratic in z, it is possible to choose the functions (f*(., O(k)» €(k)))o<k<n
quadratic in z. Indeed, if C is a positive constant such that |f(t,y, z,u)| < C(1 + |z|?), for
all (¢t,y,z,u) €0,T] xR x R? x R¥, P — a.s. and f has the following decomposition

n
fty,zu) = Oty z,u)lier + Z FEt Y, 200, 7y, G ) <t
k=1

then, f satisfies the same decomposition with f* instead of f* where
oy, z,u) = [fH(ty,2,0) ACL+ [2P)] v (=C(1+ |2,

for all (t,y,z,u) € [0,T] x R x R? x R¥.
Choosing &* bounded as in Step 1, we get from Kobylanski [83], the existence of a solution

for each Brownian BSDE. Applying Theorem we get the existence of a solution to
BSDE (33.1). O

3.3.2 Application to the pricing of a European option in a complete mar-

ket with default

In this example, we assume that there is a single random time 7 representing the time

occurrence of a shock in the prices. We denote by N the associated pure jump process:

N, = .oy, 0<t<T,
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and by M the compensated martingale associated with IV, that we suppose being equal to
t
Mt = Nt—/)\sdé’, OStST
0

We consider a financial market which consists of
— a non-risky asset SY, whose strictly positive price process is defined by
sy = rnSPdt, 0<t<T, Sy=1,
with r > 0, for all ¢ € [0, T,

— two risky assets with respective price processes S' and S? defined by

V)
O

dStl = Stl, (,utdt + o dWi + ﬂth) s 0<t<T ; Sé =
and
dS} = Si(mdt+6dW;), 0<t<T, Sj=sj,

with oy > 0 and &; > 0 and 3 > —1 (to guarantee that the price process S' always

remains strictly positive).

We assume that the coefficients r, u, i, o and & have the following forms

.

=T 1t<7+7" T 11t>7'7

1

pe = p0ler + p (1) Ly r

1

0t =0 ]1t<7+0 T ]lt>‘ra

(1)

(1)
fi = [i°Lper + ' (T)Lizr

(1)

(1)

- 1
o1 = 64y + (T Ti>r.

\

Assumption 3.3.1. The following proportionality relation holds true

The aim of this subsection is to provide an explicit price for any bounded Gr-measurable
European option &, together with a replicating strategy @ = (7%, 7!, 72) (! corresponds to
the number of shares S? hold at time t), i.e. this market is complete for bounded contingent
claims.

Let 7 = (7%, 7!, 72) be a self-financing strategy. The wealth process Y associated with

this strategy satisfied

Y, = wlSY+nalSt4+wis?, 0<t<T. (3.3.7)
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Since 7 is a self financing strategy, we have
dY; = w0dSY +n}dS} +72dS?, 0<t<T.
Combining this last equation with (3.3.7]), we get

dY, = (rYi+ (e — r)wlS)+ (e — re)mp S7)dt
+(mioS) + mE SE) AW, + 78S dM,, 0<t<T. (3.3.8)

Let us define the processes Z and U by
_ 1l 2= @2 _ _lpgl
Zy =my04S;- +7m;6yS; and Uy =7 p6S,-, 0<t<T. (3.3.9)

Using Assumption the dynamics ([3.3.8]) can then be written under the form

dY; = [rth— TRy (”;’”‘t - W)Ut}dt—i—thWt—kUtht, 0<t<T.
Ot

t
Therefore, the problem of valuing and hedging the contingent claim £ consists in solving
the following BSDE

—dY: = [5Ez 4 (M A = 2 U - Y@
—Z4dW; — UdN;, 0<t<T, (3.3.10)
Yr = €.

Using the previous subsection, one knows that it is possible to obtain a solution of this
BSDE by solving two Brownian BSDEs. From the form of the coeflicients r, u, i, o and &,
the two Brownian BSDEs associated to ([3.3.10f) are

7,.1 _ 1l
{—wﬁ@ = [P P a6) ~r OYA6) [t - ZHOaW., 0<t<T. gy,
YAO) = €40),
and
_d}/to — [rogoﬂo Zt + <7~03u0 + )\t _ %) ()/'tl(t) _ }/;0) _ 7,0}/1:0] dt
—ZidWy, 0<t<T, (3.3.12)

v = &.

Since these BSDEs are linear, we have an explicit solution for each BSDE. We get the
following formula for Y'1(9) :

YiH0) =

with T''(6) defined by

T‘l =1
R
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For Y we get :
1 T
Y = E[er§+ / e,T0ds| 7|
t t

with I'? defined by

t 1 [t t
Fg = exp (/ bsdW, — 2/ |bs|2ds—|—/ asds),
0 0 0

where the parameters a, b and ¢ are given by

o 0 0 0,0 _ =0
Lo (T =)
ar = r ( /8 +)\t ﬁa_o >7

0 — 0
b, =
t 6_0 )

N L D
Ct—( 3 +)\t_[%‘0)y;/(t)‘

The price at time ¢ of the European option ¢ is equal to Y, if ¢ < 7 and V;}(7) if t > 7.
Once we know the process Y and Z, a hedging strategy m = (7%, 7!, 72) is given by (3.3.7)
and (3.3.9).

3.3.3 Uniqueness

In this subsection, we provide a uniqueness result based on a comparison theorem. We
consider two BSDEs with coefficients (f, ) and (f,€). We denote by (Y, Z,U) and (Y, Z,U)
their respective solutions in S x L2 (W) x L?(). We consider the decomposition (€%)g<x<n

(resp.  (E)o<k<ns (f¥)o<k<n, (FFo<w<n, ¥ )o<k<ns YF)o<ken, (Z¥)o<k<n, (ZF)o<k<n,
(Qk)ogkgn, (UR)o<k<n ) of £ (resp. £, £ f,Y, Y, Z Z U, U) (to alleviate notation, we

shall omit the dependence on (64), e(x))). For ease of notation, we shall write:
~ F"(t,y,2,.) and F"(t,y, z,.) instead of f"(t,y,2,0,.) and f(t,y,2,0,.),

- Ek(t, y,z,.)and F¥(t,y, z,.) instead off“(t,y, Z,Xf+1(t, )—y,.) and f(t,y, z, ﬁkﬂ(t,.
y,.) for each k =0,...,n — 1.

Before giving the comparison result, we first need an assumption on the behavior of the

jumps w.r.t the filtration G.

Assumption 3.3.2. The stopping times (T)1<k<n are inaccessible in the filtration G.

We can state the general comparison theorem.

Theorem 3.3.2. Suppose that § < €, P-a.s. If for each k =0,...,n,

Ek(tayvz) < Fk(t7y7 Z)? V(tv Y, Z) S [OaT} x R x Rd: P—a.s. ’
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and the generator F* or F* satisfy a comparison theorem for Brownian BSDEs. Then,

under Assumption if Uy =U, =0, Vt>T,, we have
Y, < Y, Vtel0,T], P-—as.

Proof. Step 1. Notice that we can assume that §k < &k P — a.s. Indeed, if it is not the

case we can replace §k (resp. £F) by §k A EF (resp. §k v ER).

Step 2. Since (Y, Z,U) (resp. (Y, Z,U)) is solution to the BSDE with parameters (¢, f)
(resp. (&, f)), we obtain from the decomposition in the filtration F that (Y™, Z") (resp.

(Y™, Z™)) is solution to

}7tn(7_(n)7C(n)) = gn(TnaCn)

T
—/ Z3 (T, Gn))AWs ;- 70 <E ST, (3.3.13)
t

(resp. X? (T(n)a C(n)) = én (T(n)a C(n))

T
+ /t P (57 X?(T(n)v C(n))v Z?(T(n)7 C(n))a T(n)» ((n)) ds

T
_/ Z?(T(n)7 C(n))dWs , ™ <t<T ) (3.3.14)
t
and (Y*, Z%) (vesp. (Y*, Z%)) is solution to

Yy, Cwy) = YE (g Cery) — Uy (Getn)
Tk+1 _ _
b [P (5, Vg G 2 1y o) T G )
t

Tk+1 _
_/ Zf(T(k)7 C(k))dWs y T St < Tiy1, (3315)
t

(resp. Y (70, Ce) = Y5 (T Cern)) = Urn (Gign)
Tk+1
[ (5. Y- Gy 240G G )

Tk+1
/ ))dWS , T <t < Try ) (3.3.16)

foreach kK =0,...,n— 1.
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Step 3. We introduce a family of processes (Y*)o<p<p (resp. (ik)ogkgn). We define it

recursively by

Y:fn - S_/;n]ltZTn (resp' X? - X?]ltZTn) ’ 0 S t S T )

and for k=0,...,n—1

Ytk = Y;fk]lTkSt<7’k+1 + Ytk—i_l]ltZTkH
~ k ~k+1
(resp. Xt = Xf]]'TkSt<Tk+1 +Xt ]]-t27k+1) ) 0 S t S T.
These processes are cad-lag with jumps only at times 77, [ = 1,...,n. Notice also that yr

(resp. Y", V¥, ¥") satisfies equation (resp. (3.3.14), (3.3.15), (3.3.16)).

Step 4. We prove by a backward induction that ¥ < V" on [Tn, T] and zk <

kOIl

=~

[Tk, Tkt1), for each k =0,...,n— 1.

e Since " < €7 and F™ or F™ satisfy a comparison theorem for Brownian BSDEs we

immediately get from (3.3.13) and (3.3.14])

Yty Cmy) < Y (Tm)sCm)) s T St<T.

e Fix k < n—1 and suppose that Xf“ < }:/tkﬂ, V't € [Tkt1, Tkt2). Denote by Pyt (resp.
Pf) the predictable projection of v (resp. zl) for each [ = 0,...,n. Since v (resp. Xl)

has inaccessible jumps, we have
Y= YL (resp. PY, = Y, ), 0<t<T.
From equations (3.3.15)) and (3.3.16)), and the definition of v (resp. Xl), we have for [ = k

~ ~ Tk+1 _ ~ _
Pyl = pY’““+/ F’“(s,st’“,Z§“ﬁ<k>7C<k>)d$
t

Tk+1

Th+1 _
—/ Zhaw,, m<t<mi1, (3.3.17)
t

~ ~ Tk+1 ~
(resp. pi = ka+1 —}-/t Ek(sapziaZ];;T(k),C(kOdS

—Tk+1
Tk+1 k
—/ ZidWs, T <t < Tgi1)- (3.3.18)
t
Since Vi+1 > Y Pyt > pyEl i her with conditi F* and F*
ince Yo = > Y, weget FYo T > FY 1s together with conditions on and F'

give the result.

~k

Step 5. Since vk (resp. Y ) coincides with Y (resp. Y) on |14, Tpy1), we get the result. [



3.4. DECOMPOSITION OF FEYNMAN-KAC FORMULA FOR IPDE 117

In this form, the previous theorem is not usable since the condition on the generators of
the Brownian BSDESs is implicit: it involves the solution to the previous Brownian BSDE at
each step. We give in the sequel, an explicit example for the case of quadratic generators. We
use the result on quadratic BSDEs obtained in Kobylanski [83]. We introduce an assumption

similar to the one detailed in Kobylanski [83].

Assumption 3.3.3. There exists a constant C' such that

f(ty,zu)] < CA+[2P),
(3.3.19)

azf(tv y? z’ u)

for all (t,y,z,u) € [0,T] x R x RY x RF | P-a.s. For all ¢ > 0, there exists a constant C.

IA

C+20)

such that
Oyf(t,y, 2, (ule) = y)eer) < Cetelzf,
for all (t,y,z,u) € [0,T] x R x R? x RF, P-qa.s.
We can now state our uniqueness result for quadratic BSDEs with jumps.
Theorem 3.3.3. Under Assumptz’on BSDFE admits at most one solution.

Proof. The proof is a consequence of Theorem and Theorem 2.6 in [83]. O

3.4 Decomposition of Feynman-Kac formula for Integral Par-
tial Differential Equation (IPDE)

In this section, we aim at giving a new Feynman-Kac formula for IPDE, which could be
regarded as a decomposition of Feynman-Kac formula given by Barles, Buckdahn and Par-
doux [7]. We denote to simplify h(z,u(t,z), o Du(t,z), (u(t,z + B(x,€)))ecr) instead of
h(z,u(t,z), cDu(t, z), [5(u(t,z + B(x,€e)) — u(t,z))y(x,e)A(de)). And we consider the fol-
lowing IPDE

—0yu(t, z) — Lu(t, ) — hz, u(t, z),c Du(t, z), (u(t, z + B(xz,e)))ecr) = 0

for (t,z) € [0,T] x R? and (3.4.1)

w(T,.) =g(.),

here, L is a local second order operator given by [ﬂ
1
Lu(t,z) = b(x)Du(t,x)+ §TI"(UO'T($)D2U(t,ZL‘)).

We make the following assumptions:

3Let A be a square matrix, then AT stands for the transposition of the matrix A and Tr(A) is the sum

of the elements on the main diagonal of the matrix A.
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Assumption 3.4.1. —b: RY — R? is Lipschitz continuous and has a linear growth:

|b(x)| < c(1l+|z]) Vo e R,

— 0 : R — R4 s Lipschitz continuous and has a linear growth: |o(z)| < c(1+|z|) Vz €

Rd

)

— g :R? = R is Lipschitz continuous and has a linear growth: |g(z)| < ¢(1+ |z|) V& €
Rd

)

— h:RIXRxR¥xR — R is Lipschitz continuous and has a linear growth: |h(z,0,0,0)| <

c(1+]z|) Vo € R and p — h(x,y, 2, p) is nondecreasing for all (z,v, z) € RIxR xR?,

— the function 7 (resp. §) : R? x E — R is B(R?) ® B(E)-measurable bounded and

Lipschitz w.r.t £ uniformly in e € F:
V(z,e) = y(2',e)] < cle — 2| V (2,2, ) € RT x R x E,
(resp. |B(x,e) — B(a',e)| < clz — 2| V(z,2",e) € RT x R? x E),

— A: E — R is B(E)-measurable and nonnegative.

We also assume that the Poisson random measure p is independent of W and that it

admits the intensity A. For any predictable A-square integrable process U : Q% [0,T] x E —

// plde,ds)| = // JA(de)ds|.

Under these assumptions, we know (see |7]) that Y;"* = v(t, z) where v is the unique solution

to (3.4.1) and (Y5, Z4* UH") € S x L& (W) x L*(u) is the solution on [t,T] to the BSDE

R, we have

Y, = g(X;x)+/Th(th Y., Z, /EUr(e)v(Xﬁ’x,e))\(deDdr

/ Z.dW, — // wu(de,dr), fort<s<T,

and X7 is the jump diffusion defined by
dX5" = b(X)ds + o(X0T)dW, + / B(XT e)u(de,ds), fort<s<T,
E

Xf v = .
We introduce the decomposition of the diffusion X as in Lemma [3.2.1

n—1

Xﬁ’r = Xg’t@]lséﬁ + ZXf’t@(T(k)v C(k))]lﬂg§5<7'k+1 + Xg’t@(T’ C)]lTnSS )
k=1
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where (Xf’t’gﬁ)tgng is defined by

S

XEE (G0, e0) = T+ / DX By eqry)) drr + / o (X0 (Or), eqry)) AW,
t t
k
+ Z ]1t§9¢§sﬁ(X§;t7$<9(k)v €(k)), €i)
i=1 '

with the convention Xf_’t’z(O(k), e(k)) = T.
Then, we have by Theorem that

n—1

szt@ = szo’t’x]ls<7'1 + Z szk,t,z (T(k)a C(k))]lrk§5<‘rk+1 + )/sn,t,ac (7, C)]lmgs )
k=1

where (Y™2(0,€), Z™1%(0,€)) € Sg° x LZ(W) is the solution to
T T
Y, = g(Xp"") +/ XY, Z,,0)dr —/ ZdW,
S s

and for each k =0,...,n—1, (Y*"" (0, e)), Z557 0y, ery)) € Sg° x LE(W) is solution
to

T T
Yy = g(X@h)+ / h(XEbT Y, Z. (YEHLLE (1 e)) cp)ds — / Z.dW,..
S

S

Since p is a Poisson measure, the probability for that two defaults appear simultaneously

is equal to 0. Thus, it is possible to restrict the set A to its interior to define the processes

Y5 (7 1y, Sy -
Using the link between Brownian BSDEs and parabolic second order PDEs (see Peng
[108]), we have

Y0 e) = wvp(s, X5 0,e) for s > 6,,
where vy, (., 0, €) is the solution to
— Oon(.,0,€e) — Luy(.,0,e) — h(.,vn(.,0,e),0Dvy(.,0,e),0) = 0, (3.4.2)
with terminal condition
vp(Tyx,0,e) = g(x)lg,<7. (3.4.3)
And for each k =0,...,n— 1, we have
ykte = vk(s,Xf’t’I,H(k), eq)) for s >0y,

where v (., 0(), €(x)) is the solution to

=0 (-, O(rys €r)) — Lok (5 Oy ery) — h(vk (-, Oirys €ry)s o Dok (-, Oy, ery ),

(3.4.4)
(Uk+1(t, T+ 5(%, e)? H(k)a t? e(k)7 e))EEE) =0 )
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with terminal condition

vk(T,x,H(k),e(k)) = g(:L’)]lgk<T. (3.4.5)

Indeed, using the identification between Y% and v,, we have that (Y7~ L6z zZn-Lta) ig

solution to
T T
Y, = g(xihte) 4 / AP Y, 2 (Y (1, €)) o) dr — / Z.dW,,  (3.4.6)
S S
for 0,,_1 < s < T. From the definition of X™* we have
Xmbe(p ) = Xnohte 4 g(xn—lbe o) (3.4.7)
(3.4.6) and (3.4.7) give that (YLt Zn=1h) i solution to
T
Yo = g(Xp M) +/ WX Yo, Ze,y (v (r, X007 0 e) 4 B(XTH0 €))ee ) dr
S

T
_/ stWS7
t

for 0,1 < s < T. Using the link between Brownian BSDEs and PDEs, we obtain that
Yot — g, (s, XPTUETY for s > 6,

where v,_1(.) is solution to (3.4.4)-(3.4.5)). Iterating this argument until £ = 0, we get the
result. Finally, we have the following theorem.

Theorem 3.4.1. Let v be the unique solution to . Then, we have
o(t,z) = YOO

Moreover, we have the following “decomposition” of the function v
v(t,z) = wv(t,x),

where the family (v (., O, e(k)))OSkSn,G(n)EAn,e(n)GE" is defined by the terminal PDE _
and the recursive system of PDFEs -(3-4.8) for each k =0,...,n.

3.5 Utility maximization in a jump market model

One of the important problems in mathematical finance is the valuation of contingent claims
in incomplete financial markets. We consider a financial market model with a riskless bond

assumed for simplicity equal to one, and one risky asset subjects to some counterparty risks.
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The dynamics of the risky asset is affected by other firms, the counterparties, which may
default at some random times, inducing consequently some jumps in the asset price. How-
ever, this stock still exists and can be traded after the default of the counterparties. We
keep the notation of previous sections.

In the sequel, we shall make the standing assumption, called (H)-hypothesis, on the

enlarged progressive filtration: any F-martingale remains a G-martingale.

We consider that the price process (S¢)o<i<7 evolves according to the equation

dS; = S,- (,utdt + o dWy + / Bi(e)u(de, dt)) )
E

All processes i, o and 3 are assumed to be G-predictable and uniformly bounded. Moreover,
we assume that the process (o¢)o<t<7 is positive, and the process (8;)o<i<7 satisfies 3, (e) >
—1 for each ¢ = 1,...,n and any e € E. This last condition implies that the process S is
almost surely positive. We also suppose that 0; = o, ! ¢ is bounded.

A self-financing trading strategy is determined by its initial capital x € R and the amount
of money 7; invested in the stock, at time ¢ € [0,7]. Formally, 7/S is in the space L(S)
of G-predictable S-integrable R-valued processes so that the stochastic integral fot g—ZdSS is

well defined. The wealth at time ¢ associated with a strategy (x, ) is

t t t
Xfm = T +/ Tspsds +/ Ts0sdW +/ / msfBs(e)u(de,ds), t€ [OaT]
0 0 0 JE

Let G : R — R be a utility function and B a contingent claim, that is a random payoff at
time T described by the Gpr-measurable random variable B. We suppose that B is bounded.
Then, we define

VB(z) = :EEIE[G(X;’” - B)], (3.5.1)

the maximal expected utility we can achieve by starting at time 0 with initial capital x,
using some strategy m € A (which is defined in the sequel) on [0, 7] and paying B at time 7.
In the sequel we use the utility indifference approach to define the price at the initial time

of the contingent claim. We define the price C(z, B) implicitly by the requirement that
C(z,B) = inf {p eER : Vl%z) = VB(x —|—p)}.

In terms of expected utility, the indifference price for B is the amount of initial capital such

that the investor is indifferent between holding or not the contingent claim.

To pass from the above formal definitions to rigorous results, we now choose one par-
ticular utility function G. Throughout the rest of this paper, we work with the exponential

utility function
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where « is a given positive constant which can be seen as a coefficient of absolute risk
aversion.

Finally, we define the space A of admissible strategies.

Definition 3.5.1. Let C be a compact set in R. A predictable R-valued process 7 is an
admissible trading strategy, if it takes its values in C, i.e. m; € C, dt ® dP — a.s.

This case is studied by Morlais [99]. We give here another proof for the existence of a
solution.

The set consisting of all constrained strategies satisfies an additional integrability prop-

erty:
Lemma 3.5.1. All trading strategies m = (m)o<t<T as introduced in Definition satisfy
{exp(—aX?T™), T G — stopping time with values in [0,T]} is a uniformly integrable family.

Proof. We consider the process L; = exp(—aX;"") for any 7 € A. From Ito’s formula, we

get

2

dL; = L, [ — amodWy + / (e_o‘mﬁs(e) - 1)u(de, dt)} + Ly [%|7rtat]2 — omtut} dt.

E

Using Doleans-Dade exponential, we get

¢ ¢
Ly = LOS(/ —aﬂsoSdWS+/ /E(eo‘ﬂsﬁs(e) — 1)ﬁ(de,ds))e‘4?,
0 0

with

t a2
AT = / [—|7TSUS|2 — QT fhs +/ (e_o‘”sﬁs(e) - 1))\(de)} ds.
0o L2 E

This process A™ is bounded with the assumptions on the coefficients and the definition of
A. Moreover, using Kamazaki’s criterion the stochastic exponential in the process L is a
true martingale. Hence, we get the uniform integrability condition. O

In order to characterize the value function V2 (z) and an optimal strategy, we construct,

as in Hu et al. [67] and Morlais [99], a family of stochastic processes R(™ with the following

properties:
(i) REFW) = —exp(—a(X7" — B)) for all T € A,
(ii) R(()ﬁ) = Ry is constant for all T € A,

(iii) R(™ is a supermartingale for all 7 € A and there exists a # € A such that R() is a

martingale.
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Given processes possessing these properties we can compare the expected utilities of the
strategies m € A and ™ € A by

E[ — exp ( - CK(X;’W - B))] < Ry(z) = E[ — exp ( — a(Xéﬁ’fr — B))] = VB(x),
whence 7 is the desired optimal strategy. To construct this family, we set
R™ = —exp(—a(XP"—Yi)), t€[0,T), 7 €A,

where (Y, Z,U) is a solution of the BSDE

T T T
Y, =B +/ f(s,Zs,Us)ds — / ZsdW —/ / Us(e)u(de,ds), 0 <t <T. (3.5.2)
t t t JE

We have to choose a function f for which R(™ is a supermartingale for all 7 € A and there
exists a & € A such that R is a martingale. We assume that there exists a triple (Y, Z,U)
solving a BSDE with jumps of the form , with terminal condition B and with a driver
f to be determined. We first apply a generalized Ito’s formula to R(™ for any strategy

2

us ™ -
dR,g . RE,) [( —a(f(t, Ze, Up) + mpe) + ?(Wtfft - Zt)2>dt — a(mor — Z;)dW;

+ [ (exp(-almi(e) - i) ~ Da(de, do)|
E
R™ satisfies: dZ; = Z,-dM™ + Z,dA™ with A such that

th(ﬂ) = — Oz(TrtO't — Zt)th + /E(GXP(OZ(Wtﬁt(e) - Ut(e))) - 1)ﬂ(d€, dt) ’
2

_ Q
dA,E ) = < —a(f(t, Zy, Up) + mue) + 7(7”@ - Zt)2

n /E (exp(—a(mBi(e) — Uy(e))) — 1)>\(de))dt.

\

It follows that R(™ has the multiplicative form
R = ROEMT) exp(AT7),

where £(M (™)) denotes the Doleans-Dade exponential of the local martingale M (™). Since
exp(—a(mfe(e) — Ui(e))) —1 > —1, P — a.s., the Doleans-Dade exponential of the dis-
continuous part of M(™ is a positive local martingale and hence, a supermartingale. The
supermartingale condition in (iii) holds true, provided, for all 7, the process exp(A(™) is

nondecreasing, this entails

o2
—a(f(t, Zy, Up) + mope) + 7(%0} —Zy)* + /E(GXP(—Q(Wtﬁt(G) —Ui(e))) —1)A(de) > 0.
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This condition holds true, if we define f as follows

f(t,z,u) = ;gg{%‘ﬂ'at - <z—|— ij)‘ Jr/E<—:-xp(oz(u(e) ;ﬂﬁt(e))) - 1)\(de)}
o
2a0

recall that 6; = /oy for t € [0, T).
Theorem 3.5.1. The value function of the optimization problem is given by
VB(z) = —exp(—a(z —Yp)), (3.5.3)

where Yy is defined as the initial value of the solution (Y,Z,U) € S& x L&(W) x L*(u) of
the BSDE

Y, — B+/ (s, Zs, U, ds—/ Z.dW, — / / u(de,ds), 0<t<T, (3.54)
t
with
) = ;gg{%)”tat_<z+z)’ Jr/Eexp(oz(U(e) —amﬂt(e)))—l)\(de)}
g, 10
Y

A trading strateqy & € A is optimal if

Ty € argmingec {%’Wtfft — (z + %)‘ + /5 oxp(a (e)fﬂtﬁt(e)))fl)\(de)} — Oz — |92to‘(2 ,

for allt € 10,T).

Remark 3.5.1. Note that the logarithm of the value function between two successive

defaults is characterized as the solution of a Brownian BSDE.

Proof. Step 1. We first prove the existence of a solution to BSDE (3.5.4)).
For that we apply Theorem Let 0%, 6% and 8%, k = 0,...,n, be the respective
terms appearing in the decomposition of o, # and (3 given by Lemma [3.2.1]

Then, in the decomposition of the generator f, we can choose the functions f* as

Gt)‘ +/Eexp(a( u(e) — P (e))) —

(e o

Rt zu) = 711612{2‘77,5015 (z+ )\(de)}
i

200

fgfzf
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We first prove that the following BSDE admits for all (6,e) € A, x E™ a solution
(Y™(0,¢e),Z™(0,¢)) € Sg° x LE(W) (we shall omit the dependence on (6, ¢))
T T
y,* = B" —l—/ f"(s, Z3,0)ds —/ ZydWs, 0<t<T. (3.5.5)
t t

Since 0 € C, we have

—07 2 — /E)\(;le) - w2t7;|2 < f™(t,2,0) < %|z]2.
Therefore, we can apply Theorem 2.3 of [83], and we get that for any (0,e) € A, x E™,
there exists a solution to BSDE (3.5.5). From Proposition 2.1 of [83], we get the existence
of a constant K such that

sup [Y"™(0,¢)|lsze + E

T
/|Zf(9,e)2dt} < K.
(B,e)EA,XE™ 0

[ —

We now prove by iteration for £k =0,...,n — 1, that the BSDE
T T
vl = Bk+/ fF(s, zF YvE (s, ) —Ysk)ds—/ Zkaw,, o<t<T),
t t
admits a solution (Y*(6x), ), Z*(0(k), e(r))) € Sg° x LE(W). We denote g* the function
defined by

gk(tayaz) - fk(taza}/;fk+1(t7 ) - y) ) (ta Y, Z) € [OaT] X R % Rd .

Since C' is compact, the function g*(t,.,.) is continuous. We also remark that g* is nonin-
creasing in y. Hence, it is monotonic in y in the sense of [29]: there exists a constant M

such that

(gk<t7y7 Z) _gk(tay/7z))<y_y/) S M‘y_y/|2 ’

for all (¢,y,v',2) € [0,T] x R x R x R%.

Moreover, since 0 € C, and sup(g, .\ c,19) I k+1(9(k+1),€(k+1))||sgo < o0, we get the

existence of a constant K such that

k|2 —
B 2ce 2 E

(6 (07

Since € is bounded, we get the existence of a constant K (eventually different from the

previous one) such that

g%ty 2)] < K(1+ |2)* 4 ey .
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We can then apply Theorem 2.1 of [29], and we obtain that the BSDE admits a solution

(Yk(G(k),e(k)),Zk(G(k),e(k))) € 8g° x L&(W) and that SUD(6, ;e (0) HY’“( ) €(k) )Hgoo < 0.

Step 2. We now prove the uniqueness of a solution to BSDE (3.5.4). Let (Y, Z!,U%)
and (Y2, Z2,U?) be two solutions of (3.5.4) in S x L& (W) x L*(u). Since Y'! and Y? are

bounded, these two triples are also solutions to

Y, = B+/t f(sZS,U)ds—/t ZydW, — //U p(de,ds), 0<t<T (35.6)

with
f(t7z7u) _ ;Ielf {%‘ﬂ'tat_ (Z"‘iit)‘ +/Eexp(a(U(e)/\]\/g mﬁt(e)))il)\(de)}
g 00
Y

Indeed, since the processes Y'! and Y? are bounded, their jumps are also bounded. There-
fore, there exists a constant M such that for all k =1,...,n, we have U, (¢x) = Us, (C) AM.
This gives that

E/T[Ut(e)—Ut(e)/\M]QA(de)dt = 0,
0

and hence U < M, dt ® d\ ® dP-a.e. From the envelope theorem, we easily check that, since
C is compact and 6 bounded, f satisfies Assumption From Theorem we get
(YL, ZzVUY) = (Y% 22,U%).

It remains to show that R(™ is a supermartingale for any 7 € A. Since m € A, the
process E(M (”)) is a positive local martingale, because it is the Doleans-Dade exponential

of a local martingale whose the jumps are superior to —1. Hence, there exists a sequence
A

of stopping times (U, )nen satisfying lim, o ¥, = T, P — a.s., such that £(M,,; ) is a
positive martingale for each n € N. The process A™ is nondecreasing. Thus RE /\39
Ro&(M, t(/\1)9 )exp(A]E/\z9 ) is a supermartingale, i.e. for s <t
(m) ()
E [Rt/\ﬁn |gs] Rs7/l;19
For any set A € G, we have
E[R™ 1,4] <E[R™, 1 (3.5.7)
[Ring, La] <E[RGG, La]. 5.
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On the other hand, since
R = —exp (— (X" = V),

we use both the uniform integrability of (exp(—aXy")) where ¥ runs over the set of all
stopping times and the boundedness of Y to obtain the uniform integrability of (R(;\rq)%)
Hence, the passage to the limit as n goes to oo in (3.5.7) is justified and it implies

E[RM1,4] < E[RM1,].

This implies the claimed supermartingale property of R(™) .
To complete the proof, we justify that the strategy o defined as the minimum argument of
the driver of BSDE is an optimal strategy. By definition of #, we have A(®) = 0 and
hence, R,gfr) = ROS(M,f(ﬁ)) is a true martingale, since 7 is in A, thanks to Lemma . As
a result,

sup E(R;r)) =Ry =V5(2).

TeA
Using that (Y, Z,U) is the unique solution of the BSDE given by (f, B), we obtain the
expression for the value function. O
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Chapter 4

Bid-Ask spread modeling, a

perturbation approach

Joint paper with Vathana Ly Vath and Simone Scotti.

Abstract: Our objective is to study liquidity risk, in particular the so-called “Bid-Ask spread”,
as a by-product of market uncertainties. “Bid-Ask spread”, and more generally “Limit order
books” describe the existence of different sell and buy prices, which we explain by using
different risk aversions of market participants. The risky asset follows a diffusion process
governed by a Brownian motion which is uncertain. We use the error theory with Dirichlet
forms to formalize the notion of uncertainty on the Brownian motion. This uncertainty
generates noises on the trajectories of the underlying asset and we use these noises to
expound the presence of Bid-Ask spreads. In addition, we prove that these noises also have
direct impacts on the Mid-price of the risky asset. We further enrich our studies with the
resolution of an optimal liquidation problem under these liquidity uncertainties and market

impacts. To complete our analysis, some numerical results will be provided.

Keywords: Liquidity risk, Bid-Ask spread, error theory, portfolio selection, dynamic pro-
gramming principle, tracker, Black-Scholes model, CEV model.
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4.1 Introduction

Classical market models in mathematical finance assume infinite liquidity or perfect elastic-
ity of traded assets. By liquidity, we mean market liquidity which corresponds to the ability
for investors to act as a price taker, so that they buy and sell the assets with arbitrary
volumes without changing the prices. They further assume that traders may buy or sell
stocks at the same price, in other words, there is no difference between the Bid and Ask
prices, which are both equal. However, as shown in the market microstructure literature, it
is clear that large trades move the price of the assets. More specifically, the spread between

the Bid and Ask prices does exist and is intrinsic to the financial market structure.

Relaxing this assumption is very important in the study of option hedging, optimal allo-
cation and liquidation problems. It is particularly important for intraday trading and when
dealing in many markets where the transactions frequency and/or the number of operators
is low. The market liquidity crunch — Brunnermeie and Pedersen [30] and Brunnermeie
[31] — we have witnessed during the recent financial crisis is a case in point. It was indeed

the liquidity crunch which triggered a complete meltdown in the financial markets.

The main goal in the study of liquidity risk is to find the best way to quantify the costs
incurred by investors and to understand how their trades may impact the prices dynamics
of the traded assets. There are mainly three approaches in the modeling of liquidity cost
and impact. The first approach is the use of impact functions as a way to replicate the
dependencies of assets prices on the trading strategies. The trading impact on the price
dynamics could be either permanent, for instance for large investors, see Frey [60], Platen
and Schweizer [112], He and Mamaysky [65] and Ly Vath, Mnif and Pham [95], or temporary,
e.g. for small investors who are mainly price-takers, see Cetin, Jarrow and Protter [34], Cetin
and Rogers [35] and Cetin, Soner and Touzi [36]. The second approach is to fully consider
the very structure of the market: the modeling of limit orders book, see for example Alfonsi,
Schied and Schulz [I] and Cont, Stoikov and Talreja [37]. The third approach is the Bid-
Ask spread modeling which partially takes into account the market structure. Proportional
transaction cost could be considered as the most simple Bid-Ask spread model. This Bid-Ask
spread component is generally combined with impact functions. For instance, Kharroubi
and Pham [82] and Schied and Schoneborn [122] study optimal portfolio problems with the

presence of both Bid-Ask spread component and temporary price impact.

In the above studied models, the general approach could be described as follows: assum-
ing the existence of liquidity costs and impacts, the authors postulate a model replicating
their effects. However, to our knowledge, few studies in the fields of mathematical finance
have attempted to model the financial and economic rationales behind the existence of the
Bid-Ask spread. This is precisely the objective in this paper: study and explain the exis-
tence of the Bid-Ask spread, and more generally limit order book, as a by-product of market

uncertainties.
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It is well-known that an asset price is theoretically the discounted of expected future
cash flows, which are random processes and must be estimated. Thus, the value of an asset
is an estimation obtained under uncertainty and may therefore be represented by a random
variable. In other words, at any fixed time, the value of an asset is not observable but a

random variable where its law or at least its mean value and variance may be characterized.

In conformity with this point of view, the presence of many sell and buy order prices
can be explained by different risk aversions of market participants. In order to clarify this
idea, we consider a “representative” price setter-market participant who has to place both a
buy and a sell limit orders, i.e. the prices and the number of shares he is willing to buy and
sell. Prior to setting the buy and sell orders, he obtains the distribution of possible asset
values from the market information but has no possibility to observe the asset’s realized
values. A rational decision is to send a limit buy (sell) order with a price lower (higher)
with respect to the asset mean value such that their difference justifies the risk taken. Of
course, he adjusts those prices by increasing them if he runs short of stock, or cutting them

if he starts accumulating excessive stocks.

The mathematical formulation of such problems relies on the specification of a coherent
framework to describe the remaining randomness on prices. In our study, the asset value
must depend on two random sources: the first one describes the evolution of the asset mean
value while the second delineates the shape of asset (sell-buy) prices at a given fixed time.
The coupling of the two probability spaces, with its respective filtration, requires complex
tools and represents the principal drawback of this kind of approach. Therefore, we choose
a different strategy based on error theory using Dirichlet forms formalism developed by
Bouleau in [24], [25], [26] and [27]. The advantages of this approach are inherent to its elas-
ticity and powerful tools. Order book framework justifies automatically many assumptions
of error theory, e.g. Bid-Ask spreads are almost always very negligible with respect to the
Mid-price, allowing the limit expansion approach.

Such an approach provides us with a perfect knowledge on the Bid-Ask spread compo-
nent of the order book, i.e. the best/highest Bid price and the best/lowest Ask price of
the order book. Once our Bid-Ask spread model obtained, as in Bertsimas and Lo [11],
Almgren and Chriss [2], Obizhaeva and Wang [101] or [I], we investigate an optimal liqui-
dation problem for a large portfolio. In order to completely solve this problem, in addition
to the knowledge on the Bid-Ask spread component, one should equally consider the depth
of the market. One way to consider the market depth is to model the limit order book with
general shape functions as in [I], another is to consider an impact function as in [95]. In
our study, we consider both aspects by combining the Bid-Ask spread component with an
impact function to characterize the illiquidity of the market.

The article is organized as follows. In Section 2, we introduce the economic model for
Bid-Ask spread and we present the analysis of prices variance and bias. In Section 3, we

study an optimal liquidation problem associated with the Bid-Ask spread model developed
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in the previous section. And finally, in Section 4, we provide some numerical results.

4.2 The model

In this section, we aim at modeling the dynamics of the Ask and Bid prices. Our objective
is to define an asset price model that considers the Bid-Ask spread as an inherent part of

asset price evolution.

4.2.1 Theoretical analysis of path sensitivity and approximation

We consider a probability space (2, F, P) and a process X representing an observable
but non-traded benchmark index or asset which is governed by the following stochastic
differential equation (SDE)

dXy =r Xy dt + o(t, Xy, w) Xy dWy, (4.2.1)
where r is the drift and ¢ is a function on R x R x € that verifies the following assumptions:
Assumption 4.2.1. (Underlying diffusion)

1. SDE (4.2.1) admits a unique strong solution, denoted X, such that X; is square-

integrable and does not explode in finite time with probability 1.
2. The solution X; of SDE (4.2.1)) is always positive.

3. f(x) =xzo(t, r, w) is a twice derivable function in z and the derivatives are Lipschitz

and bounded.

4. The dependency of o(t, Xy, -) with respect to the third variable is independent to the
filtration F; = o (X5, s < t), for all t € [0, T7.

This Assumption [£.2.T] covers a large class of stochastic models in finance. In particular,
Assumption [4.2.1] is satisfied by log-normal diffusion, a large part of local volatility models,
see Dupire [51], and stochastic volatility models, for instance see Hull and White [68]. For

Constant Elasticity of Variance model, we may refer to Cox [39).

To simplify our notation, we denote the first and second derivatives of x o(t, z, w) as

C(t, z, w) =o(t, z, w) + a:gZ(t, T, w),

0o %o
n(ta x, w) = 2%(1;7 €z, w) +xw(tv Z, W).
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An increasing role of the assets management industry is the provide investors with
investment tools capable of replicating a wide range of indices such as CAC 40, EURO
STOX 50 or Real Estate Indices. These investment tools are often known as trackers. They
are traded in the market like any other quoted assets but most of them are in general illiquid.

We assume that this illiquid asset price follows the same SDE as the tracked index, its
Brownian motion is perturbed by the problem of replication. Therefore, the illiquid asset

price is given by

dS; =r Sy dt + o(t, Si, w) Sy dB (4.2.2)

where B; is a Brownian motion, which is almost explained by W; but characterized by a

small uncertainty. In order to clarify our hypothesis, we assume that

Bt:\/f;Wt‘F‘/l—e_G Wt’ (4.2.3)

where € is a small parameter and (Wt) is a Brownian motion, independent w.r.t F , that
resume all hedging errors.

The two Brownian motions, W; and Wt, play different roles. W; describes the market
information, that is progressively known through the index value. Therefore, at time t the
information F; = o(Xs,s < t) is known, whereas the information G; = o(Ws,s < t) is
unknown or unobservable.

It is possible to compute directly the impact of the perturbation by using filtering the-
ory, see for example Bain and Crisan [4] and Pham and Quenez [I10]. However, due to
the extreme complexity of the equations, we choose to follow a different approach using
error theory. Indeed, in our analysis, we apply the error theory by using Dirichlet forms
developed by Bouleau [24], [25], [26] and [27]. We fix an error structure (2, H, P, D, I),
where (€2, H, P) is the Wiener space in which the Brownian motion B lives, while I" is an
Ornstein-Uhlenbeck carré du champ operator with constant weight 6 (see Section 3 in [26]).
Using this theory, formula , known as Mehler formula, is automatically justified, see
Section VI.2. in [25].

Error theory enables us to find a limited expansion of the law of the price of illiquid

asset due to the noise on Brownian motion. In particular, we have the following results.

Theorem 4.2.1. (Law of illiquid asset price)

Under Assumption the uncertainty on Brownian motion is transmitted to the
stochastic process S, which represents the illiquid asset price. Then, any realization w of

process X, at time t, fizes a random variable S¢(w) described by

Si(@, &) = Xp(@) + e A[S{] (@) + /€T [Si] (@) N (&), (4.2.4)
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where N is a centered reduced gaussian random variable independent w.r.t Fy, while T'[S] (@)

and A[S¢|(w) are given by

tX2 2 Xs;
L[Sy = eMt?/ =7 (]‘\2’2 w) ds + T'[So] M7,
0 s

A[St] = M, /Ot (s, X M)F[SZ] ]\_ZXS"(S’ Xs w) [dWs — ¢(s, X5, w)ds], (4.2.5)

M, = 5{/(:<(3, X,, w) dW, —i—rt},

\

where £ denotes the Doleans-Dade exponential.

Proof. The proof of this theorem is mainly based on the truncated expansion in error theory
using Dirichlet forms, see [25] and [26]. The two following Lemmas and form the
main backbone of the proof. Indeed, they give the expression of the variance T'[S;] and the

bias A[Sy]. O

Lemma 4.2.1. (Variance due to Brownian motion)
Let X be the solution of SDE and assume that Assumption holds. Then,
the uncertainty effect on process S satisfies the following SDE

dU'[S] = 2¢(t, Xy, w) D[S dW, + [27 4+ C(t, Xy, w)|T[Si] dt + 0 0% (t, Xy, w) X7 dt .

(4.2.6)
Moreover, T'[S] has the following closed form
P X20%(s, X, w)
r[S)] = eM,?/ — > 2 ds + T[So) M?.
0 s
Proof. The proof of this lemma is postponed in Appendix
O

Lemma 4.2.2. (Bias due to Brownian motion)

Let X be the solution of SDE and assume that Assumption holds. Then,
the bias effect on process S satisfies the following SDE

d.A[St] = T’A[St] dt + |:C(t, Xt, w)A[St] + %T](t, Xt, w) F{St] - ga(t, Xt, w) Xt} th .

(4.2.7)
Moreover, A[S;] has the following closed form

/t n(s, Xs, w)L[Ss] — 0 Xs0(s, Xs, w)
M;
0

Als] = 2 M,

[dWs —((s, X5, w) ds].
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Proof. The proof of this lemma is equally postponed in Appendix

Remark 4.2.1. (Closed forms)

Equations show an interesting property of processes I'[S] and A[S], it is easy
to check that the law of (I'[S¢], A[S;]) is completely explicit given the law of the triplet
(X, Wy, o(t, Xy, -)) . Therefore, Equations are closed forms in the sense of involv-

ing only algebraic operations and stochastic integrals.

Remark 4.2.2. (Black-Scholes case)
In the particular case of o constant, i.e. in the Black-Scholes model, Equations (4.2.5)) are

simplified with I'[S;] proportional to the square of X; and .A[S;] proportional to X;.

Moreover, we have the following corollary:

Corollary 4.2.1. (Equilibrium price)

The equilibrium price, i.e. the mean of the price distribution, is given by

SM(@) =E[Si(@, @) | ] = Xu(@) + e A[S](@). (4.2.8)

The equilibrium price is therefore different from X;. In particular, this shift exists in Black-
Scholes framework. However, in this case, this shift is proportional to Xy, so it is possible to
include it into the starting point Sé\/[ . This shift can explain tracking errors usually remarked

on ETF-markets, for instance see Frino and Gallagher [62)].

Finally as a corollary of the two previous lemmas, we have the following Markov property:

Corollary 4.2.2. (Markov property)
The triplet X, = (Xt, T[Se], A[St]) is a markovian process if and only if X; is markovian.
This assertion is a direct consequence of the fact that I'[S;] verifies SDE (4.2.6)) which

only depends on process X, and finally A[S;] follows SDE (4.2.7) which depends on both
Xt and F[St]
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4.2.2 Bid-Ask model

Theorem gives us the law of the illiquid asset price given the value of the bench-
mark/index. In this subsection, we explain how this approach can be used to define Bid

and Ask prices and suggest a model that reproduces it.

We consider the presence of many agents on the market, all informed about the economic
evolution of the benchmark price X, but without money-market intelligence about the
residual information drawn by the perturbation, i.e. the independent Brownian motion
W. We assume that all agents are risk adverse and can estimate the distribution of the
uncertainty of the illiquid asset price, at any fixed time ¢, given by Theorem We now
consider uniquely price-setter agents or liquidity providers who place limit orders as opposed
to market orders placed by price-taker agents, liquidity takers. Indeed, their aggregated limit
orders constitute an order book and therefore the Bid-Ask spread. It stands to reason that,
at any given time ¢, there exists a price-setter agent with minimal risk aversion with respect
to other agents. This agent accepts to buy the asset at a price SP bigger than the prices
proposed by the other agents. Thus, the price proposed by this agent is the Bid price and
it is denoted by SP. This price is completely defined by the law of the illiquid asset and

the risk aversion of this agent. A symmetric analysis generates the Ask price S/,

Let us assume, for sake of simplicity, that there exists a representative price-setter agent
who always submits the best buy and sell prices, which we respectively define as best Bid
price SP and best Ask price S{‘. Indeed, we assume that he accepts to buy the illiquid
asset at a price SP such that the risk of overvaluing of this asset is equal to a supportable
risk probability xp. Therefore he takes the risk against the expected earnings, see Figure
In conclusion, SP is the x p-quantile of the illiquid asset price distribution given by the

uncertainty on the Brownian motion, see Theorem [1.2.1]

The definition of Ask price is symmetric, i.e. S{l is the (1 — y4)-quantile of the illiquid
asset price distribution given by the uncertainty on the Brownian motion. It is clear that

xa+xp <1

Definition 4.2.1. (Static Bid and Ask prices)

Let xp and x4 with x4 + xB < 1 be risks taken by the “representative price setter” in
respectively overvaluing and undervaluing the illiquid asset at a given time ¢. The corre-

sponding Bid SP and Ask S{‘ prices are defined as follows

SB = X, + e A[Si] + /e[S N HxB),
S = Xy 4 e A[Si] + Ve[S N1 — xa).
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Figure 4.1: Bid and Ask prices definition, defined by a risk probability x

Since the law of residual uncertainty is always gaussian, the definition of the supportable
risk is equivalent to the definition of the trader utility function. For sake of simplicity, we fix
the same supportable risk for sell S and buy Sf‘ prices, i.e. xp = x4 = x. In Figure
we present an example. We consider the Constant Elasticity of Variance model, we choose
a trajectory of X and we can compute the evolution of the Bid price S?, the Mid-price SM
and the Ask price S4.
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Evolution of prices

110

—bid |
— mid
—ask
—X{t)

Figure 4.2: An example with Constant Elasticity of Variance model: we choose a single
path of the process X (in black) and we can compute explicitly the Mid-price (in red) and

the Bid and the Ask prices using a standard deviation.

Remark 4.2.3.

The trajectories of X and of S™ are different. This is due to the fact that X is not linear
w.r.t W in CEV diffusion, see Section [£.3.3] hence the error introduces a bias, see Corollary
E21

In order to define a Bid-Ask model, we have to choose a dynamics for this risk aversion,
since a static risk aversion is very restrictive. The dynamic risk aversion is not only justified
by very nature of the ‘“representative price-setter agent” but also by market orders flow from
price-taker agents.

We now turn to the choice of a dynamics of the Bid-Ask spread. In the economic
literature, Bid-Ask spread depends mainly on two factors: the value of the stock and the
trading volume, see Potters and Bouchaud [114], Bialkowski et al. [I3] and Lehalle [89].
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In particular, the Bid-Ask spread converges to zero (resp. infinity) when the asset price
goes to zero (resp. infinity). However the relative spreadﬂ converges to a strictly positive
constant when the asset price goes to zero and converges to zero when the asset price goes
to infinity. This effect can be explained endogenously with the evolution of the variance
I'[St], see Section for an analysis in CEV case.

The trading volume equally plays a leading role. If we analyze two assets with almost
the same price but with different trading volumes, we notice that the lower the trading
volume, i.e the more illiquid is the asset, the larger Bid-Ask spread, see for instance Wang
and Yau [127]. An economic explanation is that the traders accept higher risks if they
can easily close their positions, which is possible with the presence of many counterparts.
Historical data show that average trading volumes are mean-reverting on medium term,
Bid-Ask spread shows the same behavior.

In order to fit this behavior, we use an Ornstein-Uhlenbeck process Y or more precisely
the exponential of an Ornstein-Uhlenbeck process Z; = exp(Y}).

We consider an Ornstein-Uhlenbeck process Y with the following SDE

dY; = —¢ Y dt + oy dW} (4.2.9)

where ¢ and o are positive parameters and W,¥ is a Brownian motion independent of F;.

The process Y has the following closed form expression

t
Y, = Yoe % + oy / e t=wqwY (4.2.10)
0
We consider the following model of the Bid-Ask spread:

Definition 4.2.2. (Bid and Ask model)
At any time ¢, given the value of the benchmark X;(@), the Bid and Ask prices are given
by
S =X, + e A[S)] + VeT[S)] Zi,

SP =Xi + e A[S)] — V/eT'[S}] Z. R
Remark 4.2.4.
The choice of this model is justified by the following properties:
- Positivity: the Ask price is always bigger than the Bid price.
- Closed forms: in our model, all terms, excepted the underlying X;, have an explicit form.

The law of X is the unique law that we have to estimate numerically. This computation

can be easily performed using a Monte-Carlo method.

!The relative spread is defined as the ratio between Bid-Ask spread and the asset.
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- Error tracking: the Mid-price SM is different to the benchmark one, since a systematic
bias exists. The two prices are relatively closed given a small parameter e.

- Separation: in our model, the Bid-Ask spread is explained by two independent factors.
The first factor concerns the sensitivity of the benchmark/index level path with respect to
the Brownian motion W, which, in an economic point of view, corresponds to the sensitivity
with respect to “market” information. The second one is risk aversion of market participants
mainly depending on trading volumes.

- Mean reverting: if the value of underlying is relatively stable, the Bid-Ask spread shows a
mean reverting behavior.

- Bid-Ask spread tails: given the evolution of the benchmark, the law of the Bid-Ask spread

is lognormal, so extremely wide or small spreads are possible but with a very low probability.

4.3 Optimal liquidation portfolio problem

4.3.1 The economic motivations and the objective functions

Given the above Bid-Ask spread model, as defined in Definition which highlights
the market imperfections due to liquidity risk, a natural but challenging problem to both
professional and academic in finance to solve is the optimal portfolio liquidation problem.
Let us consider a price-taker investor who decides to close his position over a finite horizon,
he has to define a trading strategy which maximizes his terminal portfolio value. Since the
attempt to sell the whole block of shares causes, generally, a lack of balance between supply
and demand, thus, resulting in an average selling price well below the best pre-order Bid
price. In practice, large orders are generally slit into a number of consecutive small orders
to reduce the overall price impact.

Let us therefore investigate a problem of an investor seeking to liquidate N shares of
stock over a finite time horizon T'. To solve this problem, we consider a discrete framework
by assuming that trading occurs only at discrete times t; < to < ... < t, =T . A
strategy decision 7 for the investor is a sequence (m;)i1<i<n valued in [0, N] where m; is
Fi,-measurable and represents the number of shares to be sold at time ¢;. We define an
admissible strategy as being a strategy 7 such that > " | m; = N. As such we define the set
of admissible strategies A(t;, p) as

A(ti,p) = {71' ={m,...,m}, m; >0 Vje{i,...,n}and Zﬂ'j :p}. (4.3.12)
j=i

Price impact. In addition to the existence of the Bid-Ask spread as evidenced in the
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previous section, we equally take into account a lack of market depth by assuming that
marginal selling prices are non-increasing. Indeed, there is no infinite liquidity at either the
best Bid price nor at the best Ask price. For that purpose, we introduce an impact function
g which indicates the average price obtained at a sell market order. More precisely, when
an investor submits a sell order of z number of shares through a single sell order at time ¢,

the obtained average price SP(x) is assumed

SB(z) = SE g(x), (4.3.13)

where the function g(-) verifies the following assumption:
Assumption 4.3.2. (Trading impact function)

1. g(-) is a continuous positive deterministic function independent to S;.
2. g(+) is non-increasing.

3. h(xz) = z g(x) is strictly non-decreasing and concave.

Remark 4.3.5.
1. We assume that trading impact is temporary when trading occurs. Only the price takers
who place market price orders (at best selling prices) pay the liquidity costs. After the

trades, the order book is filled back with limit orders from other market participants [1].

2. g(x) corresponds to the ratio between the average stock price received following the
sale of x shares at market price order and the best Bid price. This average price obviously

decreases with the number of traded shares.

3. The marginal price [(z + 6z)g(z + ) — zg(x)]SE should be non-negative and non-
increasing. Therefore, function h(x) = x g(x) must be non-decreasing and concave. The
concavity comes from the shape of the order book, which displays a maximum around the

best Bid price, see Potters and Bouchaud [114].

Objective function. The objective of the investor is to maximize its terminal wealth
from the sales of the stock shares in holding. To fully describe our state process, we should
take into account not only the processes X and Y but also I'[S]] and A[S]. As such, the
state process to consider is Z = (f( ,Y), where X is defined as in Corollary At any
initial time ¢; and any state value (z, p) of the variables (Z;,, P;,), with P;, the number of
stock shares that we initially have at time ¢;, we define our reward function for any strategy
m € A(ti,p) by

J(i, 2, p, ) = E[Z e ti~tim; b g(ﬂj)} :
Jj=t
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with p representing the interest rate, A(t;,p) the set of admissible strategies defined as

(4.3.12)) and Stfj the Bid price as defined in Definition [4.2.11

The objective of the investor is to maximize this reward function over all admissible

strategies. We therefore introduce the following value function

v(i, z, p) = sup (J(i, z, p,m)). (4.3.14)
TEA(t;,p)

For an initial state (i, z, p), © € A(t;,p) is called an optimal strategy if

v(i, z, p) = J(i, z, p, 7).

In the sequel, we restrict the set of admissible strategies A(t;,p) to Markov strategies
subset of A(t;,p), which is denoted A(t;, p) (that is possible from Proposition 8.1 of [10]).

4.3.2 Theoretical solution of the optimization problem

We now prove the existence of a solution to our optimization problem and its
uniqueness. Given an initial N stock shares of the risky asset, our objective is to prove
that an optimal strategy in liquidating our portfolio exists in A(¢1, V) and it is unique. For
notation convenience, we shall denote Z; (resp. S;, P;) for Z;, (resp. Si,, P;,). Using the

dynamic programming principle, we have:

Theorem 4.3.2. (Existence)

Under Assumptions |4.2.1] and |4.3.4, there exists an optimal policy «# = (71,...,7n) to

the optimization problem, such that & € A(ty, N). This optimal strategy is given by the
argmazx in the following programming equation
v(i, z, p) = esssup {m sBg(m) +E e_p(ti“_ti)v(i +1, Ziifl, p —m)|F, } },
O=misp (4.3.15)
v(n, z, p) = psy; 9(p),

where sP is defined by the components of the variable z; (see the definition of SP in ).
Proof. This is an immediate application of Proposition 8.5 of [10]. From (4.2.11)), we have

E[SP] = E[X/] + e E[A[S)] - E[\/€T[S,]] E[e"].

From Assumption X does not explode in finite time and o(t, X, w), ((t, X, w) and
n(t, Xi, w) are Lipschitz and bounded, thus E[A[S]] < co and E[\/e'[S;]] < oo. Since

the process Y is an Ornstein-Uhlenbeck, it is clear that E[e%] < 00 and as the process X
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is square integrable, we also have that E[X;] < co. Therefore E[SP] < oo and it enables
us to check Assumptions (F*) and (F~) in Proposition 8.5 of [I0]. Then, it remains to
prove that the supremum in relation (4.3.15)) is attained. This immediately follows from
the continuity of v(i + 1, z, p) with respect to p, which is the case thanks to Assumption
4.3.2 O

We now turn to the uniqueness property of the optimal strategy:

Theorem 4.3.3. (Uniqueness)
Under Assumptions[{.2.1 and[{.3.9, there is at most one solution to optimization problem

.

Proof. We first introduce the following function 9 defined for any z < y as
Wi, z, z,y) = xSiB g(z) + E[efpmv(i +1, Ziifl, y— JJ) ‘fti}, ie{l,...,n—1},

with Ai =t — 1;.
We now prove by iteration that ¢ is concave with respect to the third and fourth variables
(z,y) and the value function v is strictly concave with respect to the last variable p, i.e.
v(i, z, p), defined in , is strictly concave with respect to p, for all i € {1,...,n}.
We first note that for i = n, v(n, 2, .) is strictly concave in the last variable, thanks to
Assumption . We can easily verify that J(n, .,.,.) is concave with respect to the third
and fourth variables.
Assuming that for i + 1, v(i + 1, z, p) and ¥(i + 1, 2, z, y) are respectively strictly concave
with respect to p and to (z, y), let prove that it is equally the case for i.
Let 0 <A <1, (21, y1) and (z2, y2), with 0 < z; < y; < N, we have
O, z, Aep+ (L= N azo, Ayt + (1= N yo) = M + (1= N x2) SPg(hzy + (1= ) x2))
+ E[e*pmv(i +1, 25 A — 1) + (1= A) (g2 — xg))]fti} ,

since the first term is strictly concave, we have
Azt + (1= N 22) SP gA a1 + (1= N x2) > Aa1 SP g(ar) + (1 — N) 22 SP g(22),

and by iteration the second term is strictly concave, we have
v(i+ 1, Zi5 Ay —21) + (1= X) (2 —22) > Ao+ 1, 277, y1 — 1)

+(1=Nov(i+1, fol, Y2 — X2).
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Taking the expectation, we get
NE[eP20(i 1, Zi, 1 - @1) | F] + (1= NE[e 2 0(i+1, 205, g2 - @2) |7
< E[e*pA"v(i +1, Zii_fl, Ayr — 1) + (1= X) (y2 — xg))‘}"tl] .

Thus ¥(i, 2, x, y) is strictly concave with respect to (z, y), as the sum of two strictly concave
functions.
We now prove that v(i, z, y) is strictly concave with respect to y. For any 0 < 1 < y; and

0 < z9 < 79, from the expression of v in , we have forall 0 < A <1
v(t, 2z, Ay + (1= N y2) >0, 2, Azp + (1 — AN xe, Ayp + (1 — A) y2).
Since ¥(i, z, x, y) is strictly concave with respect to (z, y), we get
v(i, z, Ayr + (L= X) y2) > ANI9(i, 2z, x1, y1) + (1 — N) 9(3, z, z2, y2).

The latter equality holds for any positive 1 < y; and x2 < gyo. In particular since the

supremum is attained (from Theorem |4.3.2)), we can take =} and x3 such that

U(i7 2 yl) = 19(27 2 .%'T, yl) = Sup 19(17 Z, X, y1)7
0<z<y1

U(i7 2, y2) = 19(@7 2 .CE;, y2) = Sup 79(17 Z, I, y2)7
0<z<y2

thus
v(t, z, Ay + (L= X)) y2) > Av(i, 2, y1) + (1 — X)) v(i, 2z, y2).
Hence, v(i, z, p) is strictly concave with respect to p. We have therefore proved the strict

concavity of both functions. Using relation (4.3.15) and the above concavity property, we

may obtain by iteration at most one solution to the optimization problem. O

4.3.3 Log-Normal and Constant Elasticity of Variance Diffusions

We now restrict our study to two particular diffusion models, with the first being the log-
normal diffusion, i.e.

dXt :TXtdt+JXtth.

It is plain that this diffusion verifies Assumption [£.:2.1] In this case, we remark that the bias
A[S;] and the variance T'[S;] become proportional respectively to X; and X?. As a result,

SP=Xi[1-ea+ Jeyei], (4.3.16)
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and the average price at which we sell a quantity m; at time t;, given by formula (4.3.13]), is

simplified and we have the following average price

SP(m) =Xy, 9(m) [1—ea+ Jeye], (4.3.17)

where a and v are constants.

As such, we consider the first historical extension of the Black-Scholes model, which is the
constant elasticity of variance (CEV) model, see Cox [39] and Cox and Ross [40]. This
extended model importantly takes into account the heteroscedasticity of the assets returns
and explains the down-slopping behavior of the implied volatility, see for instance Macbeth
and Merville [96].

Assumption 4.3.3. (CEV diffusion)

The volatility function o(t, X;, w) is equal to o X/¥, where o is a positive constant and « is
constant and belongs to (—1, 1). We also assume that X; > & > 0 for all ¢ € [0, T]. That
is SDE (4.2.1)) is replaced by the following SDE

dXy =r Xpdt + o XOTHdw; . (4.3.18)

The CEV diffusion, unfortunately, does not verify Assumption [£.2.1] However, all previ-
ous results still hold and their proofs remain substantially the same with the main difference
coming from some properties of CEV diffusion that can be found in Jeanblanc et al. [73].

Under Assumption [£.3.3] we have also the following rewriting of Theorem

Corollary 4.3.3. (Constant Elasticity of Variance model)

Under Assumption[4.3.3, the result of Theorem remains true and equations (4.2.5)) are
replaced by

) tO_2X2a+2 )

0 s
! 1) X3 T[S] — 0o Xt
A[St]:Mt/ ala+ 1) X3 TS| - b0 X; [dW, — o (a+1)X%ds],  (4.3.19)
0 2 M
t
Mt:é‘{a(a—i—l)/ X?dW5+rt}.

. 0

Moreover, the martingale parts of the Doob decomposition of \/I'[Sy] and 7”;&54 are respec-
tively
o (Oé + 1) Xfé \/ F[St] AWy ,
oa XP /T[S dW; .

(4.3.20)
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Proof. The proof of the first part is just a simplification of relation (4.2.5) in the case of

CEV diffusion. The second part is an easy application of Ité6 formula. O

Remark 4.3.6.

In particular, we may notice that in the CEV case:

— The fluctuations of the absolute spread, which are proportional to /I'[S], are always

positive correlated with the underlying X;.

— The fluctuations of the relative spread, which are proportional to the ratio \/I'[S¢]
over X;, are negative (resp. positive) correlated with the underlying X; if the CEV-
exponent « is negative (resp. positive). The case usually treated in literature is
when the CEV-exponent is smaller than one, for instance see Black [19]. Therefore,
the relative Bid-Ask spread grows when the asset price falls, whereas the absolute

Bid-Ask spread falls with the benchmark.

This remark is important, since it is well-known on financial markets that the Bid-Ask
spread converges to zero (resp. infinity) when the asset price goes to zero (resp. infinity).
Instead, the relative spread grows when the asset price goes to zero and converges to zero
when the asset price goes to infinity. The previous remark said that our model can explained
endogenously this effect with the evolution of the variance T'[S;] if we suppose that the
parameter « is negative, i.e. the diffusion is sub-linear. This case is usually presented in
literature as a way to explain why the BS model overprices in-the-money calls options and
underprices out-of-the-money ones, see for instance Cox and Ross [40] and Macbeth and
Merville [96].

4.4 Numerical results

In this section, we provide some numerical results of the optimal strategy of the liquidation

problem. For this purpose, we use two models

1. The Black-Scholes model with the drift equals zero. This model is used as a basic

reference, since we have closed form expressions.

2. A CEV model with the drift equals zero and the CEV-exponential equals —0.7, and
the initial value of underlying is assumed equal to 1. This model is used to evaluate

the impact of sensitivity with respect to the Brownian motion.
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For both models, we consider that the process Y follows an Ornstein-Uhlenbeck model with
volatility equals 0.5 and mean-reverting parameter equals 0.02. We consider the following

trading impact function g

9(x) = exp(—Aa),

where the constant A\ < %, with NV the total number of shares to liquidate. It is rather clear
that function g verifies Assumption on the interval [0, N]. We restrict our function to
the set [0, N] given the fact that the optimal liquidation strategy abstains to buy shares at
any time.

The optimal liquidation strategy is determined by using the dynamic programming equa-
tion (4.3.15). The classical approach to solve this kind of problem is to discretize all pro-
cesses and to reduce the computation on a finite probability space (see for example Bardou
et al. [6] or Barrera-Esteve et al. [§]). Thus, we discretize our processes using Monte-Carlo

simulations for CEV and closed forms for log-normal and Ornstein-Uhlenbeck diffusions.

4.4.1 Black-Scholes case

We first consider the case when the underlying X follows SDE (4.2.1)) with o = 0, i.e. the
Black Scholes model. The dynamic programming principle (4.3.15) gives us the optimal
strategy to liquidate our portfolio. The strategy depends on three factors

- the level of the underlying X4,
- the value of the liquidity process, i.e. the Bid-Ask spread,

- the residual quantity of stocks that we have to sell.

In Figure [£.3] 4] and [£.5] we present our numerical results in the Black-Scholes case, in
particular, the dependencies of the optimal selling strategy on the three factors mentioned

above.
Remark 4.4.7. (Black-Scholes case)

— We find that the optimal strategy is completely independent with respect to underlying
X (see Figure [4.3)). This result is coherent with the literature, see Alfonsi et al. [1],
Almgren and Chriss [2] and Obizhaeva and Wang [101], given the fact that the spread

is proportional to the underlying price in this particular case.
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Figure 4.3: BS case: optimal selling quantities as function of the underlying value.

— The optimal strategy is almost linear with respect to the number of remaining stocks
(see Figure . A slight concavity is equally worth noticing. This effect is explained
by the presence of an exponential cost on optimization problem (4.3.14)), which breaks

the linearity of the problem and prevents very large orders.
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Figure 4.4: BS case: optimal selling quantities as function of the remaining shares owned

by the investor.

— Finally, the main result is that the optimal strategy decreases when the Bid-Ask
spread increases and the dependence is almost linear till the spread is lower than

its long term average (see Figure . When the spread is bigger than its mean,
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the optimal strategy is to keep all remaining stocks. This result is very interesting
since it says that the optimal strategy depends mainly on the Bid-Ask spread and its
equilibrium law. The optimal strategy can be resumed by we have to sell when the

spread is small and to wait a better time when it is wide.

3507

1 1 1

Optimal selling quantity
i

100

T T T T T
0,94 % 0,97 & 1,00 % 1,03 % 1,06 %

Relative Bid-Ask Spread

Figure 4.5: BS case: optimal selling quantities as function of the relative Bid-Ask spread.

4.4.2 CEV case

We consider the case when the underlying follows SDE (4.2.1]) with o = —0.7. The numerical
simulations show that the results found in the Black-Scholes case remain true, except for

the dependencies of the optimal selling strategies on underlying value.

i

More liquidity

Optimal selling quantity
i
Optimal selling quantity

More liquidity

i

| [

Underlying Value Underlying Value

Figure 4.6: CEV case: optimal selling quantities as function of the relative Bid-Ask spread

with linear scale (left) and logarithmic scale (right).
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Remark 4.4.8. (CEV Case)

1. The optimal selling strategy is completely unaffected by underlying price when the
stock is highly liquid. However, when it is illiquid, the optimal selling strategy is

positively correlated with the price of underlying asset.

2. We also have analyzed the impact of a change on the CEV exponential . When
this parameter increases to zero, the dependency on the price of underlying asset is

lessened.

Economic interpretation/explanation: We may explain the effect mentioned in the
first point of Remark [£.4.8 by the non-linear dependency of the Bid-Ask spread on the
underlying value (see Corollary . Indeed, when the price of underlying asset falls, the
relative Bid-Ask spread (in percentage of the asset price) increases, which in turn incites

the investor to delay the selling or sell a smaller number of shares.

The below Figure shows the shape of the selling region (above the curve) and the

non-selling region (below the curve) at a given time and a given level of stock price.

=—|ow stock price
—==average stock price

high stock price

Increasing liquidity

Remaining number of shares

Figure 4.7: CEV case: the optimal strategy and the selling region and non-selling region.
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Figure 4.8: CEV case: an example of the optimal selling strategy given a liquidity trajectory.

4.4.3 Comparison on scenarios

In this section, we analyze the over performance of the optimal strategy with respect to the
classical “one over n” one. To do that we compute the two gains obtained following the two

previous strategies in the following scenarios:

average constant spread the Bid-Ask spread takes the mean value at all trading time;

increasing spread the Bid-Ask spread starts very tight, increases and ends very wide;

up-down spread the Bid-Ask spread takes tight values at odd times and wide at even

ones;

random spread the Bid-Ask spread evolution is fixed randomly in accord with its law.

We treat only the CEV case, since the results for the Black-Scholes case are similar. The
computation are performed under a scenario of constant underlying to neutralize its impact
on the computation of extra returns. The following table resumes the optimal quantity to

sell at each time.
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strategies 1 2 3 4 5 6 7 8 9 10
Average spread 40| 57| 77| 98 119|134 |13.6 |12.6 | 11.5| 9.8
Increasing spread || 40.8 [ 22.0 | 90| 1.8 | 00| 00| 0.0| 0.0] 150|114
Up & down 408 | 0.0309| 00|164| 00| 99| 00| 2.0] 0.0
Random 1 212 00| 00| 146|349 140| 00| 0.0 123 | 3.0
Random 2 40| 0.0|428| 00| 0.0|154| 60| 0.0 17.2 | 14.6
Random 3 0.0|169(396| 00| 75|194| 00| 31| 80| 55
Random4 001]228| 0.0]339| 00254 ]129| 00| 50| 0.0

Figure 4.9: Optimal strategies depending on spreads scenarios.

The relative extra profit, i.e. the ratio between the total gain obtained following the
optimal strategy minus the one obtained following the “1 over n” one and the latter, is showed
in the following table. We remark that the optimal strategy over perform the classical “1
over n” of around 0.7% in average. The worst performance is given by a non evolution
of the spread that is unrealistic in our model. The best performance is obtained under a
“roller coast” spread evolution, that is also unrealistic. In the four cases when the evolution
is defined by using a Monte-Carlo approach, the optimal strategy outperform the classical

“1 over n”.

Strategies AS IS |UD| R1 | R2| R3 | R4
extra profit | —0.4% | 0.2% | 1.7% | 0.9% | 0.4% | 0.8% | 1.1%

Figure 4.10: Extra-return of optimal strategies depending on the evaluated scenarios.

4.5 Appendix

4.5.1 Proofs of Lemmas [4.2.1] and [4.2.2]

We start with the proof of Lemma

Proof. The proof is split into three steps.

Step 1: We compute the SDE satisfied by the sharp of S, see Section V.2 in Bouleau [25]

for the definition and more details

dSt =rSFdt + C(t, Xy, w) ST AW, + VO (t, Xy, w) Xy dW,



4.5. APPENDIX 155

where W is an independent Brownian motion defined in a probability space (Q, F, ]f”) copy
of the original probability space. Assumption insures that the previous SDE admits a

square integrable solution.

Step 2: We apply Itd formula to (SZ% )2 and take the expectation under the probability IF”,
since one of the properties of the sharp operator is that I'[S;] = I~E[(St#)2], see Sections VI.2
and VII.4 in Bouleau [25]. Therefore we find SDE (4.2.6]).

Step 3: Finally, we prove that SDE (4.2.6) admits the closed form solution (4.2.5)). Using
the methods developed by Bouleau [26] Section 5 and noticing that the SDE verified by the
sharp is linear, we may apply a variation of constant method, see for instance Protter [115]
Section V.9, and obtain a closed form for SZ% . Then, we easily compute the expectation
~ # e s . .
under P of the square of S;”. Another possibility is to check that first equation in 1} is
solution to SDE (4.2.6]). O

We now turn to the proof of Lemma [£.2.2]

Proof. The proof is based on a L2-convergence argument, see for instance Da Prato [43], by
using the fact that operators I'[:] and A[-] are closed, see Bouleau [25].
We define a partition {7;}i=1, . of the interval [0, T'], where T is a sufficient large time.

We approximate X with the following process

n

n
Zt = ZU(Ti—la ZTZ'_17 w) ZTi_l (WTi/\t - WTi_l/\t) +r Z ZTi_l (Ti ANt —=Ti—1 A\ t)
i=1 i=1

It is clear that Z; converges to X; when the partition step goes to zero, thanks to
hypotheses 1 and 3 of Assumption [4.2.1, Then, we apply the bias operator on Z; (see
Section 6 in [26]), and we find

A[Zt] = Z C(Ti—h ZTi717 w) A[ZTifl] (WTi/\t - W’Ti—l/\t)
=1
+r Y AlZ ) (T At —Tiig At
i=1
+ Z J(Ti—b ZTi_17 W)Zn_1 A[W’Ti/\t - Wﬂ-_l/\t] (4521)
=1

+ ZC(Ti—lv Zﬂ'f17 w) IE[(Z#—I) (W‘f/\t - W#,l/\t)]
=1

1
+ 9 Z n(Tiflv Zry 15 w) Zry F[ZTifl] (WTi/\t - WTifl/\t) .
i=1
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Then, we take the limit and SDE , when the partition step goes to zero and we
have to prove that equation converges to the integral form of equation (4 . For
sake of simplicity on notation, we compute all equations at the final time T'. We start with
the remark that Z; converges to X; in L?-norm when the partition step goes to zero. It’s
also clear that I'[Z;] converges to I'[S;] due to the fact that I" is a closed operator, see for
instance [24], and the result of Lemma this convergence is in L'-norm but it is easy
to check that it is true in L?-norm too. Then, under Assumption , we will prove that

n T
L2

E N(Tim1, Zry vy W) U[Zr ] (Weine = Wone) =

=1

17(t, Xt, w) F[St] th . (4522)
0

We separate the last integral using the partition (7;)i=1,. » and we evaluate the difference

in L?-norm, so we find

EUMML%AMWMWMMfM@J—ﬁimu&wwmwmf}
E[{n(ri1, Zri_y @) D2y ] (Wr, = W) = n(mi1, Xy, ) D2, (W, = Wi )
(i1, Xy @) T2 ) (W, = Wi ) = (i1, Xoy, @) T[S ] (Wr, = Wy, )
(Tier, Xo sy ) T[Sn_,] (Wi —Wn_l)—/jln(t, X, ) TS )|

< E[{[1(ri-1, Zry, @) =071, Xy, @) T2 ] (Wr, = We ) Y] +
+ E[{n(ri1, Xri_yy @) D[Ze ] = DI85 )] (W, = Wr Y] +

+ B[{rn, Xy @) IS, 0V = W) = [ nte, Xe, ) Tisgam .

The first expectation converges to zero thanks to the Lipschitz hypothesis on 7(t, x, w)
w.r.t z. The second expectation goes to zero using the fact that I'[Z;] converges to I'[\S]
in L%-norm. The last expectation converges to zero when the partition step goes to zero in
accordance with the definition of the stochastic integral. Then, the limit is proved.

Using the same arguments and Gronwall lemma, see for instance Protter [I15] Chapter

V, we have

n 9 T
Z C(Ti—h ZTi—l’ w) ‘A[Zﬁ'a] (WTi/\t - WT@'71/\t) L_> / C(t’ Xta w) A[St] th’ (4523)
- 0

and

i‘A[ZTi—l] ( Ty — Ti— 1 / A St (4524)
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We study the third term in equation (4.5.21f). We find

n n

0
Z U(Ti—lv ZTi—l ) w)ZTi—lA[WTi/\t - WTi—l/\t] - _5 Z U(Ti—b ZTi—l ) w)ZTi—l [W'Ti - WTi—l]’
i=1 i=1

thanks to the chain rule of semigroup A, see Section 3 in [26]. We also remark that
o(ri-1, Z7,_,,w) Zy,_, converges to o(ri—1, X, ,, w) X;_,, thanks to Assumption
Using always the same arguments used to prove limit (4.5.22)), we have therefore that

n

ZU(Ti—17 ZTi_17 w) ZTi_l A[WTi/\t - W’T'

3
i=1

0 T

_1/\t] L_2> _2/ O'(t, Xt, LU) Xt th . (4525)
0

Finally, we analyze the term

n

24(7_1'717 Z‘Fz‘fw w) E[(Z#—J (W#At B Wf—l/\t)]'
i=1

We introduce a conditional expectation with respect to the o-algebra fnq = U{Ws# Wl u, s <

7_i—l}
S a[E[(22.) (Wt w0 2] = SB[(22) Elws v |
1= 1=

= 07

using the fact that Z¥ is adapted to the filtration Fy and W remains a Brownian motion
w.r.t filtration F,, since WS# and W are independent. As a consequence, the fourth term
in equation is always equal to zero and we have proved the convergence of equation
to the integral form of equation . Now it is easy to check that second equation
in solves SDE .
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RESUME : Cette thése se compose de trois parties indépendantes portant sur ’application
du controéle stochastique & la finance. Dans la premiére partie, nous étudions le probléme
de maximisation de la fonction d’utilité dans un marché incomplet avec défauts et infor-
mation totale/partielle. Nous utilisons le principe de la programmation dynamique pour
pouvoir caractériser la fonction valeur solution du probléme. Ensuite, nous utilisons cette
caractérisation pour en déduire une EDSR dont la fonction valeur est solution. Nous don-
nons également une approximation de cette fonction valeur. Dans la seconde partie, nous
étudions les EDSR & sauts. En utilisant les résultats de décomposition des processus &
sauts liée au grossissement progressif de filtration, nous faisons un lien entre les EDSR a
sauts et les EDSR browniennes. Cela nous permet de donner un résultat d’existence, un
théoréme de comparaison ainsi qu’une décomposition de la formule de Feynman-Kac. Puis
nous utilisons ces techniques pour la détermination du prix d’une option européenne dans
un marché complet et le prix d’indifférence d’un actif contingent non duplicable dans un
marché incomplet. Enfin, dans la troisiéme partie, nous utilisons la théorie des erreurs pour
expliquer le risque de liquidité comme une propriété intrinséque au marché. Cela nous per-
met de modéliser la fourchette Bid-Ask. Puis nous résolvons dans ce modéle le probléme
de liquidation optimale d’'un portefeuille en temps discret et déterministe en utilisant la
programmation dynamique.

MoTs-CLES : Maximisation d’utilité, temps de défaut, programmation dynamique, EDSR,
prix d’indifférence, information partielle, grossissement progressif de filtration, décomposi-
tion dans la filtration de référence, théoréme de comparaison, formule de Feynman-Kac,
risque de liquidité, théorie des erreurs.

ABSTRACT : This PhD dissertation consists of three independent parts and deals with ap-
plications of stochastic control to finance. In the first part, we study the utility maximization
problem in a market with defaults and total/partial information. The dynamic program-
ming principle is used to characterize the value function. Given this characterization, we
find a BSDE of which the value function is a solution. We also give an approximation of
this value function. In the second part, we study BSDEs with jumps. We link BSDEs with
jumps and Brownian BSDEs using the decomposition of processes in the reference filtration.
With this link, we get a result of existence, a comparison theorem and a decomposition of
Feynman-Kac formula. We use these techniques to work out the price of a European op-
tion in a complete market and the indifference price of a contingent claim in an incomplete
market. Finally, in the third part, we use the error theory to explain the liquidity risk and
to model the Bid-Ask spread. Then we solve an optimal liquidation problem for a large
portfolio in discrete and deterministic time.

KEY WORDS : Utility maximization, default times, dynamic programming, BSDE, indif-
ference pricing, partial information, progressive enlargement of filtrations, decomposition in
the reference filtration, Feynman-Kac formula, liquidity risky, error theory.
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