Design principles

44)

What makes great
software ?

)7

“ What makes great software ?

77

“ What makes great software ?

Good
Works performances

No bugs Easy to maintain

Easy to add new
features

7

“ What makes great software ?

S

Make it work

©

A

Make it clean

@

\ l /
~ —
— -
Make it fast

© takima 2022 all rights reserved?

“ What makes great software ?

A

Make it clean

@

© takima 2022 all rights reserved®

Cohesion /
Coupling

Cohesion / coupling

Definition

Cohesion & coupling are abstract, complementary measures

Cohesion / coupling
Definition
Cohesion & coupling are abstract, complementary measures

— Cohesion
m How much a piece of code is tailored for one coherent thing.

m How much one class (or method) has a Single responsibility
o Lessismore

Cohesion / coupling
Definition
Cohesion & coupling are abstract, complementary measures

— Cohesion
m How much a piece of code is tailored for one coherent thing.
m How much one class (or method) has a Single responsibility
o Lessismore
— Coupling
m How much a piece of code depends on the surrounding code.
m How much “changing a class implies changing others”.

Cohesion / coupling
Definition
Cohesion & coupling are abstract, complementary measures

— Cohesion
m How much a piece of code is tailored for one coherent thing.

m How much one class (or method) has a Single responsibility
o Lessismore

— Coupling
m How much a piece of code depends on the surrounding code.
m How much “changing a class implies changing others”.

You should seek high cohesion & loose coupling for good software
maintainability

Cohesion

© takima 2022 all rights reser:

Cohesion / coupling @
Cohesion

Example: brew coffee with an
automatic coffee machine

@

© &

15

© takima 2022 all rights reserved?

Cohesion / coupling

Cohesion

Example: brew coffee with an
automatic coffee machine

@ — Easytouse

m pressasingle button

— Standalone
m Does not depend on other
devices

@ — Bigmachine
expensive to buy

— Hard torepair
m if some part fail, may need to
buy a new one.

16

© takima 2022 all rights reserved

2

Cohesion / coupling

Cohesion

Example: brew coffee with an
automatic coffee machine

@ — Easytouse

m call asingle method

— Standalone
m doesnotdepend onother
classes

@ — Bigcode
m expensive towrite
— Hard torefactor

m if some part fail, may need to
re-write everything

1ss AutomaticCoffeeMachine {

Coffee brew () {

var water = this.dispenseWater ()

var hotWater = this.preHeat (water);
var beans = this.getCoffeeBean()

var ground = this.grindCoffee (beans) ;

var puck = this.tamp (ground) ;

hotWater = this.boil (hotWater) ;

return this.infuse (hotWater, puck);

= Water dispenseWater () {
er preHeat () {
{
> Ground grindCoffee ()

rivate Puck tamp () {

ivate Coffee infuse () {

Cohesion / coupling

Cohesion

Example: brew coffee with an
automatic coffee machine

@ — Loose coupling

m nodependencies

@ — Low cohesion

m dotoomany things
m device too complicated

AutomaticCoffeeMachine

+ brew(): Coffee

- dispenseWater () : Water

- preHeat (water: Water): Water

- getCoffeeBean () : Beans

- grindCoffee (beans: Beans): Ground
- tampCoffee (ground: Ground) : Puck
- boil (water: Water): Water

- infuse(w: Water, p: Puck): Coffee

Cohesion / coupling

COheSion° how 7 public class AutomaticCoffeeMachine {

public Coffee brew() {

var water = this.dispenseWater () ;

Increase cohesion?

var hotWater = this.preHeat (water);
var beans = this.getCoffeeBean()

var ground = this.grindCoffee (beans) ;
var puck = this.tamp (ground) ;
hotWater = this.boil (hotWater) ;

return this.infuse (hotWater, puck);

ate Water dispenseWater () {
ate Water preHeat () {
er boil () {

ate Ground grindCoffee () {

Cohesion / coupling

COheSion: how ? record AutomaticCoffeeMachine (

WaterSource waterSource,

Heater heater,

Increase cohesion?

BeanSource beanSource,

Grinder grinder,

— split classes into smaller classes
m use composition & aggregation

Tamper tamper

public Coffee brew() {
- water = waterSource.getWater () ;
ar hotWater = heater.preHeat (water) ;
r beans = beanSource.getCoffeeBean() ;
- ground = grinder.grind (beans) ;
var puck = tamper.tamp (ground) ;
hotWater = heater.boil (hotWater) ;
return this.infuse (puck, hotWater)
}

private Coffee infuse () {

Cohesion / coupling

Cohesion: how ?

Increase cohesion?

— split classes into smaller classes
m use composition & aggregation

— Move boilerplate code
m orremove it with
Aspect-Oriented Programming

record AutomaticCoffeeMachine

WaterSource waterSource,

BeanSource beanSource,
Grinder grinder,
Tamper tamper

) |

@PreHeat ()

public Coffee brew() {

var hotWater = waterSource.getWater ()
var beans = beanSource.getCoffeeBean() ;
var ground = grinder.grind (beans) ;
var puck tamper. tamp (ground) ;

return this.infuse (puck, hotWater)

infuse () {

Coupling

© takima 2022 all rights reser:

Cohesion / coupling

Coupling

Example: brew coffee with a / .-.
manual coffee machine

® AR - &N
YEP

©

Cohesion / coupling @

Coupling

manual coffee machine

@ — Specialized devices Lo g
m Canbereused \
o

Example: brew coffee with a / .‘..

m Easytofine-tune

— Parts can be replaced : L] -
individually
m Easiertoevolve

@— Hard to use —
m executesinaprecise u-
e

sequence
— Higher risk of failure |
m if onedevice fails, no coffee —

24

© takima 2022 all rights reserved®

Cohesion / coupling

Coupling

Example: brew coffee with a
manual coffee machine

@— Specialized classes

m Canbereused
m Easytocustomize

— Can bere-implemented
partially

m Easiertoevolve

@— Hard to use

m configure everythingin
correct order
— Higher risk of failure
m if oneclass fails, no coffee

ws = new WaterSource () ;

~ cbs = new CoffeeBeanSource () ;

= new Heater (95);
new Grinder (0.35) ;
rew Tamper (400) ;
w CoffeePress (9.5, 60);

water ws.getWater ("arabica") ;

- beans = cbs.getCoffeBeans() ;
- ground = g.grind (beans) ;
-~ puck = t.tamp(ground) ;

water = h.preHeat (water) ;

var hotWater = h.boil (water) ;

coffee = new cp.brew(hotWater, puck):;

Cohesion / coupling @

Coupling

. WaterSource = CoffeeBeanSource .
Example: brew coffee with a L
manual Coffee machine + getWater (): Water + getCoffeeBeans (): Beans
I .
° 3 I
@— High cohesion ¥ v
m Small classes Water |€& = <4 ManualCoffeePress Beans
- infuse(): Coffee
4 | -

@— Tight coupling
m Highdependency on

Puck |« = - Grinder i
>

+ grind(b: Beans): Ground

m Easytoimplement i b . Coff
m Singleresponsibility 1‘ 1™] s o E A
|
|
|
|
|

I
each other |
. . Heater Y e
m Highrisksachange Mg | "
. Y| em e amper
induces some P 2 |
+ preHeat (w: Water): Water -
Changes tO Other + boil (w: Water): Water + tamp (g: Ground) : Puck’26

classes

Cohesion / coupling

COUpling: HOW ? var machine = new CoffeeMachine () ;

Loosen coupling ?

coffee = machine.brew (
hotWater, ground, milk,
sugar, caramel, cacao

) &

Cohesion / coupling

Coupling: How ?

reduce the number of
parameters

var machine = new CoffeeMachine () ;

var recipe = new Recipe (

hotWater, ground, milk,
sugar, caramel, cacao
) ;

coffee = machine.brew (recipe) ;

Cohesion / coupling

Coupling: How ?

reduce the number of
parameters

ew WaterSource () ;
ew BeanSource () ;

~w MilkSource () ;

var latteReceipe = new Receipe (
ws.getWayer, bs.getBeans (), ms.getMilk(),
null,
null,
null,

var latteMacciato =

machine.brew (latteReceipe) ;

Cohesion / coupling

Coupling: How ?

— reduce the number of
parameters

- USG deSign patterns WaterSource.INSTANCE.getWater ()

| facade, SingletOn, bUilder, \s CoffeeSource.INSTANCE.getBeans () ;
= MilkSource.INSTANCE.getMilk () ;

r rb = new ReceipeBuilder ()
.water (w)
.beans (b)
.milk (m) ;

return this.machine.brew (rb.build())

Cohesion / coupling

Coupling: How ?

— reduce the number Of grinder.setLevel (Level .FINE) ;
pal‘ameters grinder.setBeans (beans) ;
. grinder.start () ;
— Use design patterns e wedah — 0
| facade,singleton, builder,... while (weight < CoffeeWeight.ESPRESSO) {

weight += grinder.continue () ;

}

grinder.stop () ;

var ground = grinder.getCoffeeGround() ;

Cohesion / coupling

Coupling: How ?

reduce the number of

parameters |
. grinder.setlevel (Level .FINE) ;
Use deSlgn patterns grinder.setBeans (beans) ;
m facade,singleton, builder, ... grinder.start () ;

reduce the number of method var weight = 0;

while (weight < CoffeeWeight.ESPRESSO) {
calls

Ground grind (CoffeeBeans beans) ({

weight += grinder.continue () ;

}

grinder.stop () ;

var ground = grinder.getCoffeeGround() ;

return ground;

Cohesion / coupling

— Loose coupling @
— Poor cohesion @

A matter of trade of...

— Tight coupling &
— Good cohesion @

4 ?_1\. ! nv.

E

Take away @
Seek high and

Adjusting between cohesion and coupling is often a

— less classes: — Design patterns for less coupling
m Builder, Singleton, Facade, Strategy, ...

— Design patterns for more cohesion

m Proxy,...
— more classes

© takima 2022 all rights reserved®

SOLID

A rule of thumbs

© takima 2022 all rights reserved®

S.O.L.I.D

77,

44

Single Responsibility
O

L
I
D

77,

44

Single Responsibility
Open/ Close principle
L

[

D

)7,

Single Responsibility
Open/ Close principle
Liskov Substitution

[

D

77,

Single Responsibility
Open/ Close principle
Liskov Substitution

Interface Segregation
D

77,

Single Responsibility
Open/ Close principle
Liskov Substitution
Interface Segregation

Dependency Inversion

77,

SOLID @
Single Responsibility

— Oneresponsibility per class / method
m Better cohesion
m Smaller class, easier to implement

SOLID @
Single Responsibility

(& DONT

class AutomaticCoffeeMachine {
private Beans getBeans () { }
private Ground grind(Beans beans) { }
private Water getWater () { }
private Water boil (Water water) ({
private Puck tamp (Ground ground)

public Coffee brew (I

SOLID

Single Responsibility

(& DONT

class AutomaticCoffeeMachine { class Grinder { —=

private Beans getBeans () { } private Ground grind (Beans beans) { } !!!!

private Ground grind(Beans beans) { } }

private Water getWater () { } class Heater {

private Water boil (Water water) { } private Water boil (Water water)
private Puck tamp (Ground ground) { } }

public Coffee brew (Water w, Puck p) { } class Tamper {

-
—

private Puck tamp (Ground ground)

class CoffeePress {

public Coffee brew (Water w, Puck puck) { }

SOLID @
Open / Close Principle

— Open for extensions
m Should be easy to add new features

— Closed for modifications
m Adding new features should not change existing code.

SOLID

Open / Close Principle

enum CoffeeType {
RISTRETTOW, Espresso™ americano W

s CoffeePress {
public Coffee brew (CoffeeType type) {
float duration;
if (type == CoffeeType.RISTRETTO)
duration = 20; G
if (type == CoffeeType.ESPRESSO)
duration = 30; O
if (type == CoffeeType.AMERICANO)

duration = 40; O

SOLID

Open / Close Principle
@ DON'T (Coupling)

enum CoffeeType {
R1STRETTOM, EsprEsso i, americano I
}
class CoffeePress ({
public Coffee brew (CoffeeType type) {
float duration;
if (type == CoffeeType.RISTRETTO)
duration = 20; G
1f (type == CoffeeType.ESPRESSO)
duration = 30; D

if (type == CoffeeType.AMERICANO)
duration = 40; C

enum CoffeeType {

rIsTRETTO W 0 Q)
ESPRESSO- 30 0,

AMERTCANO W () ;

private float d;
CoffeeType (float d)
float getDuration ()

class CoffeePress {

14

4

{ this.d = d; }
{ return this.d; }

public Coffee brew (CoffeeType type) {

float duration

type.getDuration () ;

SOLID

Liskov Substitution

— Let Tatype,and S asubtype of T

— Ifg(T)is a property of T, this property has to be true for S as well
m q(T)=>q(S)

— At anytime, atype T can be replaced with a subtype S without

breaking the code.

SOLID

Liskov Substitution

interface Beans {}

class ArabicaBeans implements Beans { a
}

class RobustaBeans implements Beans {

}

ass Grinder {
Ground grind (Beans b a“

}

new Grinder () .grind (new ArabicaBeans()):;

SOLID

Liskov Substitution
(& DONT
interface Beans {}

ss ArabicaBeans implements Beans {

ss RobustaBeans implements Beans {

ss FrenchBeans implements Beans { I

ass Grinder {

Ground grind(Beans b l) {

}

}

new Grinder () .grind {mhew FrenchBeans()) ; l

SOLID @
Liskov Substitution

@ DON'T (Bad substitution) @ DO (Good abstraction)

interface Beans {} interface Beans {}
interface CoffeeBeans extends Beans {}
: .) : . [)
class ArabicaBeans implements Beans { a class ArabicaBeans implements CoffeeBeans ({ a
} }
class RobustaBeans implements Beans { class RobustaBeans implements CoffeeBeans ({
} }
class FrenchBeans implements Beans { l class FrenchBeans implements Beans { ,
} }
class Grinder { class Grinder {
. N .)
Ground grind (Beans b a) | Ground grind (CoffeeBeans b a
} }

new Grinder () .grind {mhew FrenchBeans()) ; , new Grinder () .grind (new ArabicaBeans()):; a“

SOLID @

Interface Segregation

— Large interfaces offer a lot of services
m Hardtorepurpose

— Turn large interfaces into a composition of smaller ones

SOLID
Interface Segregation

— Large interfaces offer a lot of services
m Hardtorepurpose

— Turn large interfaces into a composition of smaller ones

Hammer Crowbar, Mallet { }

— maintainability
— testability
— reusability

62

SOLID
Interface Segregation

(& DONT

interface CoffeeGround {

void tamp () ; ‘
oid infuse () ; 4

oid dose();

interface TeaBag {
void infuse () ;

vold dose () ;

SOLID
Interface Segregation

@ DON'T (large interfaces) @DO (reusable interfaces)

interface CoffeeGround {
void tamp () ;
vold infuse () ;

vold dose () ;

interface TeaBag {
void infuse () ;

vold dose () ;

interface Tampable {
void tamp () ;

}

interface Infusable {
void infuse() ;

}

interface Dosable {

void dose () ;
interface CoffeeGround “
extends Tampable, Infusable, Dosable {

interface TeaBag

extends Infusable, Dosable { }

SOLID @

Dependency inversion
Depend on abstraction, not implementations
Eg:
— “Ineed ascrewdriver”
Not

— “I need the “blue, stainless steel, phillips screwdriver”

@ — Loosely coupled on implementation details
— Change with other implementations

SOLID
Dependency inversion

(& DONT

interface CoffeeBeans {}

class ArabicaBeans implements Beans {

class RobustaBeans implements Beans {

abicaBesc = new ArabicaBeans() ;

new Grinder () .grind (beans) ;

ass Grinder {

Ground grind (ArabicaBeans beans _ﬁb {

}

SOLID
Dependency inversion

@ DON'T (depend on concrete types) @ DO

interface CoffeeBeans {}

class ArabicaBeans implements CoffeeBeans ({

}

class RobustaBeans implements CoffeeBeans {

}

ArabicaBeans beans = new ArabicaBeans() ;

new Grinder () .grind (beans) ;
a%
class Grinder {

Ground grind (ArabicaBeans beans

}

a%

interface CoffeeBeans {}

: . S
class ArabicaBeans implements CoffeeBeans ({ 4’
}

class RobustaBeans implements CoffeeBeans {

}

Beans beans = new ArabicaBeans() ;

new Grinder () .grind (beans) ;
N
a}.

class Grinder {
Ground grind (CoffeeBeans beans

}

Single Responsibility
Open/ Close principle
_iskov Substitution
‘nterface Segregation
Uependency Inversion

Other best
practises

DRY, KISS, YAGNI

Best practises

DRY
Don’t Repeat Yourself

— Do not copy-paste (large) pieces of codes

— Factorize code
m With composition
m Withinheritance

Best practises

Water boil {
while(water.temperature < 100)

water.temperature++;

s CoffeeMachine {

Water boil er water) {

while(water.temperature <

water.temperature++;

Best practises

DRY

class Kettle {

Water boil (Water water) {
while(water.temperature < 100)

water.temperature++;

}

class CoffeeMachine {

Water boil (Water water) {
while (water.temperature

water.temperature++;

(&) ALSODON'T

class Kettle {

Water boil Water water) {
while(water.temperature < 100)

water.temperature++;

}

class CoffeeMachine extends Kettle {

Best practises

DRY

while(water.temperature < 100)

water.temperature++;
CoffeeMachine {
Water boil (Water water) {

while(water.temperature < 100)

water.temperature++;

(&) ALSODON'T

Kettle (5§

+ boil (water : Water) :

water A

CoffeeMachine

+ boil (water : Water):

Best practises @
Prefer composition over inheritance

— Inheritance:
@ m Childclassistightly coupled to its parent
m Inherit from multiple classes causes problems

Best practises

&DONT

Prefer composition over inheritance

@Dpo

Kettle

_> + boil (water : Water) :

water

»

Grinder

-1

_> + grind(b: Beans) :

ground

<<extends>> E
CoffeeMachine

+ boil (water : Water) :

water

Best practises

Prefer composition over inheritance

&DONT

Kettle

+ boil (water :

Water) :

water

Grinder

-1

____'>

+ grind(b:

Beans) :

ground

<<extends>>

CoffeeMachine

o

+ boil (water : Water) :

water

[= = == = = = = Boiler
<<implements>>
|
<<Boils>>
+ boil (water : Water): Kettle 5
water
<<Grinds>>
+ grind(b: Beans): ground

<<implements>>

l

CoffeeMachine

H

GrindingWheel

b 4
Grinder =
|
|

80

Best practises

&DONT

Kettle

@Dpo

Prefer composition over inheritance

<<implements>>

Boiler

v

<<Boils>>

<<implements>>

_> + boil (water :

water

+ boil (water : Water) :

<+ S mements!

<<implements>>

Grinder

Kettle

_> + grind(b: Beans) :

<<extends>>

CoffeeMachine

+ boil (water : Water) :

water

e rand (PR o) no) .
T c{o—— E

o
ST

water I
<<Grinds>> . |
<<implements>>

+ grind(b: Beans): ground 11
A . 11
<<implements>> - [

-
: Grinder = CoffeeMachine ﬂ
| |
|

<<implements>>

GrindingWheel

— Seek high cohesion

— The cohesion of a class / method usually decreases when its size
increase.

Nicolas THIERION <nthierion@takima.f>
Maxime BIBOS <mbibos@takima.fr>

Thank you.

Y Leave feedback:
https://forms.gle/J8jAX4HJdEfaDgydA

P10 - Computers foundations

J10 - Introduction to java

P20 - OOP basics

DO5 - Modelization with UML

J20 - Java basics

J30 - Java collections

J40 - Concurrency

P30 - Functional Programming . .
, i kima.f
D20 - DeS|gn patterns ormation@takima r83

mailto:formation@takima.fr
https://docs.google.com/presentation/d/1xy_OA_vjvul5KcGtmZ_NAWTfijeGTBo2wm_W7wSi1kc/edit?usp=sharing
https://docs.google.com/presentation/d/1D4smYA8cnYX2o2PrJaRCWGSVNvu2OG4u1HJxN7-9RGk/edit?usp=sharing
https://docs.google.com/presentation/u/0/d/1Xk8f_VjZh_iD82hwrog2jKEenS7d2oBFZhAd57_Huxo/edit
https://docs.google.com/presentation/u/0/d/1_RQJJyAT1qioost0NpqE0wgQlYq8T1hi5UUyo8tKgQM/edit
https://docs.google.com/presentation/u/0/d/1w2zG-7RGszpGYOqsaLFsG5T8KWdmLIG2yVyKIGcaQXQ/edit
https://docs.google.com/presentation/u/0/d/10WmRAUbY90xWoSTQDy64OMLcnJps_sEFh4TgGxEE2pw/edit
https://docs.google.com/presentation/u/0/d/139FRO7cSdA4moXeugk0YlZ1O212VOq32Dm8IJQvszb0/edit
https://docs.google.com/presentation/u/0/d/1tnKdbHSt9OsLyAflgB2exj0MmoAgeyEbgZLJ4QWMr8w/edit
https://docs.google.com/presentation/u/0/d/1ZBcrRe8Ha6zB3F49KfKJXAo87UH3c4PAiim9IQ9rr8k/edit
https://forms.gle/J8jAX4HJdEfaDgydA
mailto:nthierion@takima.fr
mailto:mbibos@takima.fr

© Crédits

Icons found on
https://www.flaticon.com

- Freepik:

- coffee machine, power plug,
coffee press, kettle, coffee
grinder, compass, ruler, coffee
beans, french beans, crowbar,
mallet

© takima 2022 all rights reserved?

https://www.flaticon.com

© takima 2022 all rights reserved®

© takima 2022 all rights reserved®

