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HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities
Introduction

High Performance Computing

Numerical simulations used in many scientific fields

Biology,

Physics,

Cosmology,

Chemestry,

Industrial & Academics

Complexity of the problem,
Massively Parallel

Figure: Dark matter halo image (Credit: CPAC group, ANL )

https://press3.mcs.anl.gov/cpac/


2

HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities
Introduction

Supercomputers: large-scale machines

Hierarchical layout

Computing power: growth factor
of 220 in last 10 years

"Fugaku"
Equivalent to 1.5 million
laptops

Energy consumption of
∼ 22.000 households

Figure: Structure of supercomputers: interconnected
hierarchical boxes Source

https://www.researchgate.net/publication/281396398
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Introduction

Emergence of New Workloads

Arise from Machine Learning and BigData

Deep Learning as a major tool
Major interest in Artificial Intelligence
Neural Networks as the reference tool

Progress: Larger datasets

Consequence: compute-intensivity

Input 1

Input 2

Input 3

Input 4

Input 5

Output

Intermediate
layer

Input
layer

Output
layer

Figure: Illustration of neural network structure
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Issue in Question

Running Applications on Supercomputers
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Issue in Question

Typical Scientific Applications

Models of real-life phenomenon

Complex code with high degree of parallelism

Output: huge amount of data (datasets in PetaBytes)

Hardware Limitations: limited size of PFS + access bandwidth
PFS capacity growth factor: 25 (2010-2020)∗

Bandwidth growth factor: < 2 (2010-2020)∗

Software Limitations: Reaching perfect parallelism
Inherent sequential parts in applications
Amdahl’s law, Gustafson law, etc

∗Source: Top 500

https://www.top500.org/
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Issue in Question

Recently: new applications on supercomputers

Convergence HPC/BigData-ML

Our focus: the new applications

Neurosciences, Computational Biology

Applications: different models → different
needs

Machine: different users → different
behavior

HPC Big data

Amounf of data

Application Pipeline

Figure: Convergence between HPC and BigData
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Issue in Question

Issue in Question

Issue in Question
How to optimize various application profiles on HPC infrastructures?

Classify applications into categories
Express models to derive efficient strategies

Data-intensive applications
Origin HPC workloads

Challenge Size of output
Approach Scheduling, resource partitioning

Collaborations B. Raffin (Inria)
Publications IJHPCA’19

Table: Overview of categories of applications under interest
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Issue in Question
Solutions for data-intensive applications

On the use of in situ paradigm (1/2)

Machine 1

Machine 2

Simulation

Analysis

Good computing performance

I/O contention

Figure: Out-of-machine paradigm
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Issue in Question
Solutions for data-intensive applications

On the use of in situ paradigm (1/2)

Simulation

Analysis

Reduce I/O contention

Same machine, data locality

Resources are shared between Sim. & Ana.
Need to optimize resources

Analysis output

Figure: In machine paradigm

We propose models and strategies to automate in machine paradigm
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Issue in Question
Solutions for data-intensive applications

On the use of in situ paradigm (2/2)

Model of applications and platform

Resource partitioning

Scheduling of analysis

Evaluation through simulations

Perspectives: evaluation on
production

S S S S

S S A A

S S S S

S S A A

S S S S

S S A A

A A A A

A A A A

Figure: Hybrid in transit/in situ processing of analytics
on 4 processors of 8 cores. Simulation runs on 6 cores
and the in situ analytics on 2 helper cores of 3 in situ
processors. in transit analytics are executed on a
dedicated processor.
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Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

SLANT, a representative Neuroscience application

High-resolution whole brain segmentation from MRI pictures

Dynamic code, multiple stages, predictable memory requirement

Execution of CPU version, 2 datasets: DRD and OASIS

Platform: Haswell on Plafrim

(a) Segmentation for OASIS. (b) Segmentation for DRD.

Figure: Typical inputs and outputs based on the dataset.



15

HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities
Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

High-level observations: walltime profile

Variations are confirmed

Where does these variations
come?

Can we predict it?

Run-to-run variability? 7

Figure: SLANT application walltime variation for various inputs.
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Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

High-level observations: walltime prediction?

Figure: Correlation between the size of the input and the walltime over the 312 runs.

Let us accept this variation, in what is it a problem in HPC?
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High-level observations: walltime prediction?

Figure: Correlation between the size of the input and the walltime over the 312 runs.

Let us accept this variation, in what is it a problem in HPC?
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Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

Difficulty of unknow execution time in HPC†

Killed job + resubmission = low
performance
Waste of system resources

Early termination, possible waiting time
in scheduler queue
Backfilling

Importance of accurate prediction of application walltime

†Credit pictures: Hongyang SUN
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Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

Overall high-level observations

Significant variations in the walltime

Variations determined by elements from the input

Variations not correlated to the size of the input (quality and not quantity)

Approach: successive reservations until job terminates

Reservation strategies for stochastic jobs

We provide
1 Model(s) of the applications
2 Model(s) of the platforms
3 An optimization problem.
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Reservation Strategies for Stochastic Jobs
An illustrative example

Reservation-based Approach

Given a job J of duration t (unknown). The user makes a reservation of time t1. Two cases:
t ≤ t1 The reservation is enough and the job succeeds.
t > t1 The reservation is not enough. The job fails. The user needs to ask for another
reservation t2 > t1.

Drawback: Failed reservations = Lost of the job progress = Waste of resources

Solution: introduce checkpoint at the end of (some) well-chosen reservations
Assume flat memory model
C : fixed checkpoint overhead
R: restart overhead
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Reservation Strategies for Stochastic Jobs
An illustrative example

Motivational example (1/2)

Job execution time follows a Random Variable X .
Distribution D
Cumulative function (CDF), Density function (PDF)
Support is positive (X ∈ [minD,maxD], s.t.
minD ≥ 0 and maxD ∈ R ∪ {∞})

Let X ∼ LogNormal(21.4, 19.7) on [0, 80]

Platform
Cost = cost of reservations
C = R = 7

Figure: Execution times from 2017 for a Structural
identification of orbital anatomy application, and
its fitted distribution (in red).
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Reservation Strategies for Stochastic Jobs
An illustrative example

Checkpointing: Motivational example (2/2)

S1 (Standard): t1 = 80

Time80

Standard
E (S1) = 80 80

20 100

No Checkpoint [IPDPS’19]

E (S2) = 47.2

if t ≤ 2020
8020 if t > 20

54 121

With Checkpoint [IPDPS’20]

E (S3) = 41.54

720 if t ≤ 20
207720 if 20 < t ≤ 40

607207720 if t > 40

61 1285427

With Checkpoint [IPDPS’20]

E (S3) = 41.54

720 if t ≤ 20
207720 if 20 < t ≤ 40

607207720 if t > 40

Time

With 2 Checkpoints

E (S̃3) = 43.92

720 if t ≤ 20
7207720 if 20 < t ≤ 40

4077207720 if t > 40

Complexity of checkpointing decision
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Checkpointing: Motivational example (2/2)
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Checkpointing: Motivational example (2/2)

S3 (With Checkpoint): tC1 = 20+ C , tR2 = R + 20, tR3 = R + 60

Time80
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An illustrative example

Checkpointing: Motivational example (2/2)

E(S3) = 27 · P (X ≤ 20) + (27+ 27) · P (20 < X ≤ 40) + (54+ 67) · P (40 < X ) = 41.54

Time80
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An illustrative example

Checkpointing: Motivational example (2/2)
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An illustrative example

Checkpointing: Motivational example (2/2)

E(S̃3) = 27× 0.66+ 61× 0.26+ 128× 0.08 = 43.92 > E(S3)
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Reservation Strategies for Stochastic Jobs
Algorithmic contributions

Algorithmic contributions for stochastic jobs

Checkpointing not always available

Solutions for both application models

No checkpoints
? Determine a sequence of reservations

With checkpoints:
? Determine the size of reservations
? Associate checkpointing decision to each

reservation
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Algorithmic contributions

Algorithmic contributions for stochastic jobs

No checkpoints
? Determine a sequence of reservations

With checkpoints:
? Determine the size of reservations
? Associate checkpointing decision to each

reservation

Distribution Continuous Discrete

Support Bounded Unbounded - -

Solution (1+ ε)-approx ? optimal optimal

Algorithm Name Dyn-Prog-Count Dyn-Prog-Count Discrete-Ckpt No-Checkpoint

Complexity O
( 1
ε3

)
O
( 1
ε3

)
O(n3) O(n2)

Table: Summary of algorithmic contributions
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Reservation Strategies for Stochastic Jobs
Algorithmic contributions

Algorithmic contributions for stochastic jobs

No checkpoints
? Determine a sequence of reservations

With checkpoints:
? Determine the size of reservations
? Associate checkpointing decision to each

reservation

Name All-Checkpoint All-Checkpoint-Periodic No-Checkpoint-Periodic

Distribution Discrete Discrete Discrete

Application Model Checkpoint Checkpoint No Checkpoint

Solution Heuristic Heuristic Heuristic

Complexity O(n2) O(n) O(n)

Table: Summary of main heuristics
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Reservation Strategies for Stochastic Jobs
Performance Evaluation

Simulations on synthetic applications

Two sets of algorithms:
1 "Checkpoint": Includes Dyn-Prog-Count [IPDPS’20], and its All-Checkpoint and

No-Checkpoint variants [IPDPS’19]
2 "Periodic": Includes All-Checkpoint-Periodic, and its No-Checkpoint-Periodic counterpart

without checkpointing (i.e., δi = 0, ∀i).

Cost function
1 "pay exactly what you reserve"
2 Similar results for other cost functions

Different distributions, bounded or not
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Reservation Strategies for Stochastic Jobs
Performance Evaluation: Synthetic Applications

Dyn-Prog-Count, best solution?
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(a) Lognormal (µ = 45min)
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(b) Bounded Pareto (µ = 45min)
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Figure: Expected costs of the different strategies normalized to that of Dyn-Prog-Count(X , 0.1) when
C = R vary from 60 to 3600 seconds with ReservationOnly cost function.
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Reservation Strategies for Stochastic Jobs
Performance Evaluation: Fit Real Data

Simulation: fit distribution from real data (1/2)

Figure: Execution times from 2017 for a Structural identification of orbital anatomy application, and
its fitted distribution (in red) as a Lognormal distribution (µo = 21.4h, σ0 = 19.7h)
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Performance Evaluation: Fit Real Data

Simulation: fit distribution from real data (2/2)
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(a) Variation of µ, σ = σo = 19.7h,
C = R = 600s
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(b) Variation of σ, µ = µo = 21.4h,
C = R = 600s

Figure: Normalized performance of algorithms with omniscient scheduler when µ or σ vary, using
ReservationOnly cost function.
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Reservation Strategies for Stochastic Jobs
Summary of Contributions for Stochastic Jobs

Summary

Reservation strategies for stochastic jobs

Exact and approximation algorithms for different application models
Set of simulation results to validate algorithm performance
First experiments in HPC environment

Main limitations

Assume constant checkpoint/restart overhead
Inaccurate estimation leads to inefficiency

Flat memory model

What if there are variations in memory consumption?
Is it the case in practice?
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SLANT: in-depth Profiling

Go back to SLANT

Figure: Reminder: SLANT execution time
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Profiling Applications for Better Strategies
SLANT: in-depth Profiling

SLANT: Task-level observations

Figure: Examples of memory footprints of the SLANT application with inputs for DRD dataset.
Memory consumption is measured every 2 seconds with the used memory field of the vmstat command.

Significant memory variations → Different checkpoint overhead
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Profiling Applications for Better Strategies
Refining Application Model

New application model: chain of tasks

1 2 3 4 5 6 7

Figure: Job decomposition in tasks based on raw data of a memory footprint.
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Refining Application Model

Task walltime: from raw data...

Figure: Analysis of the task walltime for all jobs (raw data).
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Profiling Applications for Better Strategies
Towards More Expressive Application Models

... to model benefits (1/2)

Figure: yi (t) = P
(∑

j≤i Xj < t
)
is the probability that task i is finished at time t (raw data and

estimated).



34

HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities
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Towards More Expressive Application Models

Model benefits: Memory-specific quantities (2/2)

Figure: The model can help interpolate different quantities such as peak memory over time.
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Profiling Applications for Better Strategies
A First Memory-aware Heuristic

A first step for memory-aware algorithms

Mem-All-Ckpt: adapting All-Checkpoint [IPDPS’20]
1 Take k previous runs
2 Interpolate model

estimate "likely" maximum memory need over time
From continuous to discrete distribution with associated checkpointing cost

3 Input model to modified version of All-Checkpoint

Comparison to strategies used at Vanderbilt University
1 Neuro: T1= max last 5runs, then T2 s.t. T1 + T2 = 1.5× T1
2 Neuro-Avg: same with average of last 5runs
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A first step for memory-aware algorithms

Figure: Average utilization (walltime divided by reservation time)
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A first step for memory-aware algorithms

Figure: Weighted average memory (total memory used by the different reservations normalized by time)
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Conclusion on stochastic applications

Variation in execution time

Sequence of reservations
Checkpoints to save application progress
Various algorithmic contributions

Different performance evaluation
Simulations on synthetic applications
Experiments on real data and application

Profiling applications for better strategies
Memory profiling to improve
checkpointing strategy

Figure: Traces [2013-2016] of VBMQA application
(Vanderbilt’s medical imaging database).
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Table of Contents

1 Issue in Question

2 Reservation Strategies for Stochastic Jobs

3 Profiling Applications for Better Strategies

4 Conclusion
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Contributions to application management in HPC

HPC/BigData-ML convergence

Categorizing applications

Derived strategies for each category
Expressed models for both platforms and applications
Derive scheduling heuristics and/or resource partitioning strategies
Extensive set of simulations and experiments

Importance of application knowledge
Critical for performance of our strategies
Using profiling to better understand needs
From first solutions to practical ones
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Short term perspectives

Continue theoretical contributions

Include system constraints in model
Contention
Checkpoint not only at the end of reservation
Application-aware checkpointing

Integration in frameworks
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Global perspectives

Theoretical models, practical?
Convince users to use models
"Scheduler, where are you?"

Study of users and application behavior at scale

From static to dynamic decisions
Benefits of feedback during execution
Frequency of model revaluation
"dynamic" reservations
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Thank you for your attention!
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Context: Computing in the cloud

Several cost models to compute in the cloud:
On-Demand (OD): “you pay for compute capacity by per hour or per second depending
on which instances you run” (Amazon AWS).

(= Pay what you use)

Reserved-Instances (RI): “Reserved Instances provide you with a significant discount (up
to 75%) compared to On-Demand instance pricing.”

(= Pay what you ask for)

Figure: Data extracted from AWS website, 12/10/2018.
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Context: Computing in HPC

Total time = Wait time + Runtime:

(a) Jobs that requested 204 procs. (b) Jobs that requested 409 procs.

Figure: Average wait times of jobs run on Intrepid (2009) as a function of requested runtime (data:
Parallel Workload Archive).
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Distribution Instantiation (1/2)

Distribution PDF f (t) Instantiation Support (in hours)
Distributions with infinite support

Exponential (λ) λe−λt λ = 4
3h
−1 t ∈ [0,∞)

Weibull(λ, κ) κ
λ

(
t
λ

)κ−1
e−(

t
λ )

κ λ = 0.375h
κ = 0.5 t ∈ [0,∞)

Gamma(α, β) βα

Γ(α) t
α−1e−βt

α = 3.0
β = 4.0h−1 t ∈ [0,∞)

Lognormal (ν, κ) 1
tκ
√

2π
e−

(ln t−ν)2

2κ2
ν = 0.5h
κ = −0.789 t ∈ (0,∞)

Pareto(ν, α) ανα

tα+1
ν = 0.5h
α = 3.0 t ∈ [ν,∞)

Table: Probability distributions and parameter instantiations.
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Distribution Instantiation (2/2)

Distribution PDF f (t) Instantiation Support (in hours)
Distributions with finite support

Truncated Normal(ν, κ2, a, b) 1
κ

√
2
π ·

e
− 1

2 (
t−ν
κ )2

1−erf
(

a−ν

κ
√
2

)
ν = 0.711h
κ2 = 0.17h2

a = 0.0h
b = 4.0h

t ∈ [a, b]

Uniform(a, b) 1
b−a

a = 0h
b = 1.5h t ∈ [a, b]

Beta(α, β) tα−1·(1−t)β−1

B(α,β)

α = 2.0
β = 2

3
t ∈ [0, 1]

Bounded Pareto(L,H, α) αLαt−α−1

1−
(

L
H

)α L = 0.233h
H = 5.0h
α = 1.0

t ∈ [L,H]

Table: Probability distributions and parameter instantiations.
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Impact of ε on Dyn-Prog-Count
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(b) C = R = 30min

Figure: Expected cost of Dyn-Prog-Count(X , ε) as a function of ε for different distributions with
ReservationOnly cost function.
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Impact of ε on Dyn-Prog-Count
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Figure: Expected cost of Dyn-Prog-Count(X , ε) as a function of ε for different distributions with HPC
cost function.
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Impact of period size (1/2)

Table: Expected cost of All-Checkpoint-Periodic and No-Checkpoint-Periodic, normalized by
Dyn-Prog-Count(X , 0.1) for C = R = 360s, with ReservationOnly cost function.

Distribution All-Checkpoint-Periodic No-Checkpoint-Periodic
Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000

Exponential 25 (1.00) 9.03 2.44 4.28 6.13 7.98 9.84 13 (1.38) 9.03 7.53 14.48 21.43 28.38 35.33
Weibull 223 (1.12) 76.76 1.13 1.22 1.42 1.64 1.86 69 (2.35) 76.76 3.56 6.16 8.85 11.56 14.28
Gamma 13 (1.02) 5.09 3.66 6.69 9.71 12.74 15.77 7 (1.33) 5.09 11.99 23.35 34.71 46.07 57.43

Lognormal 20 (1.01) 7.71 2.90 5.19 7.48 9.78 12.08 10 (1.52) 7.71 11.52 22.44 33.37 44.30 55.23
Pareto 429 (1.01) 96.28 1.13 1.01 1.03 1.08 1.15 267 (1.16) 96.28 1.19 1.22 1.37 1.55 1.75

TruncatedNormal 7 (1.06) 3.25 6.72 12.81 18.91 25.01 31.10 4 (1.23) 3.25 14.91 29.21 43.51 57.80 72.10
Uniform 3 (1.01) 1.20 16.59 32.57 48.56 64.54 80.53 1 (1.20) 1.20 40.56 80.53 120.49 160.45 200.41
Beta 1 (1.00) 1.00 30.75 60.75 90.75 120.75 150.75 1 (1.00) 1.00 62.11 123.47 184.84 246.20 307.57

BoundedPareto 13 (1.02) 3.99 4.06 7.52 10.97 14.42 17.88 6 (1.44) 3.99 15.17 29.73 44.29 58.85 73.41
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Impact of period size (2/2)

Table: Expected cost of All-Checkpoint-Periodic and No-Checkpoint-Periodic, normalized by
Dyn-Prog-Count(X , 0.1) for C = R = 1800s, with ReservationOnly cost function.

Distribution All-Checkpoint-Periodic No-Checkpoint-Periodic
Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000

Exponential 13 (1.26) 6.86 7.49 14.52 21.56 28.61 35.65 13 (1.05) 6.86 5.72 11.00 16.28 21.56 26.84
Weibull 108 (1.34) 52.64 1.52 2.23 3.02 3.83 4.65 69 (1.61) 52.64 2.44 4.23 6.07 7.93 9.79
Gamma 7 (1.17) 3.83 11.86 23.24 34.63 46.01 57.40 7 (1.00) 3.83 9.01 17.55 26.09 34.63 43.17

Lognormal 11 (1.29) 5.91 9.27 18.08 26.89 35.70 44.52 10 (1.17) 5.91 8.83 17.20 25.57 33.95 42.33
Pareto 228 (1.39) 83.16 1.40 1.52 1.81 2.13 2.47 267 (1.01) 83.16 1.03 1.05 1.18 1.34 1.51

TruncatedNormal 3 (1.40) 2.81 26.83 53.13 79.43 105.73 132.03 4 (1.06) 2.81 12.86 25.19 37.52 49.86 62.19
Uniform 1 (1.00) 1.00 67.17 133.83 200.50 267.17 333.83 1 (1.00) 1.00 33.83 67.17 100.50 133.83 167.17
Beta 1 (1.00) 1.00 150.72 300.73 450.74 600.74 750.74 1 (1.00) 1.00 62.11 123.47 184.84 246.20 307.57

BoundedPareto 7 (1.33) 3.10 13.92 27.35 40.79 54.22 67.66 6 (1.12) 3.10 11.80 23.12 34.44 45.77 57.10
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From simulation to experiments

Scheduling multiple jobs in an HPC environment
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From simulation to experiments

Scheduling multiple jobs in an HPC environment

3 different applications

Table: Characteristics of the chosen neuroscience applications.

Application Type Walltime distribution C R

Diffusion model fitting (Qball) Gamma (k = 1.18, θ = 34,
[a, b] = [146s, 407s]) 90s 40s

Diffusion model fitting (SD) Weibull (k = 1043811, λ = 1174322466,
[a, b] = [46min, 2.3h]) 25min 10min

Functional connectivity analysis (FCA) Gamma (k = 3.6, θ = 72,
[a, b] = [165s, 1003s]) 150s 100s



HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities
Conclusion
From simulation to experiments

From simulation to experiments

Scheduling multiple jobs in an HPC environment

3 different applications

Two different sets of strategies
1 "HPC-for-neuroscience strategy" (HPC): average of 5 last runs then ×1.5
2 Our Dyn-Prog-Count strategy + All-Checkpoint variant
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From simulation to experiments

Setup
256-thread Intel Processor Xeon Phi 7230, 1.30GHz

Record application completion time, for 500 runs of each application

Metrics for system performance:
1 stretch: total execution time / actual walltime
2 utilization: sum of all jobs’ walltimes / total time required to execute them
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Experiments: performance of strategies

500 jobs of each applications are submitted
C/R manually forced to be as presented in previous table (study of application interference
and runtime variability)

Figure: Utilization and average job stretch for Dyn-Prog-Count, All-Checkpoint and the HPC strategies.
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Experiments: what if C/R vary?

Figure: Utilization and average job stretch for the three applications (blue: Qball; Orange: SD; Green:
FCA) when varying the C/R costs by different percentages (0 to 30%) using the Dyn-Prog-Count
strategy. Horizontal lines represent the results for the HPC strategy.
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Experiments: what about application interference?

Running all three applications at same time

500 jobs (100 from Qball, and 200 each from SD and FCA)

C/R costs constant across different reservations

HPC strategy: 10 different runs choosing 10 different instances from traces
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Experiments: what about application interference?

Table: Utilization and average job stretch for 10 different runs, each using 500 jobs from all three
applications. The runs are ordered by the best improvement of Dyn-Prog-Count in utilization.

Dyn-Prog-Count HPC Improvement
Utilization Avg Stretch Utilization Avg Stretch Utilization Avg Stretch

67 2.04 55 2.34 21% 15%
73 1.72 62 2.04 18% 19%
62 2.08 55 2.46 12% 18%
71 1.88 64 2.1 11% 12%
63 2.19 56 2.41 11% 10%
71 1.74 64 1.96 10% 12%
75 1.51 68 1.69 10% 12%
68 2.09 65 2.19 4% 5%
61 2.24 60 2.32 2% 4%
77 1.96 75 1.99 2% 2%
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Mem-All-Ckpt heuristic

“likely” maximum memory needed as a function of time

Mτ (t) = max

Mi |P

∑
j<i

Xi < t ≤
∑
j≤i

Xi

 > τ

 (1)

Y ∼ (vi ,Ci , fi )1≤i≤n, s.t. for 1 ≤ i ≤ n, P (Y = vi ) = fi

Dynamic-programming algorithm
SMAC(n)= 0

SMAC(i) = min
i+1≤j≤n

(
SMAC(j)+ (R+(vj−vi )+ Ci ) ·

n∑
k=i+1

fk

)

Checkpoint cost Ci

All-Checkpoint: Max. memory peak of application
Mem-All-Ckpt: Mτ (vi )
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A first step for memory-aware algorithms

Figure: Average reservation time
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A "second" step for memory-aware algorithms

Figure: Interpolation of peak memory over time.
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A "second" step for memory-aware algorithms

Mem-All-Ckpt: first reservation of >100min

R1: memory peak of 50GB

Enhancement: checkpoint just before task 5 (<25min)

Mem-All-Ckptv2
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A "second" step for memory-aware algorithms

Figure: Average reservation time
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Usual speedup laws

Amdahl’s law

S =
1

(1− p) + p
s

(2)

S = speedup
p = fraction of code that benefits
s = speedup of fraction p

Gustafson’s law

S = N + (1− N)× s (3)

S = speedup
N = processors
s = sequential fraction

Difference: Amdahl assumes fixed problem size
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Covid-friendly buffet!!!


