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Introduction

High Performance Computing

Numerical simulations used in many scientific fields

o Biology,

@ Physics,

@ Cosmology,

@ Chemestry,

@ Industrial & Academics

o Complexity of the problem,
Massively Parallel

Figure: Dark matter halo image (Credit: )


https://press3.mcs.anl.gov/cpac/

HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities

Introduction

Supercomputers: large-scale machines

4. Node Card

32 Compute Cards,
Optical Modules, Link Chips,

3. Compute Card Torus
One single chip module,

2. Module 16 GB DDR3 Memory

Single Chip
1. Chip

@ Hierarchical layout 18 cores ‘Q -

5b. VO Drawer
7. System

@ Computing power: growth factor .
of 220 in last 10 years epgm;*:m 2 pr

1,2 0r 4 /O Drawers

"Fugaku"
o Equivalent to 1.5 million fs‘umﬂ"c'i'r’:s
laptops

o Energy consumption of
~ 22.000 households

Figure: Structure of supercomputers: interconnected
hierarchical boxes



https://www.researchgate.net/publication/281396398
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Introduction

Emergence of New Workloads

@ Arise from Machine Learning and BigData

@ Deep Learning as a major tool

e Major interest in Artificial Intelligence
o Neural Networks as the reference tool

@ Progress: Larger datasets

o Consequence: compute-intensivity

Input Intermediate Output
layer layer layer

— Output
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__ Outre
Outline

© Issue in Question
© Reservation Strategies for Stochastic Jobs
© Profiling Applications for Better Strategies

@ Conclusion
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Running Applications on Supercomputers
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L mem@eEm
Typical Scientific Applications

Models of real-life phenomenon

Complex code with high degree of parallelism

Output: huge amount of data (datasets in PetaBytes)

o Hardware Limitations: limited size of PFS + access bandwidth

o PFS capacity growth factor: 25 (2010-2020)*
o Bandwidth growth factor: < 2 (2010-2020)*

Software Limitations: Reaching perfect parallelism

o Inherent sequential parts in applications
o Amdahl’s law, Gustafson law, etc

*Source: @ o o 0 o o o o o o o o o 6 5 o o o o o o o o © o o o 6 o o o o o o8


https://www.top500.org/
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Issue in Question

Recently: new applications on supercomputers

o Convergence HPC/BigData-ML
@ Our focus: the new applications
@ Neurosciences, Computational Biology Amounf of data

@ Applications: different models — different
needs

HPC Big data

@ Machine: different users — different
behavior

Application Pipeline

Figure: Convergence between HPC and BigData
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Issue in Question

Issue in Question

Issue in Question

How to optimize various application profiles on HPC infrastructures?

o Classify applications into categories

o Express models to derive efficient strategies
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Issue in Question

Issue in Question
How to optimize various application profiles on HPC infrastructures?

o Classify applications into categories

o Express models to derive efficient strategies

Data-intensive applications Stochastic Applications
Origin HPC workloads New DL/HPC workloads
Challenge Size of output Important walltime variations
Approach Scheduling, resource partitioning | Profiling, scheduling
Collaborations | B. Raffin (Inria) Vanderbilt University, ENS Lyon
Publications | IJHPCA'19 IPDPS'19, IPDPS'20

Table: Overview of categories of applications under interest
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Issue in Question

Issue in Question

How to optimize various application profiles on HPC infrastructures?

o Classify applications into categories
@ Express models to derive efficient strategies

Data-intensive applications

Origin HPC workloads
Challenge Size of output
Approach Scheduling, resource partitioning

Collaborations | B. Raffin (Inria)
Publications | IJHPCA'19

Table: Overview of categories of applications under interest

@ O © o © © o o o o o ©O © o o o o o o o o ©O o o o o o o o o o 0B
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Soluti = AFree] . H

On the use of in situ paradigm (1/2)

Simulation

Analysis

Machine 2

Figure: Out-of-machine paradigm
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Soluti = AFree] . H

On the use of in situ paradigm (1/2)

Analysis

Machine 2

Figure: Out-of-machine paradigm
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Soluti = AFree] . H

On the use of in situ paradigm (1/2)

o Good computing performance .

o 1/0O contention '

Machine 2

Figure: Out-of-machine paradigm
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Soluti = AFree] . H

On the use of in situ paradigm (1/2)

o Reduce 1/O contention .

» Same machine, data locality |‘

o Resources are shared between Sim. & Ana. '

Simulation » Need to optimize resources

[ | -mu!«uu- [

— } Analysis

Analysis output

Figure: In machine paradigm

We propose models and strategies to automate in machine paradigm

G o o o o o 0 o o o o o O o o o o o o o 0B
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Issue in Question

Solutions for data-i i li

On the use of in situ paradigm (2/2)

SESES RS S S S S

@ Model of applications and platform L A A A ) A A A
@ Resource partitioning p -

@ Scheduling of analysis A A A D @ @ G
@ Evaluation through simulations S S A A | S O )
@ Perspectives: evaluation on Figure: Hybrid in transit/in situ processing of analytics
production on 4 processors of 8 cores. Simulation runs on 6 cores

and the in situ analytics on 2 helper cores of 3 in situ
processors. in transit analytics are executed on a
dedicated processor.
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Solutions for data-i i li

Issue in Question

Issue in Question
How to optimize various application profiles on HPC infrastructures?

o Classify applications into categories

@ Express models to derive efficient strategies

Stochastic Applications
Origin New DL/HPC workloads
Challenge Important walltime variations
Approach Profiling, scheduling
Collaborations Vanderbilt University, ENS Lyon
Publications IPDPS'19, IPDPS'20

Table: Overview of categories of applications under interest
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Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

SLANT, a representative Neuroscience application

High-resolution whole brain segmentation from MRI pictures

@ Dynamic code, multiple stages, predictable memory requirement
Execution of CPU version, 2 datasets: DRD and OASIS

o Platform: Haswell on Plafrim

Raw Image
Slicewise
Segmentation
Raw Image
Slicewise
Segmentation

(a) Segmentation for OASIS. (b) Segmentation for DRD.

Figure: Typical inputs and outputs based on the dataset.
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Reservation Strategies for Stochastic Jobs

Case Study: High Level Observations

High-level observations: walltime profile

Application profile

40-
@ Variations are confirmed
30-
@ Where does these variations % 20,
come? o
10-
° ict it? l
Can we predICt it 0- | el S T T
@ Run-to-run variability? X 0 %0 100 190

Time (min)

Figure: SLANT application walltime variation for various inputs.
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Case Study: High Level Observations

High-level observations: walltime prediction?

120~ ~
o 90 -
= o Dataset
N 60- e ,’.Mo. s * OASIS-3
) e
= ° a, e LY L1 o DRD
Q
£ 30-
®
J s
0-
0 50 100 150

Walltime (min)

Figure: Correlation between the size of the input and the walltime over the 312 runs.
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Case Study: High Level Observations

High-level observations: walltime prediction?

120~ =
o 90 -
= ° Dataset
N 60- e ,’.M.. s * OASIS-3
) e
= ° a, e LY L1 o DRD
o
£ 30-

®
Z &
0-
0 50 100 150

Walltime (min)

Figure: Correlation between the size of the input and the walltime over the 312 runs.

Let us accept this variation, in what is it a problem in HPC?

@ o o o O © © o o o o o o o O © o o o o o o o o 0f
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Reservation Strategies for Stochastic Jobs
Case Study: High Level Observations

Difficulty of unknow execution time in HPCT

Over-estimation

Under-estimation
Requested

Job killed

I ‘_Rerﬂhjﬁ%eed / +— runtime
Q [}]
° \/ °
[s] o Ob
z : z | N Backill

walltlmle *+—wal iEcLllrar19 or wasted
Time Time
o Killed job + resubmission = low o Early termination, possible waiting time
in scheduler queue

performance

@ Waste of system resources o Backfilling

Importance of accurate prediction of application walltime

TCredit pictures: Hongyang SUN
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Reservation Strategies for Stochastic Jobs

Case Study: High Level Observations

Overall high-level observations

@ Significant variations in the walltime
@ Variations determined by elements from the input
@ Variations not correlated to the size of the input (quality and not quantity)

@ Approach: successive reservations until job terminates

Reservation strategies for stochastic jobs

We provide

@ Model(s) of the applications
@ Model(s) of the platforms

© An optimization problem.
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Reservation Strategies for Stochastic Jobs

An illustrative example

Reservation-based Approach

Given a job J of duration t (unknown). The user makes a reservation of time t;. Two cases:
@ t < t; The reservation is enough and the job succeeds.

@ t > t; The reservation is not enough. The job fails. The user needs to ask for another
reservation t, > ty.

Drawback: Failed reservations = Lost of the job progress = Waste of resources

Solution: introduce checkpoint at the end of (some) well-chosen reservations
@ Assume flat memory model
@ C: fixed checkpoint overhead
@ R: restart overhead
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An illustrative example

Motivational example (1/2)

i i . — | fit (u=21.4, 0=19.7)
Job execution time follows a Random Variable X. 7.00e-02 bl -
o Distribution D 6.00e-02
o Cumulative function (CDF), Density function (PDF) 5~
2 4.00e-02
@ Support is positive (X € [minp, maxp], s.t. 8, soeon
. .00e-
minp > 0 and maxp € R U {o0})
2.00e-02
Let X ~ LogNormal(21.4,19.7) on [0, 80] 1.00e-02
PI f 0.00e+00 0 50 100 150 200 250
atrorm Execution time [hours]
o Cost = cost of reservations Figure: Execution times from 2017 for a Structural
e C=R=7 identification of orbital anatomy application, and

its fitted distribution (in red).
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Reservation Strategies for Stochastic Jobs

An illustrative example

Checkpointing: Motivational example (2/2)

e S; (Standard): t; =80

tandard
Standar { %0

E(S1) = 80

80 Time



HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities

Reservation Strategies for Stochastic Jobs

An illustrative example

Checkpointing: Motivational example (2/2)

@ S, (No Checkpoint): t; = 20, t, = 80

Standard
E(S1) =80 1 80 |
No Checkpoint [IPDPS'19] || 20 if £ <20
20 80 : if £ > 20
20 80 100 Time
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Reservation Strategies for Stochastic Jobs

An illustrative example

Checkpointing: Motivational example (2/2)

o E(S;) =20 P (X < 20)+ (80 +20) - P (20 < X < 80) = 47.2

Standard
E(S1) =80 1 80 |
No Checkpoint [IPDPS'19] || 20 if £ <20
E(S) =472 20 80 ! if t > 20
20 80 100 Time
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Reservation Strategies for Stochastic Jobs

An illustrative example

Checkpointing: Motivational example (2/2)

o S3 (With Checkpoint): tf =20+ C, tf = R+ 20, tf = R+ 60

Standard
E(S1) =80 1 80 |

No Checkpoint [IPDPS'19] || 20 if £ <20
20 80 | ] if t>20

With Checkpoint [IPDPS'20] |—22— Il : : fe<20
th Checkpoint | N2 i 20 ] 20 <t <40
20 @ 20 [ 60 | if t > 40

20 54 80 100 121 Time
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Reservation Strategies for Stochastic Jobs
An illustrative example

Checkpointing: Motivational example (2/2)

o E(S3) =27 -P(X < 20) + (27 +27) - P(20 < X < 40) + (54 + 67) - P (40 < X) = 41.54

Standard
E(51) =80

No Checkpoint [IPDPS'19]
E(S;) =472

With Checkpoint [IPDPS'20]
E(Ss) = 41.54

{

|

80 |
20 if £ < 20
20 80 : | if t > 20
20 1 1 if t <20
20 20 ] ! L if20 <t <40
20 @ 20 [ 60 | if t > 40
20 54 80 100 121 Time
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Reservation Strategies for Stochastic Jobs

An illustrative example

Checkpointing: Motivational example (2/2)

o 53 (With 2 Checkpoints): t& =20+ C, i’ = R +20+ C, tf = R+ 60

20 . ift <20
With Checkpoint [IPDPS'20] 20 - 20 | if20 < t <40
E(S;) = 41.54 if t > 40
20 Wl 20 [ 60 |
l if t <20
With 2 Checkpoints m . hhe
20 W 20 if 20 < t < 40
20 7 20 W7 40 | ift>40
27 54 61 128 Time
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Reservation Strategies for Stochastic Jobs
An illustrative example

Checkpointing: Motivational example (2/2)

o E(53) = 27 x 0.66 + 61 x 0.26 + 128 x 0.08 = 43.92 > E(S3)

20 il ift<20
With Checkpoint [IPDPS’20] 20 - 20 | 20 < t <40
E(S3) = 41.54 if £ > 40
20 WlE 20 [7 60 l
2 1 if t <20
With 2 Checkpoints 0 . e
: 20 20 |l if 20 < ¢ < 40
E(53) = 43.92 _
20 W 20 [ W] ifes40
27 54 61 128 Time
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Reservation Strategies for Stochastic Jobs

Algorithmic contributions

Algorithmic contributions for stochastic jobs

@ Checkpointing not always available

@ Solutions for both application models

No checkpoints With checkpoints:
* Determine a sequence of reservations * Determine the size of reservations

* Associate checkpointing decision to each
reservation
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Reservation Strategies for Stochastic Jobs

Algorithmic contributions

Algorithmic contributions for stochastic jobs

No checkpoints With checkpoints:
* Determine a sequence of reservations * Determine the size of reservations

* Associate checkpointing decision to each
reservation

Distribution Continuous Discrete
Support Bounded l Unbounded - -
Solution (14 €)-approx | ? optimal optimal

Complexity |
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Reservation Strategies for Stochastic Jobs

Algorithmic contributions

Algorithmic contributions for stochastic jobs

No checkpoints With checkpoints:
* Determine a sequence of reservations * Determine the size of reservations

* Associate checkpointing decision to each
reservation

Name All-Checkpoint | All-Checkpoint-Periodic | No-Checkpoint-Periodic
| Distribution | Discrete | Discrete | Discrete |
V 7A;;piic7at7ioin 7|\/|70(7ie7| 1 7C;\e7ck7p;i;t 777777 (;hiecikp;o;n; 7777777 NioiCiheic;pioi;ti ]
. Soluton | Heuristic | | Hewrstc | Heuristc |
 Compledty | o(f) | owm | o
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Reservation Strategies for Stochastic Jobs
Performance Evaluation

Simulations on synthetic applications

@ Two sets of algorithms:
© "Checkpoint": Includes Dyn-Prog-Count [IPDPS’20], and its All-Checkpoint and
No-Checkpoint variants [IPDPS'19]
@ "Periodic": Includes All-Checkpoint-Periodic, and its No-Checkpoint-Periodic counterpart
without checkpointing (i.e., 6; = 0, V/).
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Reservation Strategies for Stochastic Jobs
Performance Evaluation

Simulations on synthetic applications

@ Two sets of algorithms:
© "Checkpoint": Includes Dyn-Prog-Count [IPDPS’20], and its All-Checkpoint and

No-Checkpoint variants [IPDPS'19]
@ "Periodic": Includes All-Checkpoint-Periodic, and its No-Checkpoint-Periodic counterpart

without checkpointing (i.e., 6; = 0, V/).
@ Cost function
© '"pay exactly what you reserve"

@ Similar results for other cost functions

o Different distributions, bounded or not
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Performance E Sy ic A

Dyn-Prog-Count, best solution?

N

ALL-CKPT 1.6 ALL-CKPT ALL-CKPT
— wte NO-CKPT — No-Ckpr —1 8 -CKPT
— === ALL-CkPT-PER | Aut-CPT-PER - i-CKPT-PER
212 —— Ng-Cxer-pon | 33 14 No-CirT-Prr < 6 -CKPT-PER
o o o
a ——— 9
& 512 a 14
= = =
) ) s | O
3 g S92
<10 < 1.0 < 7
1.0
0.8
1000 2000 3000 1000 2000 3000 0 1000 2000 3000
Cost of C and R (seconds) Cost of C and R (seconds) Cost of C and R (seconds)
(a) Lognormal (= 45min) (b) Bounded Pareto (1 = 45min) (c) Weibull (12 = 45min)

Figure: Expected costs of the different strategies normalized to that of Dyn-Prog-Count(X,0.1) when
C = R vary from 60 to 3600 seconds with ReservationOnly cost function.
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Reservation Strategies for Stochastic Jobs
Performance Evaluation: Fit Real Data

Simulation: fit distribution from real data (1/2)

—— lognorm fit (u=21.4, 0=19.7)

7.00e-02

6.00e-02

5.00e-02

4.00e-02

Density

3.00e-02

2.00e-02

1.00e-02

0.00e+00
0 50 100 150 200 250

Execution time [hours]

Figure: Execution times from 2017 for a Structural identification of orbital anatomy application, and
its fitted distribution (in red) as a Lognormal distribution (po = 21.4h, oo = 19.7h)

@ © © o o O o o o o o o o o o 08
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Reservation Strategies for Stochastic Jobs

Performance Evaluation: Fit Real Data

Simulation: fit distribution from real data (2/2)

10 6

9 =é= DyN-PROG-COUNT 51 == DYN-PROG-COUNT
e g ALL-CKPT H ALL-CKPT
E 6 st NO-CKPT 5 44 === NO-CKPT
55 seps ALL-CKPT-PER 6 seps ALL-CKPT-PER
23 No-CkPT-PER » 34 === NO-CKPT-PER
Z Z
s, =
Q QO o

~

O o o
Q 9]
= 3
= <

T e B

1.0 10.0

(a) Variation of u, 0 = 0o = 19.7h,

C = R =600s

0.1 10
oo,

(b) Variation of o, u = po = 21.4h,
C = R =600s

Figure: Normalized performance of algorithms with omniscient scheduler when p or o vary, using
ReservationOnly cost function.
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Reservation Strategies for Stochastic Jobs

y of Contributi or

Summary

@ Reservation strategies for stochastic jobs

o Exact and approximation algorithms for different application models
o Set of simulation results to validate algorithm performance
o First experiments in HPC environment

@ Main limitations

o Assume constant checkpoint/restart overhead
o Inaccurate estimation leads to inefficiency
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y of Contr i or Stochastic Jobs

Summary

@ Reservation strategies for stochastic jobs

o Exact and approximation algorithms for different application models
o Set of simulation results to validate algorithm performance
o First experiments in HPC environment

@ Main limitations

o Assume constant checkpoint/restart overhead
o Inaccurate estimation leads to inefficiency

Flat memory model

What if there are variations in memory consumption?
Is it the case in practice?
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Profiling Applications for Better Strategies

SLANT: in-depth Profiling

Go back to SLANT

Application profile

40-
30-
€
3 20-
(@]
10-
0- L il ... S T T .
5I

100 150
Time (min)

Figure: Reminder: SLANT execution time
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Profiling Applications for Better Strategies

SLANT: in-depth Profiling

Go back to SLANT

Application profile

50 100 150
Time (min)

Figure: Reminder: SLANT execution time
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SLANT: in-depth Profiling

SLANT: Task-level observations

Memory Footprint

50-
5 40-
=
g 30-
1S
2 2-
xe)
% 10~
il {1 ]
0 50 100 150

Time (min)

Figure: Examples of memory footprints of the SLANT application with inputs for DRD dataset.
Memory consumption is measured every 2 seconds with the used memory field of the vmstat command.

Significant memory variations — Different checkpoint overhead
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Profiling Applications for Better Strategies

Refining Application Model

New application model: chain of tasks

(o)
o
1

N
o
1

W
o
1

n
(=)
1

Memory Footprint
10-

|
|
|
it
Hint
i
0- [l ” | “‘

ol 2 3 45 5 100 6 7 150
Time (min)

Used Memory (GB)

Figure: Job decomposition in tasks based on raw data of a memory footprint.
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Refining Application Model

Task walltime: from raw data...

X task
X 1
20- ° * 2
= > "3
3 (1]
8 I e 4
(X ]
10= *.l & A 5
x# -(‘ A
>0 EHE ¢ A A ¢ 6
KK EeeCre A Ad
><>< Xme :cp.e 3K AAA .
NI T R
0 20 40 60

Walltime (min)

Figure: Analysis of the task walltime for all jobs (raw data).
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Profiling Applications for Better Strategies

Towards More Expressive Application Models

... to model benefits (1/2)

A task
— 1
0.75-
o — 2
=
© — 3
S 0.50-
E — 4
>
= — 5
0.25-
— 6
000- bbbl 7
0 50 100 150
Time(min)

Figure: yi(t) =P (ngixf < t) is the probability that task i is finished at time t (raw data and
estimated). 33

G o o o o o o 0B



HPC-Big Data Convergence: Managing the Diversity of Application Profiles on HPC Facilities

Profiling Applications for Better Strategies

Towards More Expressive Application Models

Model benefits: Memory-specific quantities (2/2)

50-
3
[0
Z 40- #Inputs
&
8 =5
=
- =20
E 20-
E = 50
3 10-
=
0 50 100 150
Time(min)

Figure: The model can help interpolate different quantities such as peak memory over time.

G o o o o o 00
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Profiling Applications for Better Strategies

A First Memory-aware Heuristic

A first step for memory-aware algorithms

o Mem-All-Ckpt: adapting All-Checkpoint [IPDPS'20]
© Take k previous runs

@ Interpolate model

o estimate "likely" maximum memory need over time
@ From continuous to discrete distribution with associated checkpointing cost

© Input model to modified version of All-Checkpoint

o Comparison to strategies used at Vanderbilt University

© Neuro: Ti= max last 5runs, then To sit. T1 + T, =15x T,
© Neuro-Avg: same with average of last 5runs
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Profiling Applications for Better Strategies

A First Memory-aware Heuristic

A first step for memory-aware algorithms

Algorithms E3 ALLCKPT EJ MEM-ALL-CKPT EJ NEURO EJ NEURO-AVG

1.0 -
= (—] == o ==
o) = = = =
©09- ° L
:_.—; [ ]
-}
£ = = === =
2os- ° |:|
2 ° °
9p]

0.7-

5 10 20 50

Number k of inputs for modeling phase

Figure: Average utilization (walltime divided by reservation time)
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Profiling Applications for Better Strategies

A First Memory-aware Heuristic

A first step for memory-aware algorithms

Algorithms EJ ALLCKPT E5 MEM-ALL-CKPT EJ NEURO E NEURO-AVG

ro NN N R [ E—
)
~ 50
£
[0}
= 4g- .
o)
S e = é
O 46- ®
>
< ([ ]
©
@ 44-
o
=
2 42-
5 10 20 50

Number k of inputs for modeling phase

Figure: Weighted average memory (total memory used by the different reservations normalized by time)
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Profiling Applications for Better Strategies

A First Memory-aware Heuristic

Conclusion on stochastic applications

@ Variation in execution time

@ Sequence of reservations

o Checkpoints to save application progress
e Various algorithmic contributions

o Different performance evaluation

e Simulations on synthetic applications
o Experiments on real data and application

o Profiling applications for better strategies

o Memory profiling to improve
checkpointing strategy

200

150

Counts

50

0 500 1000 1500 2000 2500 3000 3500
Execution time (s)

Figure: Traces [2013-2016] of VBMQA application
(Vanderbilt's medical imaging database).
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Conclusion

Summary of Contributions

Contributions to application management in HPC

HPC/BigData-ML convergence

o Categorizing applications

Derived strategies for each category
o Expressed models for both platforms and applications
o Derive scheduling heuristics and/or resource partitioning strategies
o Extensive set of simulations and experiments

Importance of application knowledge
o Critical for performance of our strategies
e Using profiling to better understand needs
o From first solutions to practical ones
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Perspectives

Short term perspectives

@ Continue theoretical contributions

@ Include system constraints in model

o Contention
o Checkpoint not only at the end of reservation
o Application-aware checkpointing

@ Integration in frameworks

39
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Global perspectives

@ Theoretical models, practical?

o Convince users to use models
o "Scheduler, where are you?"

@ Study of users and application behavior at scale

@ From static to dynamic decisions
o Benefits of feedback during execution
o Frequency of model revaluation
o "dynamic" reservations
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Conclusion
Perspectives

Thank you for your attention!
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Context: Computing in the cloud
Several cost models to compute in the cloud:

e On-Demand (OD): "you pay for compute capacity by per hour or per second depending
on which instances you run” (Amazon AWS).

(= Pay what you use)
o Reserved-Instances (RI): “Reserved Instances provide you with a significant discount (up
to 75%) compared to On-Demand instance pricing.”

(= Pay what you ask for)

STANDARD 3-YEAR TERM

Payment Option  Upfront  Monthly*  Effective Hourly**

No Upfront $0 $8.03 s0.011

Partial Upfront $134 $3.72 $0010 300255
All Upfront $252 $0.00 $0010

Figure: Data extracted from AWS website, 12/10/2018.
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Context: Computing in HPC

Total time = Wait time 4+ Runtime:

Number of processors: 204 Number of processors: 409
Data : Data :
80000 Linear (1.16 t - 1290.38) 50000 Linear (0.95 t + 3771.84)
@ D
2 60000 @ 40000
F =
= 30000
= 40000 =
Q @
2 20000
€ 20000 g
< <€ 10000
0 o
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Requested runtime (s) Requested runtime (s)
(a) Jobs that requested 204 procs. (b) Jobs that requested 409 procs.

Figure: Average wait times of jobs run on Intrepid (2009) as a function of requested runtime (data:
Parallel Workload Archive).
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Distribution Instantiation (1/2)
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| Distribution || PDF f(t) | Instantiation | Support (in hours) |
Distributions with infinite support
Exponential (\) e At A=3zh! t € [0, 0)
Weibull(\, ) 5 (%)Ril e (3) 2 z 8'275,7 t € [0,00)
Gamma(a, 3) %t“‘le_ﬁt g i 431:8/7—1 t €[0,00)
(|n t—u)z —
Lognormal (v, k) tml/ﬂe_ 212 : B (igh789 t € (0,00)
Pareto(v, ) ;’;Lﬁ Z B ggh t € [v,0)

Table: Probability distributions and parameter instantiations.
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Distribution Instantiation (2/2)

] Distribution I PDF f(t) | Instantiation [ Support (in hours) |
Distributions with finite support
v —=0.711h
_1(t=x)? 2 _ 2
Truncated Normal(v, k2, a,b) || 14/2 .2 ”7) w=0.17h t € [a, b]
rY T 17erf<i ‘;) a=0.0h
b=4.0h
. 1 a=0nh
Uniform(a, b) o b—15h t € [a,b]
a—1 1_4\B-1 o = 20
Beta(a, 3) S 5_2 t € [0,1]
. [=0.233h
Bounded Pareto(L, H, «) aL‘*th H =5.0h t € [L,H|
- (%) a=10

Table: Probability distributions and parameter instantiations.
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Impact of € on Dyn-Prog-Count

=>é= Exponential == Pareto —&— Beta =>é= Exponential === Pareto —&— Beta

=@ Weibull === TruncatedNormal BoundedPareto == Weibull === TruncatedNormal ‘ BoundedPareto
s Gamma == Uniform - y=1+¢ s Gamma == Uniform —_—y=1+4¢
== Lognormal === Lognormal

(a) € =R =6min (b) € = R =30min

Figure: Expected cost of Dyn-Prog-Count(X,¢) as a function of ¢ for different distributions with
ReservationOnly cost function.
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Impact of € on Dyn-Prog-Count

=>é= Exponential == Pareto —&— Beta =>é= Exponential === Pareto —&— Beta

=@ Weibull === TruncatedNormal BoundedPareto == Weibull === TruncatedNormal ‘ BoundedPareto
s Gamma == Uniform - y=1+¢ s Gamma == Uniform —_—y=1+4¢
== Lognormal === Lognormal

(a) € =R =6min (b) € = R =30min

Figure: Expected cost of Dyn-Prog-Count(X,¢) as a function of ¢ for different distributions with HPC
cost function.
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Impact of period size (1/2)

Table: Expected cost of All-Checkpoint-Periodic and No-Checkpoint-Periodic, normalized by
Dyn-Prog-Count(X,0.1) for C = R = 360s, with ReservationOnly cost function.

Distribution All-Checkpoint-Periodic No-Checkpoint-Periodic
Best 7 7=1[7=200] 7=400 [ 7=600 | 7=2800 [ 7 = 1000 Best 7 7=1[7=200] 7=400 | 7=600 | 7=2800 [ 7 =1000

Exponential 25 (1.00) 9.03 2.44 4.28 6.13 7.98 9.84 13 (1.38) 9.03 7.53 14.48 21.43 28.38 35.33
Weibull 223 (1.12) | 76.76 1.13 1.22 1.42 1.64 1.86 69 (2.35) 76.76 3.56 6.16 8.85 11.56 14.28
Gamma 13 (1.02) 5.09 3.66 6.69 9.71 12.74 15.77 7 (1.33) 5.09 11.99 23.35 34.71 46.07 57.43
Lognormal 20 (1.01) 7.71 2.90 5.19 7.48 9.78 12.08 10 (1.52) 7.71 11.52 22.44 33.37 44.30 55.23
Pareto 429 (1.01) | 96.28 1.13 1.01 1.03 1.08 1.15 267 (1.16) || 96.28 1.19 1.22 1.37 1.55 1.75
TruncatedNormal 7 (1.06) 3.25 6.72 12.81 18.91 25.01 31.10 4 (1.23) 3.25 14.91 29.21 43.51 57.80 72.10
Uniform 3 (1.01) 1.20 16.59 32.57 48.56 64.54 80.53 1 (1.20) 1.20 40.56 80.53 120.49 160.45 200.41
Beta 1 (1.00) 1.00 30.75 60.75 90.75 120.75 150.75 1 (1.00) 1.00 62.11 123.47 184.84 246.20 307.57
BoundedPareto 13 (1.02) 3.99 4.06 7.52 10.97 14.42 17.88 6 (1.44) 3.99 15.17 20.73 44.29 58.85 73.41
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Impact of period size (2/2)

Table: Expected cost of All-Checkpoint-Periodic and No-Checkpoint-Periodic, normalized by
Dyn-Prog-Count(X,0.1) for C = R = 1800s, with ReservationOnly cost function.

Distribution All-Checkpoint-Periodic No-Checkpoint-Periodic
Best 7 7=1[7=200] 7=400 [ 7=600 | 7=2800 [ 7 = 1000 Best 7 7=1[7=200] 7=400 | 7=600 | 7=2800 [ 7 =1000

Exponential 13 (1.26) 6.86 7.49 14.52 21.56 28.61 35.65 13 (1.05) 6.86 5.72 11.00 16.28 21.56 26.84
Weibull 108 (1.34) | 52.64 1.52 2.23 3.02 3.83 4.65 69 (1.61) 52.64 2.44 4.23 6.07 7.93 9.79
Gamma 7 (1.17) 3.83 11.86 23.24 34.63 46.01 57.40 7 (1.00) 3.83 9.01 17.55 26.09 34.63 43.17
Lognormal 11 (1.29) 5.91 9.27 18.08 26.89 35.70 44.52 10 (1.17) 5.91 8.83 17.20 25.57 33.95 42.33
Pareto 228 (1.39) | 83.16 1.40 1.52 1.81 2.13 2.47 267 (1.01) || 83.16 1.03 1.05 1.18 1.34 1.51
TruncatedNormal 3 (1.40) 2.81 26.83 53.13 79.43 105.73 132.03 4 (1.06) 2.81 12.86 25.19 37.52 49.86 62.19
Uniform 1 (1.00) 1.00 67.17 133.83 200.50 267.17 333.83 1 (1.00) 1.00 33.83 67.17 100.50 133.83 167.17
Beta 1 (1.00) 1.00 150.72 300.73 450.74 600.74 750.74 1 (1.00) 1.00 62.11 123.47 184.84 246.20 307.57
BoundedPareto 7 (1.33) 3.10 13.92 27.35 40.79 54.22 67.66 6(1.12) 3.10 11.80 23.12 34.44 45.77 57.10
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@ Scheduling multiple jobs in an HPC environment
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From simulation to experiments

From simulation to experiments

@ Scheduling multiple jobs in an HPC environment

o 3 different applications

Table: Characteristics of the chosen neuroscience applications.

Application Type Walltime distribution C R

Diffusion model fitting (Qball) GaTamz] (f [:1416518409757) 34, 90s 40s
Diffusion model fitting (SD) Weibull (,Ea:b]lojz[))férlr;i: 223}1]1)74322466' 25min | 10min
Functional connectivity analysis (FCA) Ga[r;mb]a:(k[l=653s.61,0903=s])72, 150s | 100s
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From simulation to experiments

@ Scheduling multiple jobs in an HPC environment
o 3 different applications

@ Two different sets of strategies

© "HPC-for-neuroscience strategy" (HPC): average of 5 last runs then x1.5
@ Our Dyn-Prog-Count strategy + All-Checkpoint variant
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From simulation to experiments

@ Setup
o 256-thread Intel Processor Xeon Phi 7230, 1.30GHz
o Record application completion time, for 500 runs of each application

o Metrics for system performance:

© stretch: total execution time / actual walltime
@ utilization: sum of all jobs’ walltimes / total time required to execute them
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From -imulation to experiments

Experiments: performance of strategies

@ 500 jobs of each applications are submitted
e C/R manually forced to be as presented in previous table (study of application interference

and runtime variability)

80 Sequence
B Dyn-Prog-Count
70 mmm All-Ckpt
mmm HPC
60
c
250
=]
©
a0
5
30
20
10
o]
Qball SD FCA Qball SD FCA
Application Application

Figure: Utilization and average job stretch for Dyn-Prog-Count, All-Checkpoint and the HPC strategies.
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Experiments: what if C/R vary?

— 7 Application
80 \\ —— Qball
P— SD
70| ] | 6 ' FCA
c \ Sequence
S 60 \ - S 5 - —s— Dyn-Prog-Count
= — = -+ HPC
N s
g 50 ha / —
\‘ J— e
40 . 3 ——
30 ) P ——
0 5 10 15 20 25 30 0 5 10 15 20 25 30
C/R variability C/R variability

Figure: Utilization and average job stretch for the three applications (blue: Qball; Orange: SD; Green:
FCA) when varying the C/R costs by different percentages (0 to 30%) using the Dyn-Prog-Count
strategy. Horizontal lines represent the results for the HPC strategy.
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Experiments: what about application interference?

Running all three applications at same time

500 jobs (100 from Qball, and 200 each from SD and FCA)

C/R costs constant across different reservations

o HPC strategy: 10 different runs choosing 10 different instances from traces
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Experiments: what about application interference?

Table: Utilization and average job stretch for 10 different runs, each using 500 jobs from all three
applications. The runs are ordered by the best improvement of Dyn-Prog-Count in utilization.

Dyn-Prog-Count HPC Improvement
Utilization | Avg Stretch | Utilization | Avg Stretch | Utilization | Avg Stretch
67 2.04 55 2.34 21% 15%
73 1.72 62 2.04 18% 19%
62 2.08 55 2.46 12% 18%
71 1.88 64 2.1 11% 12%
63 2.19 56 241 11% 10%
71 1.74 64 1.96 10% 12%
75 1.51 68 1.69 10% 12%
68 2.09 65 2.19 4% 5%
61 2.24 60 2.32 2% 4%
7 1.96 75 1.99 2% 2%
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Mem-All-Ckpt heuristic

@ "likely" maximum memory needed as a function of time

M(t) =maxs Mi[P | Y X <t<> X | > (1)
J<i J<i
oY~ (V,', G, f;')lg,'gn, s.t. for1 <i<n, P(Y = V,') =f

@ Dynamic-programming algorithm

SMAc(n) =0

Swac(i) = min <5MAc<J)+ (R+(j=vi)+ ) 'ifk>

<j<n 3
- k=i+1

o Checkpoint cost C;

o All-Checkpoint: Max. memory peak of application
o Mem-All-Ckpt: M-(v;)
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A first step for memory-aware algorithms

Algorithms EJ ALL-CKPT EJ MEM-ALL-CKPT EJ NEURO E- NEURO-AVG
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Figure: Average reservation time
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A "second" step for memory-aware algorithms
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Figure: Interpolation of peak memory over time.
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From simulation to experiments

A "second" step for memory-aware algorithms

Mem-All-Ckpt: first reservation of >100min
@ Ry: memory peak of 50GB

@ Enhancement: checkpoint just before task 5 (<25min)

Mem-All-Ckptv2
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A "second" step for memory-aware algorithms
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Figure: Average reservation time
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From simulation to experiments

Usual speedup laws

Amdahl’s law Gustafson’s law
1
S=—"—"-—+— 2 S=N+(1-N)xs 3
R ©) (-m) ()
@ S = speedup @ S = speedup
e p = fraction of code that benefits @ N = processors
@ s = speedup of fraction p @ s = sequential fraction

Difference: Amdahl assumes fixed problem size
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From simulation to experiments

Covid-friendly buffet!!!




